10-301/601: Introduction

 to Machine Learning Lecture 8 - Optimization for Machine LearningHenry Chai \& Matt Gormley
9/25/23

- Exam 1 on 2/19 (next Monday!) from 7 PM - 9 PM
- Location \& Seats: You all will be split across multiple (large) rooms.
- Everyone will have an assigned seat
- Please watch Piazza carefully for more details
- If you have exam accommodations through ODR, they will be proctoring your exam on our behalf; you are responsible for submitting the exam proctoring request through your student portal.
- Format of questions:
- Multiple choice
- True / False (with justification)
- Derivations
- Short answers
- Drawing \& Interpreting figures
- Implementing algorithms on paper
- No electronic devices (you won't need them!)
- You are allowed to bring one letter-size sheet of notes; you can put whatever you want on both sides
- Covered material: Lectures 1 - 7
- Foundations
- Probability, Linear Algebra, Geometry, Calculus
- Optimization
- Important Concepts
- Overfitting
- Model selection / Hyperparameter optimization

Exam 1 Topics

- Decision Trees
- k-NN
- Perceptron
- Regression
- Decision Tree and k-NN Regression
- Linear Regression
- Review the exam practice problems (released 2/12 on the course website, under Coursework)
- Attend the dedicated exam 1 review OH (in lieu of recitation on $2 / 16$)
- Review HWs 1-3
- Consider whether you have achieved the "learning objectives" for each lecture / section
- Write your one-page cheat sheet (back and front)
- Solve the easy problems first
- If a problem seems extremely complicated, you might be missing something
- If you make an assumption, write it down
- Don't leave any answer blank
- If you look at a question and don't know the answer: - just start trying things
- consider multiple approaches
- imagine arguing for some answer and see if you like it

1. Assume \mathcal{D} generated as:

$$
\begin{aligned}
\mathbf{x}^{(i)} & \sim p^{*}(\cdot) \\
y^{(i)} & =h^{*}\left(\mathbf{x}^{(i)}\right)
\end{aligned}
$$

2. Choose hypothesis space, \mathcal{H} : all linear functions in M-dimensional space

$$
\mathcal{H}=\left\{h_{\boldsymbol{\theta}}: h_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\theta}^{T} \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^{M}\right\}
$$

3. Choose an objective function: mean squared error (MSE)

$$
\begin{aligned}
J(\boldsymbol{\theta}) & =\frac{1}{N} \sum_{i=1}^{N} e_{i}^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)\right)^{2} \\
& \left.=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2}
\end{aligned}
$$

4. Solve the unconstrained optimization problem via favorite method:

- gradient descent
- closed form
- stochastic gradient descent
- ...

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})
$$

5. Test time: given a new \mathbf{x}, make prediction \hat{y}

$$
\hat{y}=h_{\hat{\boldsymbol{\theta}}}(\mathbf{x})=\hat{\boldsymbol{\theta}}^{T} \mathbf{x}
$$

Linear Regression by Rand. Guessing

Optimization Method \#o:
 Random Guessing

1. Pick a random $\boldsymbol{\theta}$
2. Evaluate $J(\boldsymbol{\theta})$
3. Repeat steps 1 and 2 many times
4. Return $\boldsymbol{\theta}$ that gives smallest J($\boldsymbol{\theta}$)

t	θ_{1}	θ_{2}	$J\left(\theta_{1}, \theta_{2}\right)$
1	0.2	0.2	10.4
2	0.3	0.7	7.2
3	0.6	0.4	1.0
4	0.9	0.7	16.2

$\left.\mathrm{J}(\boldsymbol{\theta})=\mathrm{J}\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2}$

Gradients

Gradients

These are the gradients that

Gradients

These are the gradients that Gradient Ascent would follow.

(Negative) Gradients

These are the negative gradients that

(Negative)

 Gradients

These are the negative gradients that

(Negative) Gradient Pa

Shown are the paths that Gradient Descent would follow if it were making infinitesimally

Recall:
 Gradient Descent for Linear Regression

- Gradient descent for linear regression repeatedly takes steps opposite the gradient of the objective function

```
```

Algorithm 1 GD for Linear Regression

```
```

Algorithm 1 GD for Linear Regression
procedure $\operatorname{GDLR}\left(\mathcal{D}, \boldsymbol{\theta}^{(0)}\right)$
procedure $\operatorname{GDLR}\left(\mathcal{D}, \boldsymbol{\theta}^{(0)}\right)$
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
while not converged do
while not converged do
$\mathbf{g} \leftarrow \sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) \mathbf{x}^{(i)} \quad \triangleright$ Compute gradient
$\mathbf{g} \leftarrow \sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) \mathbf{x}^{(i)} \quad \triangleright$ Compute gradient
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\gamma \mathbf{g} \quad \triangleright$ Update parameters
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\gamma \mathbf{g} \quad \triangleright$ Update parameters
return θ

```
```

 return \(\theta\)
    ```
```

\triangleright Initialize parameters
\triangleright Update parameters

Gradient Calculation for Linear Regression

Derivative of $J^{(i)}(\boldsymbol{\theta})$:

$$
\begin{aligned}
\frac{d}{d \theta_{k}} J^{(i)}(\boldsymbol{\theta}) & =\frac{d}{d \theta_{k}} \frac{1}{2}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right)^{2} \\
& =\frac{1}{2} \frac{d}{d \theta_{k}}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right)^{2} \\
& =\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) \frac{d}{d \theta_{k}}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) \\
& =\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) \frac{d}{d \theta_{k}}\left(\sum_{j=1}^{K} \theta_{j} x_{j}^{(i)}-y^{(i)}\right) \\
& =\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) x_{k}^{(i)}
\end{aligned}
$$

Derivative of $J(\boldsymbol{\theta})$:

$$
\begin{aligned}
\frac{d}{d \theta_{k}} J(\boldsymbol{\theta}) & =\sum_{i=1}^{N} \frac{d}{d \theta_{k}} J^{(i)}(\boldsymbol{\theta}) \\
& =\sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) x_{k}^{(i)}
\end{aligned}
$$

$$
\text { Gradient of } J(\boldsymbol{\theta}) \quad \text { [used by Gradient Descent] }
$$

$$
\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\left[\begin{array}{c}
\frac{d}{d \theta_{1}} J(\boldsymbol{\theta}) \\
\frac{\theta_{1}}{d \theta_{2}} J(\boldsymbol{\theta}) \\
\vdots \\
\frac{d}{d \theta_{M}} J(\boldsymbol{\theta})
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) x_{1}^{(i)} \\
\sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) x_{2}^{(i)} \\
\vdots \\
\sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) x_{M}^{(i)}
\end{array}\right]
$$

$$
=\sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) \mathbf{x}^{(i)}
$$

Linear Regression by Gradient Desc.

Optimization Method \#1:

Gradient Descent

1. Pick a random $\boldsymbol{\theta}$
2. Repeat:
a. Evaluate gradient $\nabla \mathrm{J}(\boldsymbol{\theta})$
b. Step opposite gradient
3. Return $\boldsymbol{\theta}$ that gives smallest J($\boldsymbol{\theta}$)
$\left.J(\boldsymbol{\theta})=J\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2}$

| t | θ_{1} | θ_{2} | $J\left(\theta_{1}, \theta_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.01 | 0.02 | 25.2 |
| 2 | 0.30 | 0.12 | 8.7 |
| 3 | 0.51 | 0.30 | 1.5 |
| 4 | 0.59 | 0.43 | 0.2 |

Linear Regression by Gradient Desc.

Optimization Method \#1:

Gradient Descent

1. Pick a random $\boldsymbol{\theta}$
2. Repeat:
a. Evaluate gradient $\nabla \mathrm{J}(\boldsymbol{\theta})$
b. Step opposite gradient
3. Return $\boldsymbol{\theta}$ that gives
smallest J($\boldsymbol{\theta}$)

| t | θ_{1} | θ_{2} | $\mathrm{~J}\left(\theta_{1}, \theta_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.01 | 0.02 | 25.2 |
| 2 | 0.30 | 0.12 | 8.7 |
| 3 | 0.51 | 0.30 | 1.5 |
| 4 | 0.59 | 0.43 | 0.2 |

Linear Regression by Gradient Desc.

Optimization Method \#1:

Gradient Descent

1. Pick a random $\boldsymbol{\theta}$
2. Repeat:
a. Evaluate gradient $\nabla \mathrm{J}(\boldsymbol{\theta})$
b. Step opposite gradient
3. Return $\boldsymbol{\theta}$ that gives smallest J($\boldsymbol{\theta}$)

| t | θ_{1} | θ_{2} | $\mathrm{~J}\left(\theta_{1}, \theta_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.01 | 0.02 | 25.2 |
| 2 | 0.30 | 0.12 | 8.7 |
| 3 | 0.51 | 0.30 | 1.5 |
| 4 | 0.59 | 0.43 | 0.2 |

Linear Regression by Gradient Desc.

Linear Regression by Gradient Desc.

$\left.\mathrm{J}(\boldsymbol{\theta})=\mathrm{J}\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2}$

| t | θ_{1} | θ_{2} | $J\left(\theta_{1}, \theta_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.01 | 0.02 | 25.2 |
| 2 | 0.30 | 0.12 | 8.7 |
| 3 | 0.51 | 0.30 | 1.5 |
| 4 | 0.59 | 0.43 | 0.2 |

$$
J\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}\right)^{2}
$$

iteration t

- A function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$ is convex if

$$
\begin{aligned}
& \forall \boldsymbol{x}^{(1)} \in \mathbb{R}^{D}, \boldsymbol{x}^{(2)} \in \mathbb{R}^{D} \text { and } 0 \leq c \leq 1 \\
& f\left(c \boldsymbol{x}^{(1)}+(1-c) \boldsymbol{x}^{(2)}\right) \leq c f\left(\boldsymbol{x}^{(1)}\right)+(1-c) f\left(\boldsymbol{x}^{(2)}\right)
\end{aligned}
$$

Convexity

- A function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$ is convex if

$$
\begin{aligned}
& \forall \boldsymbol{x}^{(1)} \in \mathbb{R}^{D}, \boldsymbol{x}^{(2)} \in \mathbb{R}^{D} \text { and } 0 \leq c \leq 1 \\
& f\left(c \boldsymbol{x}^{(1)}+(1-c) \boldsymbol{x}^{(2)}\right) \leq c f\left(\boldsymbol{x}^{(1)}\right)+(1-c) f\left(\boldsymbol{x}^{(2)}\right)
\end{aligned}
$$

Convexity

- A function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$ is strictly convex if

$$
\begin{aligned}
& \forall \boldsymbol{x}^{(1)} \in \mathbb{R}^{D}, \boldsymbol{x}^{(2)} \in \mathbb{R}^{D} \text { and } 0<c<1 \\
& f\left(c \boldsymbol{x}^{(1)}+(1-c) \boldsymbol{x}^{(2)}\right)<c f\left(\boldsymbol{x}^{(1)}\right)+(1-c) f\left(\boldsymbol{x}^{(2)}\right)
\end{aligned}
$$

Convexity

Convexity

Convexity

Convexity

Non-convex functions:
A local minimum may or may not be a global minimum...

Convexity

Strictly convex functions:
There exists a unique global minimum!

Non-convex functions:
A local minimum may or may not be a global minimum...

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Works great if the objective function is convex!

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Works great if the objective function is convex!

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Works great if the objective function is convex!

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Works great if the objective function is convex!

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Not ideal if the objective function is non-convex...

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Not ideal if the objective function is non-convex...

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Not ideal if the objective function is non-convex...

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Not ideal if the objective function is non-convex...

$$
J\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}\right)^{2}
$$

iteration t

| t | θ_{1} | θ_{2} | $J\left(\theta_{1}, \theta_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.01 | 0.02 | 25.2 |
| 2 | 0.30 | 0.12 | 8.7 |
| 3 | 0.51 | 0.30 | 1.5 |
| 4 | 0.59 | 0.43 | 0.2 |

The mean squared error is convex (but not always strictly convex)

Okay, fine

 but couldn't we do something simpler?$$
J\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}\right)^{2}
$$

- Idea: find the critical points of the objective function, specifically the ones where $\nabla J(\theta)=\mathbf{0}$ (the vector of all zeros), and check if any of them are local minima

Closed Form Optimization

- Notation: given training data $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}$
$X=\left[\begin{array}{cc}1 & x^{(1)^{T}} \\ 1 & x^{(2)^{T}} \\ \vdots & \vdots \\ 1 & x^{(N)^{T}}\end{array}\right]=\left[\begin{array}{cccc}1 & x_{1}^{(1)} & \cdots & x_{D}^{(1)} \\ 1 & x_{1}^{(2)} & \cdots & x_{D}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1}^{(N)} & \cdots & x_{D}^{(N)}\end{array}\right] \in \mathbb{R}^{N \times D+1}$
is the design matrix
- $\boldsymbol{y}=\left[y^{(1)}, \ldots, y^{(N)}\right]^{T} \in \mathbb{R}^{N}$ is the target vector

$$
J(\boldsymbol{\theta})=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2}\left(y^{(i)}-\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}\right)^{2}
$$

Minimizing the
Mean Squared
Error

$$
\widehat{\boldsymbol{\theta}}=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}
$$

Closed Form

 Optimization

| t | θ_{1} | θ_{2} | $J\left(\theta_{1}, \theta_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.59 | 0.43 | 0.2 |

$$
\widehat{\boldsymbol{\theta}}=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}
$$

1. Is $X^{T} X$ invertible?

Closed Form Solution

2. If so, how computationally expensive is inverting $X^{T} X$?

Linear
 Regression: Uniqueness

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

Linear
 Regression: Uniqueness

Linear
 Regression: Uniqueness

Poll Question 3

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?
A. -1 (TOXIC)
B. 0
C. 1
D. 2
E. ∞

Linear
 Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

Linear
 Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

Linear
 Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

$$
\widehat{\boldsymbol{\theta}}=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}
$$

1. Is $X^{T} X$ invertible?

Closed Form Solution

2. If so, how computationally expensive is inverting $X^{T} X$?

$$
\widehat{\boldsymbol{\theta}}=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}
$$

1. Is $X^{T} X$ invertible?

- When $N \gg D+1, X^{T} X$ is (almost always) full rank and therefore, invertible!
- If $X^{T} X$ is not invertible (occurs when one of the features is a linear combination of the others), then there are infinitely many solutions

2. If so, how computationally expensive is inverting $X^{T} X$?

- $X^{T} X \in \mathbb{R}^{D+1 \times D+1}$ so inverting $X^{T} X$ takes $O\left(D^{3}\right)$ time...
- Computing $X^{T} X$ takes $O\left(N D^{2}\right)$ time
- Can use gradient descent to (potentially) speed things up when N and D are large!

You should be able to...

- Design k-NN Regression and Decision Tree Regression
- Implement learning for Linear Regression using gradient descent or closed form optimization
- Choose a Linear Regression optimization technique that is appropriate for a particular dataset by analyzing the tradeoff of computational complexity vs. convergence speed
- Identify situations where least squares regression has exactly one solution or infinitely many solutions

