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HW3 out

●Check the Coursework tab and our HW3 FAQ post 

●Due Monday Sep 27 11:59pm (CMU time) 

●Written only (no programming) 

●Only 2 grace days allowed (later would go too close to 
the exam)
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Quiz 1 logistics

●Right here, during usual class period on Friday 

●First 20 minutes, followed by regular recitation 

●Everyone has an assigned seat for the quiz—see Piazza 

●check today to make sure you know your seat 

●if you’re not on the seating chart, it means we think 
you have made arrangements with ODR for them to 
proctor—if that’s not true, contact us ASAP! 

●Questions: reading and writing short Python programs 
related to HW1 and HW2 

●no, small syntax errors will not cause you to get the 
whole question wrong
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Exam 1 logistics

●Note evening time (not during regular class slot) 

●7pm Mon Sep 29 

●Location & Seats: You will be split across multiple (large) 
rooms, and everyone will have an assigned seat (chart to 
be posted on Piazza) 

●One letter-sized sheet of notes (both sides); no devices 

●If you have exam accommodations through ODR, they 
will be proctoring your exam on our behalf (and you 
won’t be in the seating chart); you must submit the 
proctoring request through your student portal
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Exam 1  
Topics

●Covered material: Lectures 1 – 7 (i.e., not today) 
●Foundations 

●Probability, Linear Algebra, Geometry, Calculus 

●Optimization 

●Important Concepts 

●Overfitting 

●Model selection / Hyperparameter optimization 

●Decision Trees 

● -NN
●Perceptron 

●Regression 

●Decision Tree and -NN Regression 

●Linear Regression

𝑘

𝑘
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Exam 1 
Preparation

●Attend the midterm review OH! (recitation slot this Fri) 

●Review the exam practice problems (to be released 
soon) 

●Review HWs 1–3 

●Consider whether you have achieved the “learning 
objectives” in our slides for each lecture / section 

●Write your one-page cheat sheet (back and front)
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Exam 1  
Tips

●Solve the easy problems first  

●If a problem seems extremely complicated, you might be 
missing something 

●If you make an assumption, write it down 

●Don’t leave any answer blank unless out of time 

●If you look at a question and don’t know the answer: 

●just start trying things 

●consider multiple approaches  

●imagine arguing for some answer and see if you like it
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Recall: Gradient 
Descent for 
Linear 
Regression

●Gradient descent for linear regression repeatedly takes 
steps opposite the gradient of the objective function 
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𝜃2

Recall: 
Gradient 
Descent for 
Linear 
Regression
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𝜃1

𝑥

𝑦

 (unknown)𝑦  = 𝑐∗(𝑥)

h(𝑥; 𝜽(1))

h(𝑥; 𝜽(2))

h(𝑥; 𝜽(3))

h(𝑥; 𝜽(4))

iteration 𝑡
m

ea
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sq
ua

re
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er
ro
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𝐽(
𝜃1

, 
𝜃2

)

𝐽(𝜃1,  𝜃2) =
1
𝑁

𝑁

∑
𝑖=1

(𝑦(𝑖) − 𝜽𝑇𝒙(𝑖))2

1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2

t θ1 θ2 J(θ1, θ2)



Why 
Gradient 
Descent for 
Linear 
Regression?

●Globally convergent! (see below) 

●Scalable:  per iteration 

●“good enough” answer = not too many iterations 

●Parallelizable: distribute gradient calculation across 
multiple GPUs or even a cluster 

●Extensions (SGD, momentum, Adam, parameter server) 
are even more scalable (and sometimes parallelizable) 

●much faster per iteration, somewhat more iterations 

●Works for a lot of models beyond just linear regression!

O(MN )
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●A function  is strictly convex if  

 and  

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

Convexity

11



●A function  is strictly convex if  

 and  

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

Convexity

11

𝑓



●A function  is strictly convex if  

 and  

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

Convexity

11

𝑓

𝑥(1) 𝑥(2)



●A function  is strictly convex if  

 and  

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

Convexity

11

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)



●A function  is strictly convex if  

 and  

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

𝑓(𝑐𝑥(1) + (1 − 𝑐)𝑥(2))

Convexity

11

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)



●A function  is strictly convex if  

 and  

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

𝑓(𝑐𝑥(1) + (1 − 𝑐)𝑥(2))

Convexity

11

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)



●A function  is strictly convex if  

 and  

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

𝑓(𝑐𝑥(1) + (1 − 𝑐)𝑥(2))

Convexity

11

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)

𝑐𝑓(𝑥(1)) + (1 − 𝑐)𝑓(𝑥(2))



●A function  is strictly convex if  

 and  

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

𝑓(𝑐𝑥(1) + (1 − 𝑐)𝑥(2))

Convexity

11

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)

𝑐𝑓(𝑥(1)) + (1 − 𝑐)𝑓(𝑥(2))



●A function  is strictly convex if  

 and  

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

𝑓(𝑐𝑥(1) + (1 − 𝑐)𝑥(2))

Convexity

12

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)

𝑐𝑓(𝑥(1)) + (1 − 𝑐)𝑓(𝑥(2))



●A function  is strictly convex if  

 and  

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 < 𝑐 < 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) < 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

𝑓(𝑐𝑥(1) + (1 − 𝑐)𝑥(2))

Convexity

13

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)

𝑐𝑓(𝑥(1)) + (1 − 𝑐)𝑓(𝑥(2))



Convexity:   
local and global  
minima
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Convex functions
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Given a function  𝑓:ℝ𝐷 → ℝ

•  is a global minimum iff 𝒙∗

𝑓(𝒙∗) ≤ 𝑓(𝒙) ∀ 𝒙 ∈ ℝ𝐷



Convexity:   
local and global  
minima
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Given a function  𝑓:ℝ𝐷 → ℝ

•  is a global minimum iff 𝒙∗

𝑓(𝒙∗) ≤ 𝑓(𝒙) ∀ 𝒙 ∈ ℝ𝐷

•  is a local minimum iff 

 s.t.  

 

𝒙∗

∃ 𝜖 𝑓(𝒙∗) ≤ 𝑓(𝒙) ∀

𝒙 s.t. 𝒙 − 𝒙∗
2 < 𝜖



Convexity:   
local and global  
minima
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Convex functions: 
Each local minimum is a 
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not be a global minimum…
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Convexity:   
local and global  
minima
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Strictly convex functions: 
There exists a unique global 
minimum!

Non-convex functions: 
A local minimum may or may 
not be a global minimum…



Gradient 
Descent & 
Convexity

●Gradient descent is a local optimization algorithm – it 
will converge to a local minimum (if it converges) 

●Works great if the objective function is convex!  
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●Gradient descent is a local optimization algorithm – it 
will converge to a local minimum (if it converges) 

●Not ideal if the objective function is non-convex… 
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Descent & 
Convexity
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Gradient 
Descent & 
Convexity

●Gradient descent is a local optimization algorithm – it 
will converge to a local minimum (if it converges) 

●But can be OK if  lots of pretty good local optima ∃
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Gradient 
descent for 
linear 
regression: 
MSE is  
convex! 

27θ1

θ2



Gradient 
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linear 
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convex! 

27θ1

θ2

but not always 
strictly convex 
(see below for 
example)



OK, but calculus 
class told me a 
different way to 
find optima

●Set  and solve for  

●1D: find critical points 

●higher D, same idea: critical point  tangent is flat 

●Not all critical points are local optima in general, but in 
our case  is convex!

∇J(θ) = 0 θ

↔

J
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Closed Form 
Optimization

●Notation: given training data 

   

is the design matrix 

 is the target vector

𝒟 = {(𝒙(𝑛), 𝑦(𝑛))}𝑁
𝑛=1

𝑋 =

1 𝒙(1)𝑇

1 𝒙(2)𝑇

⋮ ⋮

1 𝒙(𝑁)𝑇

=

1 𝑥(1)
1 ⋯ 𝑥(1)

𝐷

1 𝑥(2)
1 ⋯ 𝑥(2)

𝐷
⋮ ⋮ ⋱ ⋮
1 𝑥(𝑁)

1 ⋯ 𝑥(𝑁)
𝐷

∈ ℝ𝑁×𝐷+1 

𝒚 = [𝑦(1), …, 𝑦(𝑁)]𝑇 ∈ ℝ𝑁
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𝐽(𝜽) =
1
𝑁

𝑁

∑
𝑖=1

1
2 (𝑦(𝑖) − 𝜽𝑇𝒙(𝑖))2 =

1
2𝑁

𝑁

∑
𝑖=1

(𝒙(𝑖)𝑇𝜽 − 𝑦(𝑖))
2

Minimizing the 
Mean Squared 
Error

30

=
1

2𝑁 (𝑋𝜃 − 𝒚)𝑇(𝑋𝜃 − 𝒚)

∇𝜽𝐽(𝜽) =
1

2𝑁 (2𝑋𝑇𝑋𝜽 − 2𝑋𝑇𝒚)

=
1

2𝑁 (𝜽𝑇𝑋𝑇𝑋𝜽 − 2𝜽𝑇𝑋𝑇𝒚 + 𝒚𝑇𝒚)

∇𝜽𝐽(𝜽̂) =
1

2𝑁 (2𝑋𝑇𝑋𝜽̂ − 2𝑋𝑇𝒚) = 0

→ 𝑋𝑇𝑋𝜽̂ = 𝑋𝑇𝒚

→ 𝜽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝒚



Finding the 
optimal θ

●Does a solution even exist? 

●Is it unique? 

●If not, which one? 

●How expensive is it to find desired solution?

31

X⊤Xθ = X⊤y  the normal equations←



Finding the 
optimal θ

●I just want to find the solution, what should I call? 

●Options (all in numpy.linalg):  

●inv(X.T @ X) @ (X.T @ y) 
●pinv(X.T @ X) @ (X.T @ y) 
●solve(X.T @ X, X.T @ y) 
●lstsq(X.T @ X, X.T @ y) 
●lstsq(X, y)
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X⊤Xθ = X⊤y  the normal equations←



Linear 
Regression: 
Uniqueness
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𝑦

𝑥

●Consider a 1D linear 
regression model trained 
to minimize the mean 
squared error: how many 
optimal solutions (i.e., sets 

of parameters ) are there 
for the given dataset?

𝜃
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Linear 
Regression: 
Uniqueness
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●Consider a 2D linear 
regression model trained 
to minimize the mean 
squared error: how many 
optimal solutions (i.e., sets 

of parameters ) are there 
for the given dataset? 

𝜃

𝑦

𝑥1

𝑥2
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●Consider a 2D linear 
regression model trained 
to minimize the mean 
squared error: how many 
optimal solutions (i.e., sets 

of parameters ) are there 
for the given dataset? 

𝜃

𝑦

𝑥1
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Linear 
Regression: 
Uniqueness
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●Consider a 2D linear 
regression model trained 
to minimize the mean 
squared error: how many 
optimal solutions (i.e., sets 

of parameters ) are there 
for the given dataset? 

𝜃

𝑦

𝑥1

𝑥2



Linearly 
independent 
features

●Solution is unique if number of examples  is at least as 
large as number of linearly independent features 

●independent = not a linear function of other features 

●e.g.,  = length (mm) and  = length (inches): not 
linearly independent 

●e.g., if examples are on a line in 2d, number of 
linearly independent features = 1 (not 2) 

●e.g., on a line or plane in 3d: 1 or 2, not 3 

●etc. 

●Can drop features to get independence, or resolve 
ambiguity by picking minimum norm solution

N

x(i)
1 x(i)

2
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Recap: exact vs. 
gradient 
descent

●Use exact solution if  is small and  is large 

●fast enough since  is small, accurate solution is 
worth it since  is large 

●Use (variants of) gradient descent if  is large 

●If  and  both small, both methods are OK

M N
M

N
M

M N
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Linear 
Regression 
Learning 
Objectives

You should be able to… 
●Design k-NN Regression and Decision Tree Regression  
●Choose a Linear Regression optimization technique 

that is appropriate for a particular dataset by 
analyzing the tradeoff of computational complexity vs. 
convergence speed  
●Implement learning for Linear Regression using 

gradient descent or closed form optimization (with 
well chosen NumPy calls!) 
●Identify situations where least squares regression has 

exactly one solution or infinitely many solutions
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A tale of two 
datasets
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A tale of two 
datasets
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MSE loss
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MSE loss

43well conditioned poorly conditioned



Gradient 
descent  
(good 
conditioning) 
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learning rate 0.5



Gradient 
descent  
(poor 
conditioning) 
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learning rate 0.5



Gradient 
descent  
(poor 
conditioning) 
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learning rate 0.75



What could we 
do?

●For horizontal direction ( ), want a small learning rate to 
prevent oscillation 

●For vertical direction ( ), want a large learning rate to 
make fast enough progress 

●Ideas?

b

w
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What if we 
could discover 
a good scaling 
automatically?

●Wouldn’t it be great if we could automatically scale 
down the learning rate in directions where we start to 
oscillate? 

●then we’d be free to set learning rate high enough to 
make progress in other dimensions
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Momentum

●Exponential moving average 

●Modified gradient descent update
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if gradients always point ↑

if gradients alternate  ↑ ↓



Gradient 
descent with 
momentum

procedure GDLR_M( ) 

 

while not converged do 

 

 

 

return 

𝒟, θ(0), g(0)

θ ← θ(0), ḡ ← g(0)

g ← ∑N
i=1 (θ⊤x(i) − y(i))x(i)

ḡ ← βḡ + (1 − β)g
θ ← θ − γḡ

θ
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Gradient 
descent + 
momentum 
(poor 
conditioning) 
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learning rate 0.5
momentum 0.0



Gradient 
descent + 
momentum  
(poor 
conditioning) 
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learning rate 0.5
momentum 0.6



Gradient 
descent + 
momentum  
(poor 
conditioning) 
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learning rate 0.5
momentum 0.7



Gradient 
descent + 
momentum  
(poor 
conditioning) 
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learning rate 0.5
momentum 0.95



Preview: 
nonconvex

55


