10-301/601: Introduction to
Machine Learning
Lecture 8 — Optimization for
Machine Learning

Geoff Gordon
with thanks to Henry Chai & Matt Gormley



27
eCheck the Coursework tab and our HW3 FAQ post

eDue Monday Sep 2# 11:59pm (CMU time)
HW3 out e Written only (no programming)

eOnly 2 grace days allowed (later would go too close to
the exam)




Quiz 1 logistics

eRight here, during usual class period on Friday

e First 20 minutes, followed by regular recitation

eEveryone has an assigned seat for the quiz—see Piazza
echeck today to make sure you know your seat

eif you’re not on the seating chart, it means we think
you have made arrangements with ODR for them to
proctor—if that’s not true, contact us ASAP!

eQuestions: reading and writing short Python programs
related to HW1 and HW2

eno, small syntax errors will not cause you to get the
whole question wrong



Exam 1 logistics

eNote evening time (not during regular class slot)
e/pm Mon Sep 29

elLocation & Seats: You will be split across multiple (large)
rooms, and everyone will have an assigned seat (chart to

be posted on Piazza)

eOne letter-sized sheet of notes (both sides); no devices

elf you have exam accommodations through ODR, they
will be proctoring your exam on our behalf (and you
won’t be in the seating chart); you must submit the
proctoring request through your student portal



e Covered material: Lectures 1 -7 (i.e., not today)
eFoundations
e Probability, Linear Algebra, Geometry, Calculus
e Optimization
eImportant Concepts
e Overfitting
e Model selection / Hyperparameter optimization
e Decision Trees
e k-NN
e Perceptron
eRegression

eDecision Tree and k-NN Regression
elinear Regression




Exam 1

Preparation

eAttend the midterm review OH! (recitation slot g#s Fri)

eReview the exam practice problems (to be released
soon)

e Review HWs 1-3

e Consider whether you have achieved the “learning
objectives” in our slides for each lecture / section

e Write your one-page cheat sheet (back and front)



eSolve the easy problems first

olf a problem seems extremely complicated, you might be
missing something

elf you make an assumption, write it down

eDon’t leave any answer blank unless out of time
olf you look at a question and don’t know the answer:
ejust start trying things
econsider multiple approaches

eimagine arguing for some answer and see if you like it



eGradient descent for linear regression repeatedly takes

steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

Recall: Gradient orocedure GOLR(D, 6))
Descent for

12
2 0« 6 > Initialize parameters
. 3: while not converged do
Linear 4 g 2N (0T %D — y)x() > Compute gradient
Regression 5 0—0—~g > Update parameters
6 return 6
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Why
Gradient

Descent for
Linear
Regression?

eGlobally convergent! (see below)
eScalable: O(MN) per iteration

e “good enough” answer = not too many iterations

eParallelizable: distribute gradient calculation across
multiple GPUs or even a cluster

eExtensions (SGD, momentum, Adam, parameter server)
are even more scalable (and sometimes parallelizable)

emuch faster per iteration, somewhat more iterations

eWorks for a lot of models beyond just linear regression!
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e True or False: Consider two datasets

D, = {(x(l), ygl)) <x(2), y§2)>, (x N1>,y1(N1)>} and

(
i
D, = { (x(l), yél)) <x(2), yf)), <x2<N2), yZ(N2)>} where

x) € R% and x{ € R%. Suppose N, > N, and d, > d,. The
Poll Question 1 maximum number of mistakes the Perceptron learning algorithm

will make on &, is higher than the maximum number of mistakes

it will make on 9,.

11
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e True or False: Consider two datasets

N,) (N
D, = {(xil), y§”), <x§2), y§2)>, e <x1< 1>,y1( 1)>} and
Dy = { (xél), y;l)), <x§2), yf)), e <x2<N2), 2(N2)> } where
xV e R% and x € R%. Suppose N, > N, and d, > d,. The
1 2 1 2 )
Poll Question 1 maximum number of mistakes the Perceptron learning algorithm

will make on &, is higher than the maximum number of mistakes

it will make on 9,. v b/
A. True

—
. True and False (TOXIC)
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Convexity

oA function f:RP — Ris convex if
VxDeRP x¥eRPand0<c<1

Fex® 4+ (1= 9x?) < ef (xV) + (1 = ) f(x®)
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Convexity

oA function f:RP — R is strictly convex if
VxDeRrRl x¥eRPand0<c< 1

flexV+ (1 = 0x@) < ef(x) + (1 - o) f(x?)

A

cf(x(l)) + (1 - c)f(x(z))

f(cx(l) + (1 — c)x(z))

>

XD ox +(1 = c)x®

NE)
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Convexity:

local and global
minima

’4’
-
-

Convex functions
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Given a function f:RP? - R
* x*is a global minimum iff

f(x*) < f(x) V x € RP

* x*is a local minimum iff
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Convexity:
local and global

minima

Strictly convex functions:
There exists a unique global

minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...
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Gradient

Descent &
Convexity

eGradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

eWorks great if the objective function is convex!

N\

A
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Gradient

Descent &
Convexity

eGradient descent is a local optimization algorithm —it

will converge to a local minimum (if it converges)
eBut can be OK if d lots of pretty good local optima

A
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Gradient
descent for
linear
regression:

MISE is
convex!

§ 0.000 %2,
N ‘O
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0.8 \
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0.6 _g 8 Q. .o .o B
P Q < 33 a
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0.2 - \\ .
0.0 - . . . . J
0.0 0.2 0.4 0.6 0.8 1.0
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Gradient
descent for
linear
regression:

MISE is
convex!

but not always
strictly convex
(see below for
example)

§ 0.000 %2,
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OK, but calculus
class told me a

different way to
find optima

eSet VJ(O) = 0 and solve for 6

e 1D: find critical points

e

ehigher D, same idea: critical point <> tangent is flat

eNot all critical points are local optima in general, but in
our case J is convex!

29
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is the design matrix

T :
y = [y, ] € RV is the target vector
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Finding the

optimal &

X TXH XTy « the normal equations

(prixN) - ( M%OH)\

eDoes a solution even exist? v ot )
els it unique? \MWO\,L A0\

elf not, which one?
MIA WO M SO\V\ N M:@? \\9\\ .

eHow expensive is it to find desired solution?

0(0) 0 (D' N
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Finding the

optimal &

XTX0 = XTy « the normal equations

el just want to find the solution, what should | call?

eOptions (all in numpy.linalqg):

)X(\oinv(X.T @ X) @ (X.T @ y)
X epinv(X.T @ X) @ (X.T @ y)
A/ esolve (X.T @ X, X.T @ y)
elstsg(X.T @ X, X.T @ vy)
\//olstsq (X, V)
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Linear

Regression:
Uniqueness

eConsider a 1D linear
regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e., sets

of parameters 0) are there

for the given dataset?

-~

»

v
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Linear

Regression:
Uniqueness

eConsider a 1D linear
regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e., sets

of parameters 0) are there

for the given dataset?

\

]
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Poll Question 3

[no poll 2
today!]

eConsider a 1D linear
regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e., sets

of parameters 0) are there

for the given dataset?

»

v
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Poll Question 3

[no poll 2
today!]

eConsider a 1D linear
regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e., sets

of parameters 0) are there

for the given dataset?

A. -1 (TOXIC) B. 0
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Linear

Regression:
Uniqueness

eConsider a 2D linear
regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e., sets

of parameters 0) are there

for the given dataset?
x2

v

)
d T—

x1
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Linear

Regression:
Uniqueness

eConsider a 2D linear
regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e., sets

of parameters 0) are there

for the given dataset?
x2

v

x1
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Linear

Regression:
Uniqueness

eConsider a 2D linear
regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e., sets

of parameters 0) are there

for the given dataset?
x2
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Linearly

independent
features

eSolution is unique if number of examples N is at least as
large as number of linearly independent features

eindependent = not a linear function of other features
e€.E., xl(i) = length (mm) and xz(i) = length (inches): not
linearly independent

ee.g., if examples are on a line in 2d, number of
linearly independent features = 1 (not 2)

ee.g.,onalineorplanein3d:1or 2, not 3
eetc.

eCan drop features to get independence, or resolve
ambiguity by picking minimum norm solution

40



Recap: exact vs.

gradient
descent

o LV
C
eUse exact solution % mall and NV is large

efast enough since ﬁis small, accurate solution is
worth it since N is large v

eUse (variants of) gradient descent if% is large

.If%\nd N both small, both methods are OK

41



Linear
Regression

Learning
Objectives

You should be able to...
eDesign k-NN Regression and Decision Tree Regression
eChoose a Linear Regression optimization technique
that is appropriate for a particular dataset by

analyzing the tradeoff of computational complexity vs.

convergence speed

eIlmplement learning for Linear Regression using
gradient descent or closed form optimization (with
well chosen NumPy calls!)

eldentify situations where least squares regression has
exactly one solution or infinitely many solutions

42



A tale of two

datasets
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Gradient
descent
(good

conditioning)

learning rate 0.5

A

\

N
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3.0

46



Gradient
descent
(poor

conditioning)

learning rate 0.5
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Gradient
descent
(poor

conditioning)

learning rate 0.75
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What could we

do?

e For horizontal direction (), want a small learning rate to
prevent oscillation

eFor vertical direction (w), want a large learning rate to
make fast enough progress

eldeas?

pud SN Juten — or scale %/\ch(aﬁv
0\0\0\9’\’ def S
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What if we
could discover

a good scaling
automatically?

eWouldn’t it be great if we could automatically scale
down the learning rate in directions where we start to
oscillate?

ethen we’d be free to set learning rate high enough to
make progress in other dimensions

50



Momentum

. A
e Exponential moving average cacv«/\w

7
+ ( \ PP)% if gradients always point 1

if gradients alternate 1 |

eModified gradient descent update

5 O - O/g
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Gradient

descent with
momentum

procedure GDLR_M(Z, 8, g
00", g gV
while not converged do
g zi}i 1 @TxD — yD)x®
g pg+-pg
0 —0-—yg

return @
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Gradient
descent +
momentum
(poor

conditioning)

learning rate 0.5
momentum 0.0
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Gradient
descent +
momentum
(poor

conditioning)

learning rate 0.5
momentum 0.6
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Gradient
descent +
momentum
(poor

conditioning)

learning rate 0.5
momentum 0./

2.0 / \
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Gradient
descent +
momentum
(poor

conditioning)

learning rate 0.5
momentum 0.95
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Preview:

NnoNconvex
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