

10-301/601: Introduction to
Machine Learning
Lecture 8 – Optimization for
Machine Learning
Geoff Gordon

with thanks to Henry Chai & Matt Gormley

HW3 out

●Check the Coursework tab and our HW3 FAQ post

●Due Monday Sep 27 11:59pm (CMU time)

●Written only (no programming)

●Only 2 grace days allowed (later would go too close to
the exam)

2

Quiz 1 logistics

●Right here, during usual class period on Friday

●First 20 minutes, followed by regular recitation

●Everyone has an assigned seat for the quiz—see Piazza

●check today to make sure you know your seat

●if you’re not on the seating chart, it means we think
you have made arrangements with ODR for them to
proctor—if that’s not true, contact us ASAP!

●Questions: reading and writing short Python programs
related to HW1 and HW2

●no, small syntax errors will not cause you to get the
whole question wrong

3

Exam 1 logistics

●Note evening time (not during regular class slot)

●7pm Mon Sep 29

●Location & Seats: You will be split across multiple (large)
rooms, and everyone will have an assigned seat (chart to
be posted on Piazza)

●One letter-sized sheet of notes (both sides); no devices

●If you have exam accommodations through ODR, they
will be proctoring your exam on our behalf (and you
won’t be in the seating chart); you must submit the
proctoring request through your student portal

4

Exam 1
Topics

●Covered material: Lectures 1 – 7 (i.e., not today)
●Foundations

●Probability, Linear Algebra, Geometry, Calculus

●Optimization

●Important Concepts

●Overfitting

●Model selection / Hyperparameter optimization

●Decision Trees

● -NN
●Perceptron

●Regression

●Decision Tree and -NN Regression

●Linear Regression

𝑘

𝑘

5

Exam 1
Preparation

●Attend the midterm review OH! (recitation slot this Fri)

●Review the exam practice problems (to be released
soon)

●Review HWs 1–3

●Consider whether you have achieved the “learning
objectives” in our slides for each lecture / section

●Write your one-page cheat sheet (back and front)

6

Exam 1
Tips

●Solve the easy problems first

●If a problem seems extremely complicated, you might be
missing something

●If you make an assumption, write it down

●Don’t leave any answer blank unless out of time

●If you look at a question and don’t know the answer:

●just start trying things

●consider multiple approaches

●imagine arguing for some answer and see if you like it

7

Recall: Gradient
Descent for
Linear
Regression

●Gradient descent for linear regression repeatedly takes
steps opposite the gradient of the objective function

8

𝜃2

Recall:
Gradient
Descent for
Linear
Regression

9

𝜃1

𝑥

𝑦

 (unknown)𝑦 = 𝑐∗(𝑥)

h(𝑥; 𝜽(1))

h(𝑥; 𝜽(2))

h(𝑥; 𝜽(3))

h(𝑥; 𝜽(4))

iteration 𝑡
m

ea
n

sq
ua

re
d

er
ro

r

𝐽(
𝜃1

,
𝜃2

)

𝐽(𝜃1, 𝜃2) =
1
𝑁

𝑁

∑
𝑖=1

(𝑦(𝑖) − 𝜽𝑇𝒙(𝑖))2

1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2

t θ1 θ2 J(θ1, θ2)

Why
Gradient
Descent for
Linear
Regression?

●Globally convergent! (see below)

●Scalable: per iteration

●“good enough” answer = not too many iterations

●Parallelizable: distribute gradient calculation across
multiple GPUs or even a cluster

●Extensions (SGD, momentum, Adam, parameter server)
are even more scalable (and sometimes parallelizable)

●much faster per iteration, somewhat more iterations

●Works for a lot of models beyond just linear regression!

O(MN)

10

●A function is strictly convex if

 and

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

Convexity

11

●A function is strictly convex if

 and

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

Convexity

11

𝑓

●A function is strictly convex if

 and

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

Convexity

11

𝑓

𝑥(1) 𝑥(2)

●A function is strictly convex if

 and

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

Convexity

11

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)

●A function is strictly convex if

 and

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

𝑓(𝑐𝑥(1) + (1 − 𝑐)𝑥(2))

Convexity

11

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)

●A function is strictly convex if

 and

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

𝑓(𝑐𝑥(1) + (1 − 𝑐)𝑥(2))

Convexity

11

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)

●A function is strictly convex if

 and

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

𝑓(𝑐𝑥(1) + (1 − 𝑐)𝑥(2))

Convexity

11

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)

𝑐𝑓(𝑥(1)) + (1 − 𝑐)𝑓(𝑥(2))

●A function is strictly convex if

 and

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

𝑓(𝑐𝑥(1) + (1 − 𝑐)𝑥(2))

Convexity

11

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)

𝑐𝑓(𝑥(1)) + (1 − 𝑐)𝑓(𝑥(2))

●A function is strictly convex if

 and

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 ≤ 𝑐 ≤ 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) ≤ 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

𝑓(𝑐𝑥(1) + (1 − 𝑐)𝑥(2))

Convexity

12

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)

𝑐𝑓(𝑥(1)) + (1 − 𝑐)𝑓(𝑥(2))

●A function is strictly convex if

 and

𝑓:ℝ𝐷 → ℝ
∀ 𝒙(1) ∈ ℝ𝐷, 𝒙(2) ∈ ℝ𝐷 0 < 𝑐 < 1

𝑓(𝑐𝒙(1) + (1 − 𝑐)𝒙(2)) < 𝑐𝑓(𝒙(1)) + (1 − 𝑐)𝑓(𝒙(2))

𝑓(𝑐𝑥(1) + (1 − 𝑐)𝑥(2))

Convexity

13

𝑓

𝑥(1) 𝑥(2)𝑐𝑥(1) + (1 − 𝑐)𝑥(2)

𝑐𝑓(𝑥(1)) + (1 − 𝑐)𝑓(𝑥(2))

Convexity:
local and global
minima

14

Convex functions

Convexity:
local and global
minima

14

Convex functions

Non-convex functions

Convexity:
local and global
minima

15

Given a function 𝑓:ℝ𝐷 → ℝ

Convexity:
local and global
minima

15

Given a function 𝑓:ℝ𝐷 → ℝ

• is a global minimum iff 𝒙∗

𝑓(𝒙∗) ≤ 𝑓(𝒙) ∀ 𝒙 ∈ ℝ𝐷

Convexity:
local and global
minima

15

Given a function 𝑓:ℝ𝐷 → ℝ

• is a global minimum iff 𝒙∗

𝑓(𝒙∗) ≤ 𝑓(𝒙) ∀ 𝒙 ∈ ℝ𝐷

• is a local minimum iff

 s.t.

𝒙∗

∃ 𝜖 𝑓(𝒙∗) ≤ 𝑓(𝒙) ∀

𝒙 s.t. 𝒙 − 𝒙∗
2 < 𝜖

Convexity:
local and global
minima

16

Convex functions:
Each local minimum is a
global minimum!

Convexity:
local and global
minima

16

Convex functions:
Each local minimum is a
global minimum!

Convexity:
local and global
minima

16

Convex functions:
Each local minimum is a
global minimum!

Non-convex functions:
A local minimum may or may
not be a global minimum…

Convexity:
local and global
minima

16

Convex functions:
Each local minimum is a
global minimum!

Non-convex functions:
A local minimum may or may
not be a global minimum…

Convexity:
local and global
minima

17

Strictly convex functions:
There exists a unique global
minimum!

Non-convex functions:
A local minimum may or may
not be a global minimum…

Gradient
Descent &
Convexity

●Gradient descent is a local optimization algorithm – it
will converge to a local minimum (if it converges)

●Works great if the objective function is convex!

18

Gradient
Descent &
Convexity

●Gradient descent is a local optimization algorithm – it
will converge to a local minimum (if it converges)

●Works great if the objective function is convex!

18

Gradient
Descent &
Convexity

●Gradient descent is a local optimization algorithm – it
will converge to a local minimum (if it converges)

●Works great if the objective function is convex!

19

Gradient
Descent &
Convexity

●Gradient descent is a local optimization algorithm – it
will converge to a local minimum (if it converges)

●Works great if the objective function is convex!

20

Gradient
Descent &
Convexity

●Gradient descent is a local optimization algorithm – it
will converge to a local minimum (if it converges)

●Works great if the objective function is convex!

21

●Gradient descent is a local optimization algorithm – it
will converge to a local minimum (if it converges)

●Not ideal if the objective function is non-convex…

Gradient
Descent &
Convexity

22

●Gradient descent is a local optimization algorithm – it
will converge to a local minimum (if it converges)

●Not ideal if the objective function is non-convex…

Gradient
Descent &
Convexity

22

●Gradient descent is a local optimization algorithm – it
will converge to a local minimum (if it converges)

●Not ideal if the objective function is non-convex…

Gradient
Descent &
Convexity

23

Gradient
Descent &
Convexity

24

●Gradient descent is a local optimization algorithm – it
will converge to a local minimum (if it converges)

●Not ideal if the objective function is non-convex…

Gradient
Descent &
Convexity

●Gradient descent is a local optimization algorithm – it
will converge to a local minimum (if it converges)

●Not ideal if the objective function is non-convex…

25

Gradient
Descent &
Convexity

●Gradient descent is a local optimization algorithm – it
will converge to a local minimum (if it converges)

●But can be OK if lots of pretty good local optima ∃

26

Gradient
descent for
linear
regression:
MSE is
convex!

27θ1

θ2

Gradient
descent for
linear
regression:
MSE is
convex!

27θ1

θ2

but not always
strictly convex
(see below for
example)

OK, but calculus
class told me a
different way to
find optima

●Set and solve for

●1D: find critical points

●higher D, same idea: critical point tangent is flat

●Not all critical points are local optima in general, but in
our case is convex!

∇J(θ) = 0 θ

↔

J

28

Closed Form
Optimization

●Notation: given training data

is the design matrix

 is the target vector

𝒟 = {(𝒙(𝑛), 𝑦(𝑛))}𝑁
𝑛=1

𝑋 =

1 𝒙(1)𝑇

1 𝒙(2)𝑇

⋮ ⋮

1 𝒙(𝑁)𝑇

=

1 𝑥(1)
1 ⋯ 𝑥(1)

𝐷

1 𝑥(2)
1 ⋯ 𝑥(2)

𝐷
⋮ ⋮ ⋱ ⋮
1 𝑥(𝑁)

1 ⋯ 𝑥(𝑁)
𝐷

∈ ℝ𝑁×𝐷+1

𝒚 = [𝑦(1), …, 𝑦(𝑁)]𝑇 ∈ ℝ𝑁

29

𝐽(𝜽) =
1
𝑁

𝑁

∑
𝑖=1

1
2 (𝑦(𝑖) − 𝜽𝑇𝒙(𝑖))2 =

1
2𝑁

𝑁

∑
𝑖=1

(𝒙(𝑖)𝑇𝜽 − 𝑦(𝑖))
2

Minimizing the
Mean Squared
Error

30

=
1

2𝑁 (𝑋𝜃 − 𝒚)𝑇(𝑋𝜃 − 𝒚)

∇𝜽𝐽(𝜽) =
1

2𝑁 (2𝑋𝑇𝑋𝜽 − 2𝑋𝑇𝒚)

=
1

2𝑁 (𝜽𝑇𝑋𝑇𝑋𝜽 − 2𝜽𝑇𝑋𝑇𝒚 + 𝒚𝑇𝒚)

∇𝜽𝐽(𝜽̂) =
1

2𝑁 (2𝑋𝑇𝑋𝜽̂ − 2𝑋𝑇𝒚) = 0

→ 𝑋𝑇𝑋𝜽̂ = 𝑋𝑇𝒚

→ 𝜽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝒚

Finding the
optimal θ

●Does a solution even exist?

●Is it unique?

●If not, which one?

●How expensive is it to find desired solution?

31

X⊤Xθ = X⊤y the normal equations←

Finding the
optimal θ

●I just want to find the solution, what should I call?

●Options (all in numpy.linalg):

●inv(X.T @ X) @ (X.T @ y)
●pinv(X.T @ X) @ (X.T @ y)
●solve(X.T @ X, X.T @ y)
●lstsq(X.T @ X, X.T @ y)
●lstsq(X, y)

32

X⊤Xθ = X⊤y the normal equations←

Linear
Regression:
Uniqueness

33

𝑦

𝑥

●Consider a 1D linear
regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e., sets

of parameters) are there
for the given dataset?

𝜃

Linear
Regression:
Uniqueness

34

𝑦

𝑥

●Consider a 1D linear
regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e., sets

of parameters) are there
for the given dataset?

𝜃

Linear
Regression:
Uniqueness

35

●Consider a 2D linear
regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e., sets

of parameters) are there
for the given dataset?

𝜃

𝑦

𝑥1

𝑥2

Linear
Regression:
Uniqueness

36

●Consider a 2D linear
regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e., sets

of parameters) are there
for the given dataset?

𝜃

𝑦

𝑥1

𝑥2

Linear
Regression:
Uniqueness

37

●Consider a 2D linear
regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e., sets

of parameters) are there
for the given dataset?

𝜃

𝑦

𝑥1

𝑥2

Linearly
independent
features

●Solution is unique if number of examples is at least as
large as number of linearly independent features

●independent = not a linear function of other features

●e.g., = length (mm) and = length (inches): not
linearly independent

●e.g., if examples are on a line in 2d, number of
linearly independent features = 1 (not 2)

●e.g., on a line or plane in 3d: 1 or 2, not 3

●etc.

●Can drop features to get independence, or resolve
ambiguity by picking minimum norm solution

N

x(i)
1 x(i)

2

38

Recap: exact vs.
gradient
descent

●Use exact solution if is small and is large

●fast enough since is small, accurate solution is
worth it since is large

●Use (variants of) gradient descent if is large

●If and both small, both methods are OK

M N
M

N
M

M N

39

Linear
Regression
Learning
Objectives

You should be able to…
●Design k-NN Regression and Decision Tree Regression
●Choose a Linear Regression optimization technique

that is appropriate for a particular dataset by
analyzing the tradeoff of computational complexity vs.
convergence speed
●Implement learning for Linear Regression using

gradient descent or closed form optimization (with
well chosen NumPy calls!)
●Identify situations where least squares regression has

exactly one solution or infinitely many solutions

40

A tale of two
datasets

41

A tale of two
datasets

42

MSE loss

43

MSE loss

43well conditioned poorly conditioned

Gradient
descent
(good
conditioning)

44

learning rate 0.5

Gradient
descent
(poor
conditioning)

45

learning rate 0.5

Gradient
descent
(poor
conditioning)

46

learning rate 0.75

What could we
do?

●For horizontal direction (), want a small learning rate to
prevent oscillation

●For vertical direction (), want a large learning rate to
make fast enough progress

●Ideas?

b

w

47

What if we
could discover
a good scaling
automatically?

●Wouldn’t it be great if we could automatically scale
down the learning rate in directions where we start to
oscillate?

●then we’d be free to set learning rate high enough to
make progress in other dimensions

48

Momentum

●Exponential moving average

●Modified gradient descent update

49

if gradients always point ↑

if gradients alternate ↑ ↓

Gradient
descent with
momentum

procedure GDLR_M()

while not converged do

return

𝒟, θ(0), g(0)

θ ← θ(0), ḡ ← g(0)

g ← ∑N
i=1 (θ⊤x(i) − y(i))x(i)

ḡ ← βḡ + (1 − β)g
θ ← θ − γḡ

θ

50

Gradient
descent +
momentum
(poor
conditioning)

51

learning rate 0.5
momentum 0.0

Gradient
descent +
momentum
(poor
conditioning)

52

learning rate 0.5
momentum 0.6

Gradient
descent +
momentum
(poor
conditioning)

53

learning rate 0.5
momentum 0.7

Gradient
descent +
momentum
(poor
conditioning)

54

learning rate 0.5
momentum 0.95

Preview:
nonconvex

55

