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Regression
Goal:
– Given a training dataset of 

pairs (x,y) where
• x is a vector
• y is a scalar

– Learn a function (aka. curve 
or line) y’ = h(x) that best fits 
the training data

Example Applications:
– Stock price prediction
– Forecasting epidemics
– Speech synthesis
– Generation of images (e.g.

Deep Dream)
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This is what 
differentiates 
regression from 
classification



Regression
Q: What is the function that 
best fits these points?
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x

y Example: Dataset with only 
one feature x and one scalar 
output y



K-NEAREST NEIGHBOR REGRESSION
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k-NN Regression

Algorithm 2: k=2 Nearest 
Neighbors Distance Weighted 
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest 

two instances x(n1) and x(n2)

in training data and return 
the weighted average of 
their y values

Algorithm 1: k=1 Nearest 
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x 

in training data and return 
its y
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x

y Example: Dataset with only 
one feature x and one scalar 
output y
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x

y Example: Dataset with only 
one feature x and one scalar 
output y

Algorithm 1: drawing 
the function is left as 
an exercise



k-NN Regression
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x

y Example: Dataset with only 
one feature x and one scalar 
output y

x(n1) x(n2)x’

y (n1)

y (n2)
y’

Algorithm 2
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x

y Example: Dataset with only 
one feature x and one scalar 
output y

x(n1) x(n2)x’

y (n1)

y (n2)
y’

Algorithm 2

This tends 
toward the 

average 
height of 

the 
leftmost 

two points

The distance 
weighted 

average of x(n1)

and x(n2)

This region is closer to 
the two points to the left



DECISION TREE REGRESSION

9



Decision Tree Regression
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Decision Tree Regression
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Dataset for Regression Decision Tree for Regression

Y A B C

4 1 0 0

1 1 0 1

3 1 0 o

7 0 0 1

5 1 1 0

6 0 1 1

8 1 1 0

9 1 1 1

B

A A

0 1

0 1 0 1

C

0 1

{4,1,3,7} {5,6,8,9}

{5,8,9}

{4,1,3,7,5,6,8,9}

{7} {4,1,3} {6}

{5,8} {9}

During learning, choose the attribute that 
minimizes an appropriate splitting 
criterion (e.g. mean squared error, mean 
absolute error)
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LINEAR FUNCTIONS, RESIDUALS, AND MEAN 
SQUARED ERROR
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Linear Functions

Def: Regression is predicting real-valued outputs

𝒟 = 𝐱 ! , 𝑦 !
!"#
$

with 𝐱 ! ∈ ℝ%, 𝑦 ! ∈ ℝ
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Common Misunderstanding:
Linear functions ≠ Linear decision boundaries

𝑦 = 𝑤𝑥 + 𝑏𝑦

𝑥



Linear Functions

Def: Regression is predicting real-valued outputs

𝒟 = 𝐱 ! , 𝑦 !
!"#
$

with 𝐱 ! ∈ ℝ%, 𝑦 ! ∈ ℝ
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Common Misunderstanding:
Linear functions ≠ Linear decision boundaries

𝑦

𝑥!

𝑥"

𝑦 = 𝑤!𝑥! + 𝑤"𝑥" + 𝑏

• A general linear function is 
𝑦 = 𝐰#𝐱 + 𝑏

• A general linear decision boundary is 
𝑦 = sign 𝐰#𝐱 + 𝑏



Key Idea of Linear Regression

Residuals Key Idea of Linear Regression
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Mean squared error



OPTIMIZATION FOR ML
The Big Picture
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Unconstrained Optimization

• Def: In unconstrained optimization, we try minimize (or 
maximize) a function with no constraints on the inputs to the 
function

Given a function

Our goal is to find
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For ML, these are 
the parameters

For ML, this is the 
objective function



Optimization for ML

Not quite the same setting as other fields…
– Function we are optimizing might not be the true goal 

(e.g. likelihood vs generalization error)
– Precision might not matter 

(e.g. data is noisy, so optimal up to 1e-16 might not help)
– Stopping early can help generalization error

(i.e. “early stopping” is a technique for regularization – discussed 
more next time)
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min vs. argmin
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y = f(x) =x2 + 1
1

2

3 v* = minx f(x)

x* = argminx f(x)

1. Question: What is v*?

2. Question: What is x*?
v* = 1, the minimum value of the function

x* = 0, the argument that yields the minimum value



min vs. argmin
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y = f(x) =x2 + 1
1

2

3 v* = minx f(x)

x* = argminx f(x)

1. Question: What is v*?

2. Question: What is x*?
v* = 1, the minimum value of the function

x* = 0, the argument that yields the minimum value



OPTIMIZATION METHOD #0:
RANDOM GUESSING
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Notation Trick: 
Folding in the Intercept Term
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Notation Trick: fold the 
bias b and the weights w
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one!

This convenience trick allows us to more compactly talk 
about linear functions as a simple dot product (without 

explicitly writing out the intercept term every time).

Notation Trick: 
Folding in the Intercept Term
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Notation Trick: fold the 
bias b and the weights w
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one!

This convenience trick allows us to more compactly talk 
about linear functions as a simple dot product (without 

explicitly writing out the intercept term every time).



Linear Regression as Function Approximation
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Contour Plots
Contour Plots
1. Each level curve labeled 

with value 
2. Value label indicates the 

value of the function for 
all points lying on that 
level curve

3. Just like a topographical 
map, but for a function
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J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2



Optimization by Random Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)
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J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

t
1
2
3
4



Optimization by Random Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)
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J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

t
1
2
3
4

For Linear Regression:
• objective function is Mean 

Squared Error (MSE)
• MSE = J(w, b) 

= J(θ1, θ2) =
• contour plot: each line labeled with 

MSE – lower means a better fit
• minimum corresponds to 

parameters (w,b) = (θ1, θ2) that 
best fit some training dataset



Linear Regression:
Running Example
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Counting Butterflies

35

x, # of mountains

y,
 #

 o
f m

on
ar

ch
s

y = h*(x)
(unknown)

h(x; θ(3))
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Counting Butterflies
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x, # of mountains

y,
 #

 o
f m

on
ar

ch
s

y = h*(x)
(unknown)

h(x; θ(3))



Linear Regression in High Dimensions
• In our discussions of linear regression, we 

will always assume there is just one output, 
y

• But our inputs will usually have many 
features:

x = [x1, x2,…,xM]T
• For example:

– suppose we had a drone take pictures of 
each section of forest

– each feature could correspond to a pixel in 
this image such that xm = 1 if the pixel is 
orange and xm = 0 otherwise

– the output y would be the number of 
butterflies in each picture
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Q: How would you obtain ground truth 
data?



Linear Regression by Rand. Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)

41
x

y

y = h*(x)
(unknown)

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

For Linear Regression:
• target function h*(x) is unknown
• only have access to h*(x) through 

training examples (x(i),y(i))
• want h(x; θ(t)) that best 

approximates h*(x)
• enable generalization w/inductive 

bias that restricts hypothesis class 
to linear functions



Linear Regression by Rand. Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)
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θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

x

y



OPTIMIZATION METHOD #1:
GRADIENT DESCENT
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Derivatives
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Gradient
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Gradients
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θ1

θ2

J(θ) = J(θ1, θ2) 



Gradients
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These are the gradients that 

Gradient Ascent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 



Gradients
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These are the gradients that 

Gradient Ascent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 

In this picture, each arrow is a 2D 
vector consisting of two partial 
derivatives. 

The vector is evaluated at the 
point [θ1, θ2]T and plotted with its 
origin there as well.

∇J(θ1, θ2) =





∂J

∂θ1

∂J

∂θ2







(Negative) Gradients
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These are the negative gradients that 

Gradient Descent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 

In this picture, each arrow is a 2D 
vector consisting of two partial 
derivatives. 

The vector is evaluated at the 
point [θ1, θ2]T and plotted with its 
origin there as well.

−∇J(θ1, θ2) =





−
∂J

∂θ1

−
∂J

∂θ2







(Negative) Gradients
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These are the negative gradients that 

Gradient Descent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 



(Negative) Gradient Paths
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Shown are the paths that Gradient Descent 
would follow if it were making infinitesimally 

small steps.

θ1

θ2

J(θ) = J(θ1, θ2) 



Gradient Descent

Gradient Descent Algorithm Remarks
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Answer:

Gradient Descent: Step Size
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Question:
In gradient descent, what could go wrong if 
we always use the same step size (or step size 
schedule) for every problem we encounter?



Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

In order to apply GD to Linear 
Regression all we need is the 
gradient of the objective 
function (i.e. vector of partial 
derivatives). 

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N

J(�)

�

����

—

M



Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

There are many possible ways to detect convergence.  
For example, we could check whether the L2 norm of 
the gradient is below some small tolerance.

||��J(�)||2 � �
Alternatively we could check that the reduction in the 
objective function from one iteration to the next is small.

—



GRADIENT DESCENT FOR
LINEAR REGRESSION
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Linear Regression as Function Approximation
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Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives 
smallest J(θ)
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θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2

t
1
2
3
4

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2
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θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
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t
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2
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h(x; θ(1))

h(x; θ(2))
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h(x; θ(4))



Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
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2. Repeat:
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3. Return θ that gives 
smallest J(θ)
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Linear Regression by Gradient Desc.
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θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
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iteration, t
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Linear Regression by Gradient Desc.

65

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

iteration, t

m
ea

n 
sq

ua
re

d 
er

ro
r, 

J(
θ 1

, θ
2)



Gradient Calculation for Linear Regression
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Gradient Calculation for Linear Regression
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������� �� J(θ)

∇θJ(θ) =











d

dθ1
J(θ)

d

dθ2
J(θ)
ǤǤǤ

d

dθM
J(θ)











=













∑N

i=1(θ
T x(i) − y(i))x(i)

1
∑N

i=1(θ
T x(i) − y(i))x(i)

2
ǤǤǤ

∑N

i=1(θ
T x(i) − y(i))x(i)

M













=
N
∑

i=1

(θT x(i)
− y(i))x(i)

[used by Gradient Descent]



GD for Linear Regression
Gradient Descent for Linear Regression repeatedly takes 
steps opposite the gradient of the objective function
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��������� ͕ 
� ��� ������ ����������

͕ǣ ��������� 
���ȋDǡ ✓(0)Ȍ
͖ǣ ✓  ✓(0) . ���������� ����������
͗ǣ ����� ��� ��������� ��
͘ǣ ; 

PN
i=1(✓

T t(i) � y(i))t(i) . ������� ��������
͙ǣ ✓  ✓ � �; . ������ ����������
͚ǣ ������ ✓
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