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Regression

Goal:

— Given a training dataset of . y
pairs (x,y) where :

National will Forecast

Weighted %ILI
4

This is what * X is avector —
differentiates |y is a scalar T BNk
regression from — Learna function (aka. curve
classification or line) y’ = h(x) that best fits

the training data

Example Applications:
— Stock price prediction
— Forecasting epidemics
— Speech synthesis

— Generation of images (e.g.
Deep Dream)




Regression

Example: Dataset with only
one feature x and one scalar Q: What is the function that
output y best fits these points?

b




K-NEAREST NEIGHBOR REGRESSION



K-NN Regression

Example: Dataset with only
one feature x and one scalar Algorithm 1: k=1 Nearest
output y Neighbor Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest x
P in training data and return
itsy

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
o ® Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(" and x(")
in training data and return

the weighted average of
their y values
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K-NN Regression

y Example: Dataset with only
one feature x and one scalar Algorithm 1: k=1 Nearest
outputy Neighbor Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest x
P in training data and return
itsy

Algorithm 2: k=2 Nearest

Ry 1 -— —® | Neighbors Distance Weighted
@ """" | 2 4 i Regression
pe | i  Train: store all (x, y) pairs
| i * Predict: pick the nearest
| i two instances x(™ and x(")
I - in training data and return
L X ) X \ the weighted average of

- ’_ their y values



The distance
weighted
average of x(™)
and x(M2)

y (n)

)

y

y (n2)

This tends
toward the
average
height of
the
leftmost
two points

{

K-NN Regression

Example: Dataset with only
one feature x and one scalar

outputy

\

K ) x(2)

This region is closer to
the two points to the left

Algorithm 1: k=1 Nearest
Neighbor Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest x
in training data and return
itsy

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x(")
in training data and return
the weighted average of
their y values



DECISION TREE REGRESSION



Decision Tree Regression

Decision Tree for Classification Decision Tree for Regression
B B
/\ /\
A A A A
+ C C 75 21 C C
/N 7\ /N 7\
+ + + 56 32 10 60




Decision Tree Regression

Dataset for Regression Decision Tree for Regression /

&
{4,1,3,7,5,6,8,9}
B

1 1 0 L {4,1,3,7}/\@’6'8'9}
—A A
Y 1 0 1
° 0 1| {7}/\{4,1,3} {6}/N ,8,9]
7/ 2.7 6 C

0 1
587 \fo

6.5 9

O O O VI | W
o

! ! ! During learning, choose the attribute that
minimizes an appropriate splitting
criterion (e.g. mean squared error, mean
absolute error)

11



LINEAR FUNCTIONS, RESIDUALS, AND MEAN
SQUARED ERROR



Linear Functions

Def: Regression is predicting real-valued outputs

D = {(x0,yO)}" withx® € RM, y© € R

Y1 y=wx+b

/




Linear Functions

Def: Regression is predicting real-valued outputs

D ={(x®,y®)}" withx® e RM,y® e R

Y1 Yy =wix; +wyx, +b

* Ageneral linear functionis
y=wix+b

* Ageneral linear decision boundary is
y = sign(w'x + b)
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Key Idea of Linear Regression

Residuals
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Key Idea of Linear Regression
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OPTIMIZATION FOR ML



Unconstrained Optimization

* Def: In unconstrained optimization, we try minimize (or
maximize) a function with no constraints on the inputs to the
function

Given a function J(B), J ]RM S R
Our goal is to find 0 = argmin J(0)
OcRM
For ML, these are For ML, this is the

the parameters objective function



Optimization for ML

Not quite the same setting as other fields...

— Function we are optimizing might not be the true goal
(e.g. likelihood vs generalization error)

— Precision might not matter
(e.g. data is noisy, so optimal up to 1e-16 might not help)

— Stopping early can help generalization error
(i.e. “early stopping” is a technique for regularization — discussed
more next time)

19



min vs

.argmin

v¥* = min, f(x)

x* = argmin, f(x)
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min vs

.argmin

v¥* = min, f(x)

x* = argmin, f(x)

21



OPTIMIZATION METHOD #o:
RANDOM GUESSING



Notation Trick:
Folding in the Intercept Term

X
o -

T
1,21,22,...,TM]

: T
b, w1,..., W]

/
L Y
)7 N

oA 0
=W x—l—bl
L 0 ]

This convenience trick allows us to more compactly talk
about linear functions as a simple dot product (without
explicitly writing out the intercept term every time). 55

(
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ression as Function Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : he(x) = 8Tx,0 ¢ RM}
A




Contour Plots

Contour Plots

1. Each level curve labeled
with value @ - i@;’,e_) =(10(6,-0.5))" + (6(6, - 0.4))
1.0

2. Value label indicates the

0177 \
. Q 0 )
value of the function for S 000 2
all points lying on that o 7 i
level curve |
3. Justlikea topofgrap ica
. o VN
map, but for a function 061 | S RN
P O 1y o oY
P O ~ © 2g
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Optimization by Random Guessing

Optimization Method #o:
Random Guessing

1.
2.

3.

Pick a random 6
Evaluate J(0)

Repeat steps 1 and 2 many
times

Return O that gives
smallest J(0)

J(0)=J(8,,8,) = (10(6, — 0.5))> + (6(6, — 0.4))>

1.0

0.8

0.6 A

0.4

0.2

0.0

O
o
0.0 012 0:4 0:6 018 1.0
0,

t| 6 | 6, [ J)6,6,)
1] 02 | 0.2 10.4
2 | 03 | 07 2.2
3] 0.6 | 0.4l 10
4] 09| 07| 162
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Optimization by Random Guessing

Optimization Method #o:
Random Guessing

1.  Pickarandom ©
2. Evaluate J(0)

3. Repeat steps1and 2 many
times

4. Return O that gives 0,
smallest J(0)

For Linear Regression:

* objective function is Mean
Squared Error (MSE)

* MSE =J(w,b) N
1 G) _ gTx(0)
:J(evez :N;(y S ))
» contour plot: each line labeled with
MSE - lower means a better fit

* minimum corresponds to
parameters (w,b) = (6,, 6,) that
best fit some training dataset

2

J(8)=J(8,6,)= %Z (w9 _eTx(i)))z

1.0
0.000
0.8 A
0.6 4 S et
N EEE:
SN F
N ON q
0.4 - O
(e}
S
0.2- e
00 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
)
t| 6, | 6, | J6,6,)
1| 0.2 | 0.2 10.4
2 | 0.3 | 0.7 7.2
3| 0.6 | 0.4 1.0
4 | 0.9 | 0.7 16.2




Linear Regression:
Running Example






Counting Butterflies

y, # of monarchs

\L

X, # of mountains
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bR e et U RWE ECRGTIOWSVY h emfthedlasiiceragelenaedsand

MIGRATION ROUTES OF MONARCH BUTTERFLIES

@ Summer breeding area
@ Spring breeding area
@ Wintering area

Corn Belt region
~— Spring migration route
<— Fall migration route

This map shows migration routes of fall and spring migrations, both east
and west of the Rocky Mountains.

the cold and glaciers

retreated, milkweed may

have gradually spread
northward, and monarchs

may have followed. But the
monarch butterfly remained

a tropical creature, unable to
survive the severe northern
winters. So every year as
winter approached, monarchs
left their summer fields of
milkweed and flew south again.
To this day, every spring and
summer, monarchs travel
north to their breeding grounds
across the eastern United
States and Canada. Every
winter, they return to Mexico.

36



eeo00,
0®?® v,

aren't sure exactly how many butterflies

. that represented, but o
LOCATION OF MONARCH BUTTERFLY COLONIES |

WINTERING IN e one estimate is that there
o
: were one billion monarchs in

the colonies that winter.
But as researchers
measured the colonies year
after year, they noticed
that the colonies were
shrinking. By 2014 the
colonies measured just
1.7 acres (0.7 ha), or less i
than one and a half football
fields. That year there

* Capital
e City
@ Town

The eastern monarchs migrate to just twelve mountaintops, all located in
central Mexico.
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Many scientists were

worried. The population of

Trees that appear orange are covered with butterflies

and roughly mark the border of this colony.

eastern monarchs had droppeq
more than 20 percent in just
seventeen years.

At the same time, scientists
in California reported that the
number of western monarchs
was dropping as well. From
1997 to 2014, the number of
monarchs overwintering along
the California coast had fallen
by 74 percent.

Populations of overwintering
monarchs were falling fast. By
2014 their numbers had fallen

so far that people wondered
whether the monarch butterfly should be listed as an endangered species—a species
in danger of becoming extinct, or disappearing forever.

Losing monarchs could be bad for our world because monarchs play an important
part in the food web. Despite the milkweed tox

: _ ins in their bodies, they are food for
songbirds, spiders, and insects. Monarchs ﬁ? -

y flowers and act as pollinators.

i . o’ il § IR Mgt W ) T e |
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Counting Butterflies

y, # of monarchs

\L

X, # of mountains
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Linear Regression in High Dimensions

* Inourdiscussions of linear regression, we
will always assume there is just one output,

y
* But our inputs will usually have many
features:
— T
X = [ X,y Xggeer yXp]
* For example:

— suppose we had a drone take pictures of
each section of forest

— each feature could correspond to a pixel in
this image such that x,, = 1if the pixel is
orange and x,, = 0 otherwise

— the output y would be the number of
butterflies in each picture

rk the border of this colony.

Q: How would you obtain ground truth
° data?

40



1.
2.

3.

Linear Regression by Rand. Guessing

Optimization Method #o:
Random Guessing

Pick a random 6
Evaluate J(0)

Repeat steps 1 and 2 many
times

Return O that gives
smallest J(0)

y=h*(x) [,
(unknown)
;/ .
P
o gt :
£
Ii *

For Linear Regression:

target function h*(x) is unknown
only have access to h*(x) through
training examples (x(,y(®)

want h(x; V) that best
approximates h*(x)

enable generalization w/inductive
bias that restricts hypothesis class
to linear functions



Optimization Method #o:

1.
2.

3.

Random Guessing B 0.000
Pick a random 6
Evaluate J(0) %]
Repeat steps 1 and 2 many
timeS 0.6 1 S § G“o ‘\O; N
Return O that gives 0, s 7T
smallest J(0) 04 ®
y = h*(x) o
h(x; 84) S
(unknown) | u)
h(x’ 6(3))
0.0 .
0.6

Linear Regression by Rand. Guessing

i=1

J(e) - J(e” ez) - %Z (y(i) _ eTx(i)))z

0.

h(x; 6)

>

0 Oi2 0:4
W \Q 6,

0.8 1.0

t| 6 | 6 | J6,6,)
1] 02| 02| 10.4)
2| 03 | 07| &%
3| 0.6 | 0.4 1.0

4 | 0.9 | 0.7 16.2
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OPTIMIZATION METHOD #1:
GRADIENT DESCENT



'\'. >0
5 N\ &9

shpe = 93(6)
)

@Dcriv a% o L\w(+

3® _|pw | 201e)=56)
39  [es0| e

T § o s
i —\—\M. BY“"‘ oat

Derivatives
@Den\r as o /l“-";ewjf Pl

30,8 =3(®)
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§ Gradient
et .
v 'Htl Jmé@n\ S 3 H{M—‘?K $

VI(B)=[ 550/ ¥os- e
_s/ %, [ be] derivave

IO /ip,

NOY/sef,
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Gradients
; J(©)=J(6, 6,)
L oo

0.8}
0.6 |-

0.4}

%) Q
0.2 \ 0 O y
0

0.2 0.4 0.6 0.8 1.0
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Gradients
J(G) = J(ev ez)

4
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These are the gradients that
Gradient Ascent would follow.



Gradients

J(6)=1(6,6,)

I k \
02
0.8} . In this picture, each arrow is a 2D
o vector consisting of two partial
. derivatives.
. - OJ
0.6} ' 001
DTN
_ 00
0-41 The vector is evaluat the
point [8;, 6,]" and plotted with its
%, origin there as well.
0.2} o
e
O
e
0.0 ~ ' ' ' al
0.0 0.2 0.4 0.6 0.8 1.0

0,

These are the gradients that
Gradient Ascent would follow.



gatlve) Gradients

)(8) = xme
0

0.8}

0.6

0.4}

0.2}

In this picture, each arrow is a 2D
vector consisting of two partial

derivatives.

_—ﬂ_
001

—VJ(64,65) =

_9J

L 005 4

The vector is evaluated at the
point [8;, 6,]" and plotted with its
origin there as well.

.0 0.2 0.4 0.6 0.8
0,

These are the negative gradients that
Gradient Descent would follow.
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Gradient Descent would follow.



(Negative) Gradient Paths

J(8)=J(6,,6,)

1.0
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1

0
Shown are the paths that Gradient Descent
would follow if it were making infinitesimally

small steps.



Gradient Descent

Gradient Descent Algorithm
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Gradient Descent: Step Size

Question:

In gradient descent, what could go wrong if
we always use the same step size (or step size
schedule) for every problem we encounter?

Answer:



Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, H(O))

1:

2 0+ 0

3: while not converged do
00 Yel0)
5 return 0

In order to apply GD to Linear

Regression all we need is the

gradient of the objective Vo J(Q) —
function (i.e. vector of partial ——)
derivatives).




Gradient Descent

Algorithm 1 Gradient Descent

1. procedure GD(D, 69)

2 0+ 09

3: while not converged do
4 6«6 ’YVQJ(H)

5 return 6

There are many possible ways to detect convergence.
For example, we could check whether the L2 norm of
the gradient is below some small tolerance.

Ve J(0)|]2 < €

Alternatively we could check that the reduction in the
objective function from one iteration to the next is small.



GRADIENT DESCENT FOR
LINEAR REGRESSION



ression as Function Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : he(x) = 8Tx,0 ¢ RM}




Linear Regression by Gradient Desc.
J(e) - J(91, 92) -1 é (y(i) _ ng(i)))z

Optimization Method #1: i N
Gradient Descent 0.000
1.  Pickarandom ©
2. Repeat: 08// \\
a. Evaluate gradient VJ(0)
b. Step opposite gradient o6 I & =N
3. Return @ that gives 0, ?S 9 3 %*c;
smallest J(0) - Q,
é
O
0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
O,
t] 6 | 6, | J6,6,)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2




Linear Regression by Gradient Desc.

Optimization Method #1:
Gradient Descent

1. Pick a random 6

2.  Repeat:
a. Evaluate gradient VJ(0)
b. Step opposite gradient

3.  Return O that gives
smallest J(0)

y = h*(x)
(unknown)
/,,
&
”"/’
i'/

’ / t 6, 0, J(6,,6,)
’/ ‘“*-e 1 | 0.01 | 0.02 25.2
‘ 2 | 0.30 | 0.12 8.7

3 | 0.51 | 0.30 1.5
X > 4 | 0.59 | 0.43 0.2




Linear Regression by Gradient Desc.
J(O) = (8, 8,) = L3 (40 - 075’

Optimization Method #1:
Gradient Descent

1.
2.

Pick a random 6
Repeat:

a. Evaluate gradient VJ(0)

b. Step opposite gradient

Return O that gives
smallest J(0)

i=1

1.0
os//
(@]
_ (@]

V
o))

0.6 > o S - ‘\O; N
0, |5 it
0.4- Q
y = h*(x) 5 S
(unljnown) . w“
’
h(x; ©4)) O
0 000 0.2 0.4 0.6 0.8
h(x; © R b .
t1 0, | 6 | J6,6)
__ h(x 60) 1]001[002] 252\
> Jo.30 0.2 ( 8.7)
h(x; 81) 3 | 0.51 | 0.30 1.5
> 4 | 0.59 | 0.43 0.2

1.0
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Linear Regression by Gradient Desc.

-~ A
—
o
-
()
o
YV oo
5 &
7= 2
c
48]
()
=
, , >
Iteration, t
y = h*(x)
N (unknown)
’
’
> 6)
o h(x; 63))
/
/ — h(x; 6())
/
— h(x; )
>

t] 6, [ 6, | J6,6,)
1 | 0.01 | 0.02 25.2

2 | 0.30 | 0.12 8.7

3 | 0.51 | 0.30 1.5

4 | 0.59 | 0.43 0.2

64



mean squared error,
J(6,, 8,)

Linear Regression by Gradient Desc.

A J(0)=J(6, 62)-— y“ OTx“)
1.0
A 0.000
0.8 A
A
0.6 1 o § > % N
A A o 5 S 9 2 27
> |8 ¢
, , >
iteration, t 0.4 1
y = h*(x) g
N (unljnown) s
v
0.0
h(x; 83) 00 :
0,
t] 6 | 6, | J6,6,)
/, . h(x;60) 1 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
— h(x; 6) 3 | 0.51 | 0.30 1.5
X > 4 | 0.59 | 0.43 0.2
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Gradient Calculation for Linear Regression

Derivative of J()(8):
d d 1 |
@ 16) (g 9T x (D) _ ()2
deJ (6) = d9k2( )
1 d 1 @) OK
2d9k 0.0 % )
d
_ (0T () _ /(@) 0T () _
(0" x —y'\) dOk(

= (0TxD —y

D))

(i))

— (6Tx®) — y®) )5 (Zg 2 y(i)>
j=1

Derivative of J(8):

Gradient of J(0) [used by Gradient Descent]
i 0)] [T (07x0 —y )
oty - | 30| [EEOT 0
J@)) SN (67x0 — )]




GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, 9(0))
0 «— 6 > Initialize parameters
while not converged do

2
3
4 g — SN (0TxD — @))% > Compute gradient
5
6

0—0—~g > Update parameters
return 6




