10-301/601: Introduction to Machine Learning Lecture 6 – Perceptron

Geoff Gordon

with thanks to Henry Chai & Matt Gormley

Q & A:

Can we use k-NN with categorical features?

Q & A:

Can we use k-NN with categorical features?

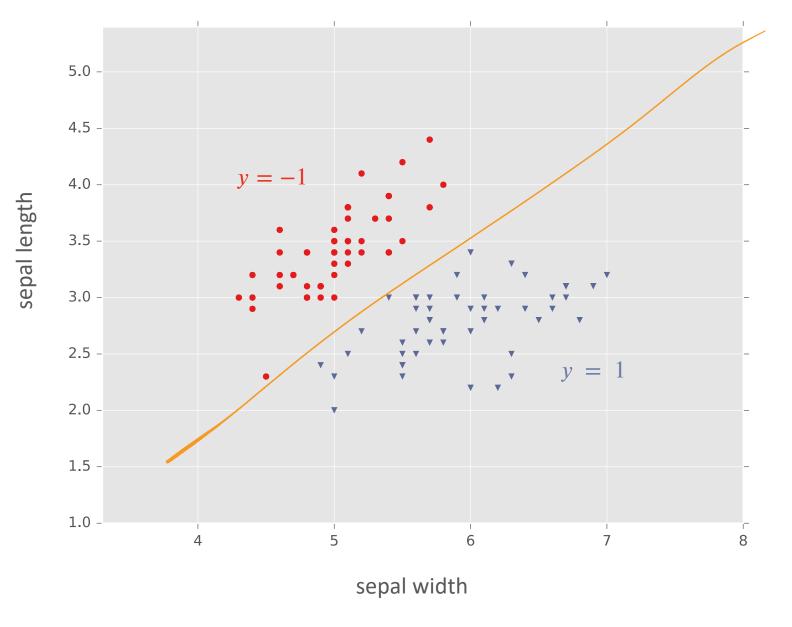
- Yes! We can either:
 - 1. Convert categorical features into binary ones:

erol		Abnormal Cholesterol?
al	 I	0
	1	0
	0	I

Use a distance metric that works over categorical features, e.g., the Hamming distance: $d(x,x') = \sum_{i=1}^{M} \mathbb{I}(x_i \neq x_i')$

$$d(x, x') = \sum_{i=1}^{M} \mathbb{I}(x_i \neq x_i')$$

Fisher Iris Dataset



Linear Algebra Review

Notation: in this we use column vectors by default, i.e.,

$$\boldsymbol{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_D \end{bmatrix} \text{ and } \boldsymbol{a}^T = \begin{bmatrix} a_1 & a_2 & \cdots & a_D \end{bmatrix}$$

The dot product between two D-dimensional vectors is

$$\boldsymbol{a}^T \boldsymbol{b} = \begin{bmatrix} a_1 & a_2 & \cdots & a_D \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_D \end{bmatrix} = \sum_{d=1}^D a_d b_d$$

Linear Algebra Review

- Dot products represent linear functions: $\mathbf{w}^{\mathsf{T}}\mathbf{x}$ is linear in \mathbf{x} for fixed \mathbf{w} (and all linear functions of \mathbf{x} that pass through origin can be written this way)
 - •include intercept $w^{\top}x + b$ to not hit origin
- The L2-norm of $\boldsymbol{a} = \|\boldsymbol{a}\|_2 = \sqrt{\boldsymbol{a}^T \boldsymbol{a}}$
- Two vectors are *orthogonal* iff $\mathbf{a}^T \mathbf{b} = 0$

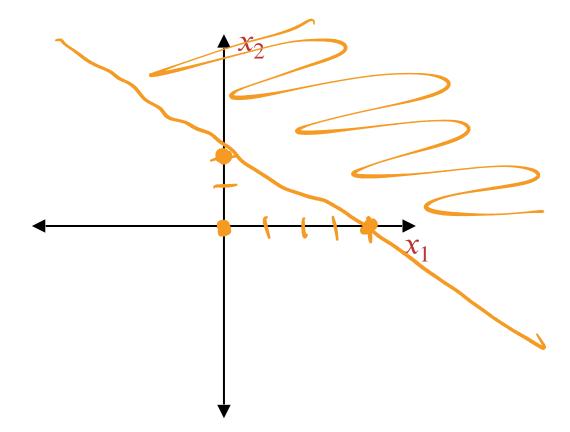
Geometry Warm-up

1. On the axes below, draw the region corresponding to

$$w_1 x_1 + w_2 x_2 + b > 0$$

where $w_1 = 1$, $w_2 = 2$ and b = -4.

2. Then draw the vector
$$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$



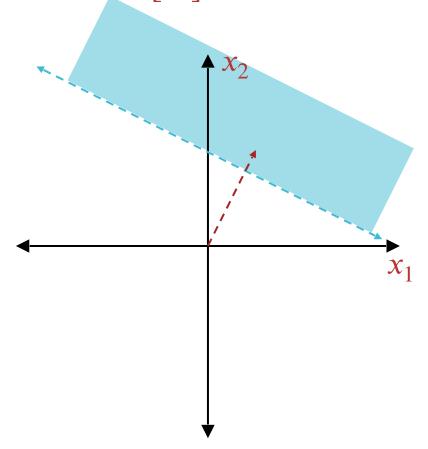
Geometry Warm-up

1. On the axes below, draw the region corresponding to

$$w_1 x_1 + w_2 x_2 + b > 0$$

where $w_1 = 1$, $w_2 = 2$ and b = -4.

2. Then draw the vector $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$



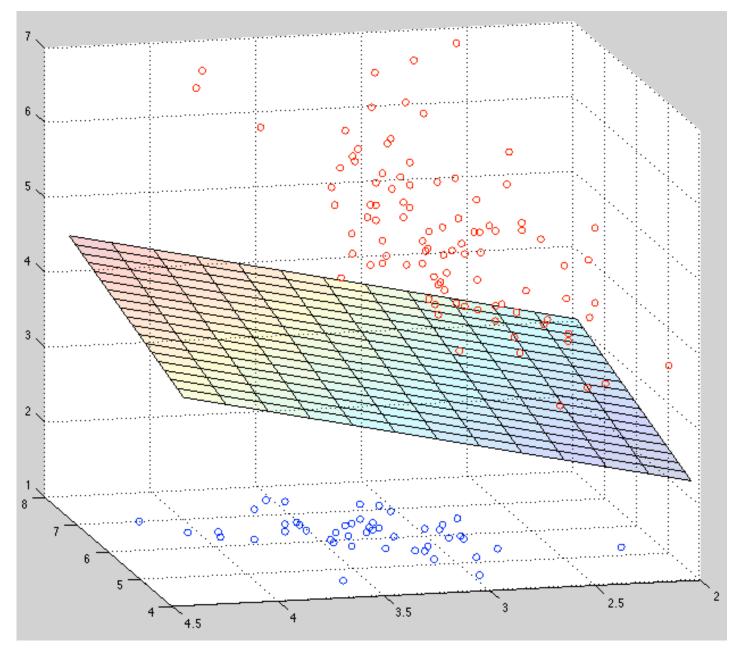
Linear Decision Boundaries

- In 2 dimensions, $w_1x_1 + w_2x_2 + b = 0$ defines a *line*
- •In 3 dimensions, $w_1x_1 + w_2x_2 + w_3x_3 + b = 0$ defines a plane
- •In 4+ dimensions, $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ defines a hyperplane
 - The vector \boldsymbol{w} is always orthogonal to this hyperplane and always points in the direction where $\boldsymbol{w}^T\boldsymbol{x} + b > 0$!
- A hyperplane creates two halfspaces:

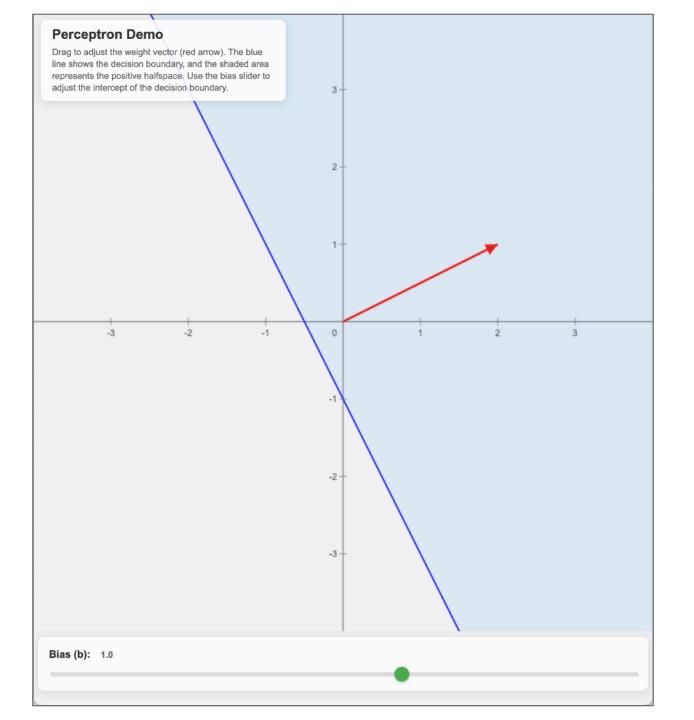
•
$$\mathcal{S}_+ = \{ \mathbf{x} \colon \mathbf{w}^T \mathbf{x} + b > 0 \}$$
 or all \mathbf{x} s.t. $\mathbf{w}^T \mathbf{x} + b$ is positive

$$\bullet S_- = \{ \mathbf{x} : \mathbf{w}^T \mathbf{x} + b < 0 \}$$
 or all \mathbf{x} s.t. $\mathbf{w}^T \mathbf{x} + b$ is negative

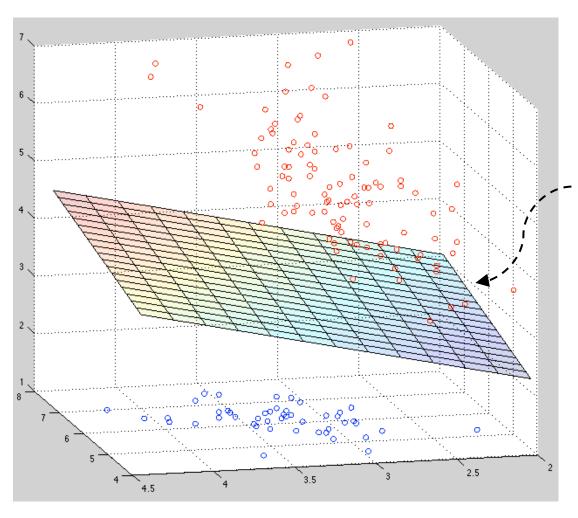
Linear Decision Boundaries: Example



Interactive decision boundary



Learning a linear classifier

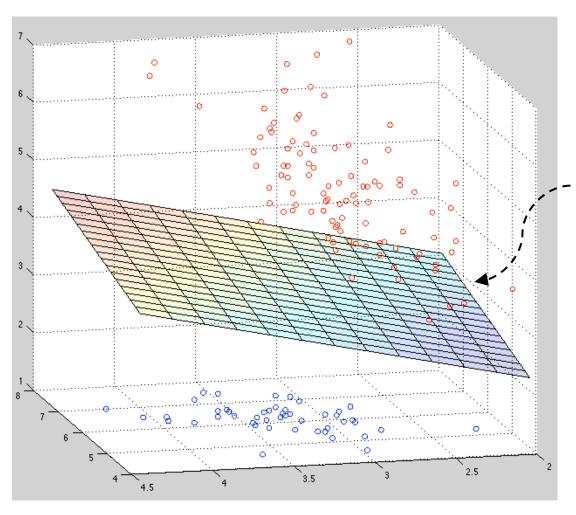


Goal: learn classifiers of the form

$$h(x) = sign(w^T x + b)$$
(assuming

$$y \in \{-1, +1\}$$

Learning a linear classifier



Goal: learn classifiers of the form

$$h(x) = \operatorname{sign}(w^T x + b)$$
(assuming

$$y \in \{-1, +1\}$$

Key question: how do we learn the parameters, **w**, b?

Online Learning

- So far, we've been learning in the batch setting, where we have access to the entire training dataset at once
- •A common alternative is the *online* setting, where examples arrive gradually and we learn continuously
- Examples of online learning:

autocorrect — personalization recommender system performance turing stock prediction

Online Learning: Setup

- For t = 1, 2, 3, ...
 - Receive an unlabeled example, $\mathbf{x}^{(t)}$
 - Predict its label, $\hat{y} = h_{w,b}(x^{(t)})$
 - Observe its true label, $y^{(t)}$
 - Pay a penalty if we made a mistake, $\hat{y} \neq y^{(t)}$
 - Update the parameters, w and b

Goal: minimize the number of mistakes made

(Online) Perceptron Learning Algorithm

Initialize the weight vector and intercept to all zeros:

$$w = [0 \ 0 \ \cdots \ 0] \text{ and } b = 0$$

- For t = 1, 2, 3, ...
 - Receive an unlabeled example, $\mathbf{x}^{(t)}$

Predict its label,
$$\hat{y} = \text{sign}(\boldsymbol{w}^T \boldsymbol{x} + b) = \begin{cases} +1 \text{ if } \boldsymbol{w}^T \boldsymbol{x} + b \ge 0 \\ -1 \text{ otherwise} \end{cases}$$

- Observe its true label, $y^{(t)}$
- If we misclassified a positive example $(y^{(t)} = +1, \hat{y} = -1)$:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \boldsymbol{x}^{(t)}$$

$$b \leftarrow b + 1$$

• If we misclassified a negative example $(y^{(t)} = -1, \hat{y} = +1)$:

$$\bullet w \leftarrow w - x^{(t)}$$

$$\bullet b \leftarrow b - 1$$

Notational hack

Initialize the weight vector and intercept to all zeros:

$$w = [0 \ 0 \ \cdots \ 0] \text{ and } b = 0$$

- For t = 1, 2, 3, ...
 - Receive an unlabeled example, $\mathbf{x}^{(t)}$

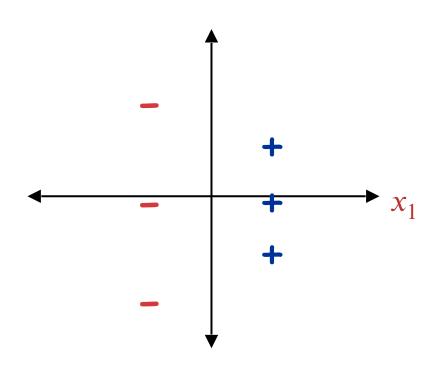
Predict its label,
$$\hat{y} = \text{sign}(\boldsymbol{w}^T \boldsymbol{x} + b) = \begin{cases} +1 \text{ if } \boldsymbol{w}^T \boldsymbol{x} + b \ge 0 \\ -1 \text{ otherwise} \end{cases}$$

- Observe its true label, $y^{(t)}$
- If we misclassified an example $(y^{(t)} \neq \hat{y})$:

$$\bullet w \leftarrow w + y^{(t)} x^{(t)}$$

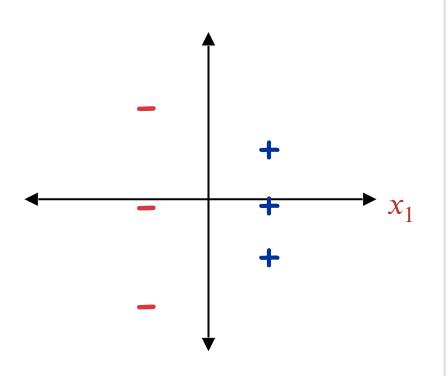
$$b \leftarrow b + y^{(t)}$$

x_1	x_2	ŷ	у	Mistake?
-1	2	+	_	Yes



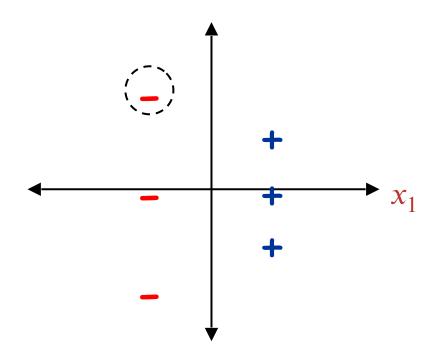
x_1	x_2	ŷ	y	Mistake?
-	2	+	_	Yes

$$\boldsymbol{w} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

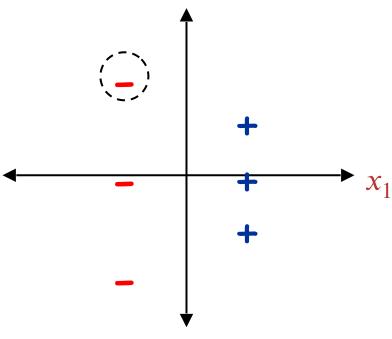


x_1	x_2	ŷ	y	Mistake?
-	2	+	_	Yes

$$\boldsymbol{w} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$



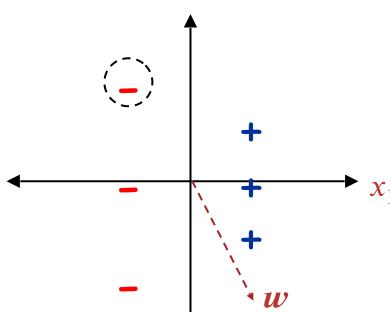
x_1	x_2	ŷ	у	Mistake?
-1	2	+	_	Yes



 χ_2

$$\mathbf{w} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\mathbf{w} \leftarrow \mathbf{w} + y^{(1)}\mathbf{x}^{(1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

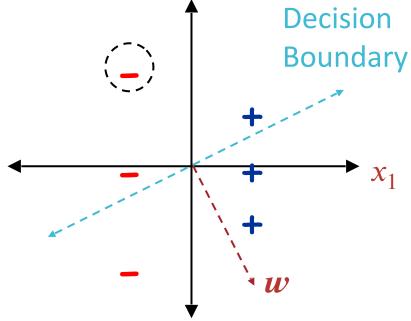
x_1	x_2	ŷ	y	Mistake?
-1	2	+	_	Yes



 χ_2

$$\boldsymbol{w} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y^{(1)} \boldsymbol{x}^{(1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

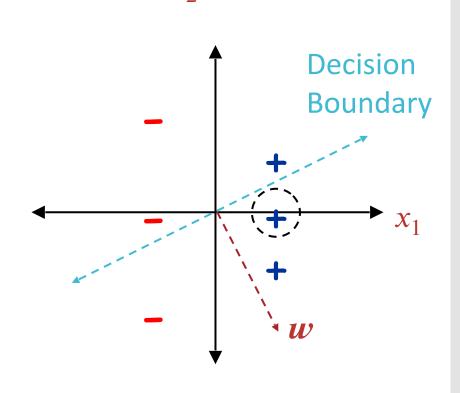
x_1	x_2	ŷ	y	Mistake?
-1	2	+	_	Yes



$$\mathbf{w} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\mathbf{w} \leftarrow \mathbf{w} + y^{(1)} \mathbf{x}^{(1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

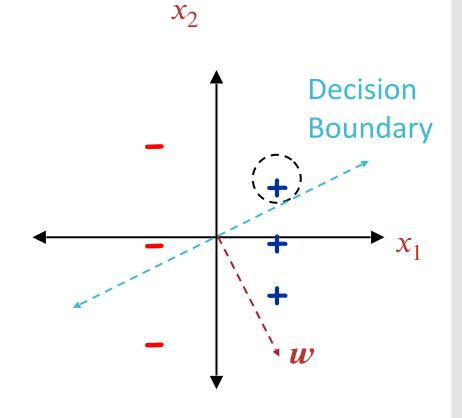
x_1	x_2	ŷ	y	Mistake?
-1	2	+	_	Yes
	0	+	+	No

$$\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

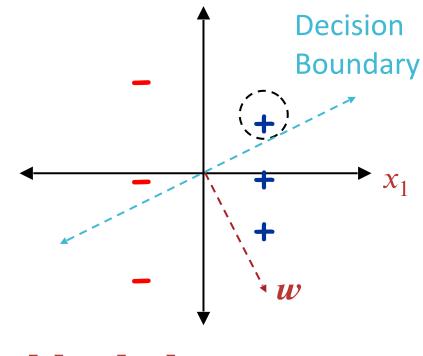


x_1	x_2	ŷ	y	Mistake?
-	2	+	_	Yes
	0	+	+	No
	I	_	+	Yes

$$\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

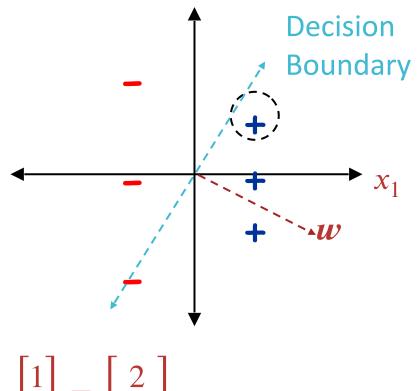


x_1	x_2	ŷ	y	Mistake?
-1	2	+	_	Yes
1	0	+	+	No
- 1	I	_	+	Yes



$$\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y^{(3)} \boldsymbol{x}^{(3)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

x_1	x_2	ŷ	y	Mistake?
-1	2	+	_	Yes
1	0	+	+	No
1	l	_	+	Yes

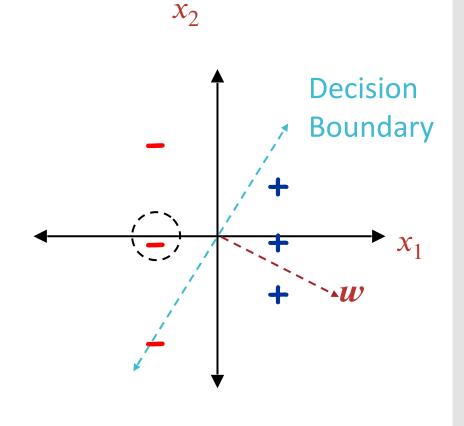


$$\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y^{(3)} \boldsymbol{x}^{(3)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

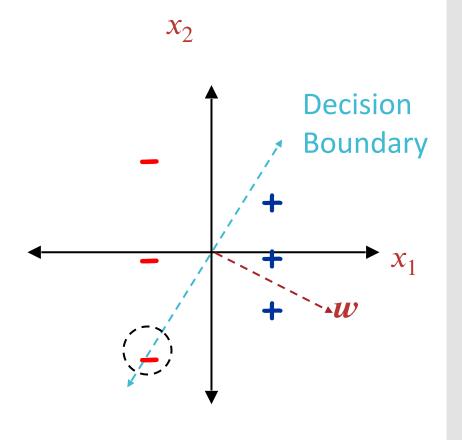
x_1	x_2	ŷ	y	Mistake?
-1	2	+	_	Yes
I	0	+	+	No
I	I	_	+	Yes
-1	0	_	_	No

$$\boldsymbol{w} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

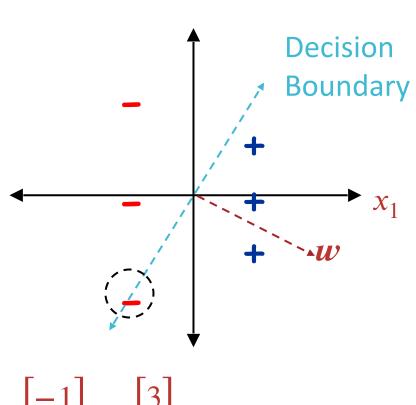


x_1	x_2	ŷ	у	Mistake?
-1	2	+	_	Yes
- 1	0	+	+	No
- 1	I	_	+	Yes
-1	0	_	_	No
-1	-2	+	_	Yes

$$\boldsymbol{w} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$



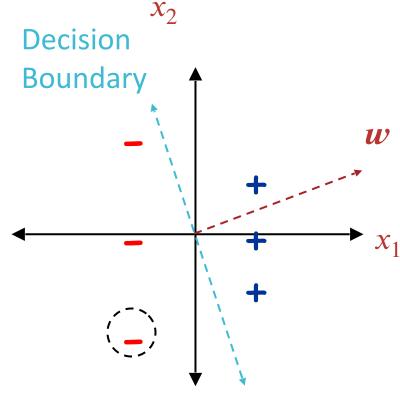
x_1	x_2	ŷ	у	Mistake?
– I	2	+	_	Yes
1	0	+	+	No
1		_	+	Yes
-1	0	_	_	No
-1	-2	+	_	Yes



$$\mathbf{w} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$\mathbf{w} \leftarrow \mathbf{w} + y^{(5)} \mathbf{x}^{(5)} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} - \begin{bmatrix} -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

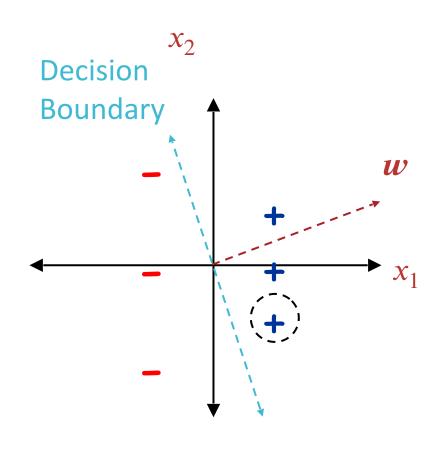
x_1	x_2	ŷ	y	Mistake?
-1	2	+	_	Yes
I	0	+	+	No
I	I	_	+	Yes
– I	0	_	_	No
—	-2	+	_	Yes



$$\boldsymbol{w} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y^{(5)} \boldsymbol{x}^{(5)} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} - \begin{bmatrix} -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

x_1	x_2	ŷ	y	Mistake?
-	2	+	_	Yes
I	0	+	+	No
I	I	_	+	Yes
-1	0	_	_	No
-1	-2	+	_	Yes
I	-	+	+	No

$$\boldsymbol{w} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$



Thought experiment

- [No bias term for now]
- What if we scaled up every training example?

•
$$x^{(i)} \rightarrow 2x^{(i)}$$
 for all i

Thought experiment

• What if we scaled up *half* of the training examples?

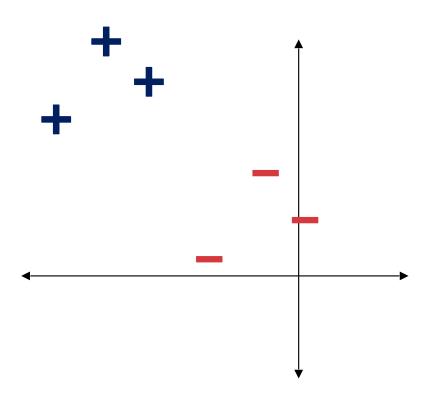
 $ullet x^{(i)} o 2x^{(i)}$ for every **even** value of i

Scale a feature Societ a feature S

Laure important

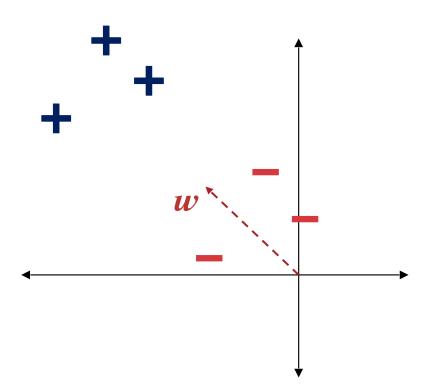
Updating the Intercept

 The intercept shifts the decision boundary off the origin

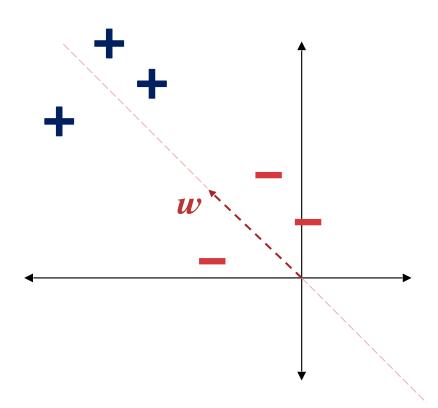


Updating the Intercept

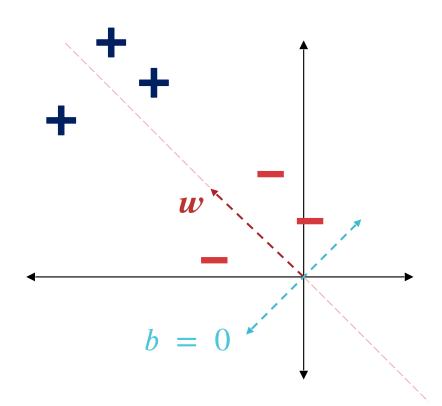
 The intercept shifts the decision boundary off the origin



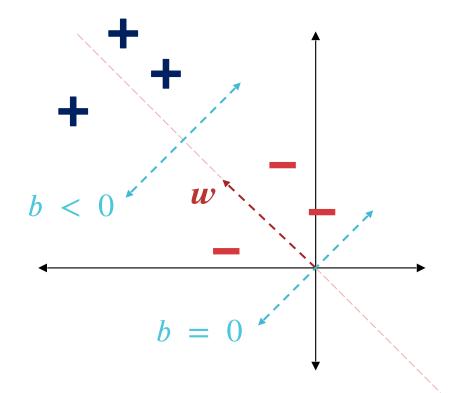
 The intercept shifts the decision boundary off the origin



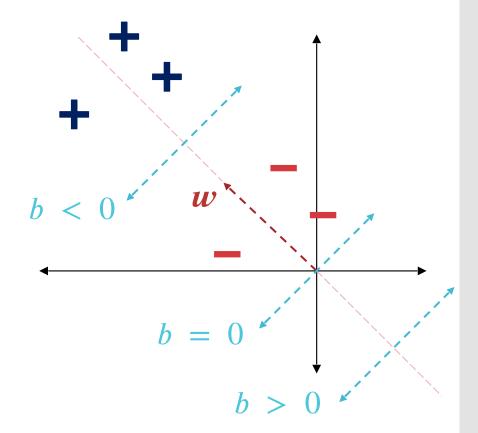
 The intercept shifts the decision boundary off the origin



- The intercept shifts the decision boundary off the origin
 - Increasing b shifts
 the decision
 boundary towards
 the negative side



- The intercept shifts the decision boundary off the origin
 - Increasing b shifts
 the decision
 boundary towards
 the negative side
 - Decreasing b shifts
 the decision
 boundary towards
 the positive side



Poll Question 1

poll. m/couse.og

• **True or False**: Unlike Decision Trees and k-Nearest Neighbors, the Perceptron learning algorithm does not suffer from overfitting because it does not have any hyperparameters that could be over-tuned on a validation dataset.

A: Falk C: The

B: fox. C

Notational hack #2

• If we add a 1 to the beginning of every example e.g.,

$$\mathbf{x}' = \begin{vmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_D \end{vmatrix}$$

• ... we can just fold the intercept into the weight vector!

$$\theta = \begin{bmatrix} b \\ w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix} \rightarrow \theta^T \mathbf{x}' = \mathbf{w}^T \mathbf{x} + b$$

Notational hack #2

•If we add a 1 to the beginning of every example e.g.,

$$\mathbf{x}' = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix}$$

• ... we can just fold the intercept into the weight vector!

$$\theta = \begin{bmatrix} b \\ w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix} \rightarrow \theta^T \mathbf{x}' = \mathbf{w}^T \mathbf{x} + b$$

$$\vdots$$
and powerfaces

... and now if we update $\theta \to \theta + yx'$, that's the same as $w \to w + yx$ and $b \to b + y$

(Online) Perceptron Learning Algorithm

• Initialize the parameters to all zeros:

$$\theta = [0 \quad 0 \quad \cdots \quad 0]$$

- For t = 1, 2, 3, ...
 - Receive an unlabeled example, $x'^{(t)}$

Predict its label,
$$\hat{y} = \operatorname{sign}(\theta^T x^{\prime(t)}) = \begin{cases} +1 \text{ if } \theta^T x^{\prime(t)} \ge 0 \\ -1 \text{ otherwise} \end{cases}$$

- Observe its true label, $y^{(t)}$
- If we misclassified an example $(y^{(t)} \neq \hat{y})$:

$$\bullet \theta \leftarrow \theta + y^{(t)} x'^{(t)}$$

(Online) Perceptron Learning Algorithm

• Initialize the parameters to all zeros:

$$\theta = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$$

- For t = 1, 2, 3, ...
 - Receive an unlabeled example, $x'^{(t)} \leftarrow ---$

Predict its label,
$$\hat{y} = \text{sign}(\theta^T x^{\prime(t)}) = \begin{cases} +1 \text{ if } \theta^T x^{\prime(t)} \ge 0 \\ -1 \text{ otherwise} \end{cases}$$

- Observe its true label, $y^{(t)}$
- If we misclassified an example $(y^{(t)} \neq \hat{y})$:

$$\bullet \theta \leftarrow \theta + y^{(t)} x'^{(t)}$$

1 prepended to $\mathbf{x}^{(t)}$

(Online) Perceptron Learning Algorithm

• Initialize the parameters to all zeros:

$$\theta = [0 \quad 0 \quad \cdots \quad 0]$$

- For t = 1, 2, 3, ...
 - Receive an unlabeled example, $x'^{(t)}$

Predict its label,
$$\hat{y} = \text{sign}(\theta^T x^{\prime(t)}) = \begin{cases} +1 \text{ if } \theta^T x^{\prime(t)} \ge 0 \\ -1 \text{ otherwise} \end{cases}$$

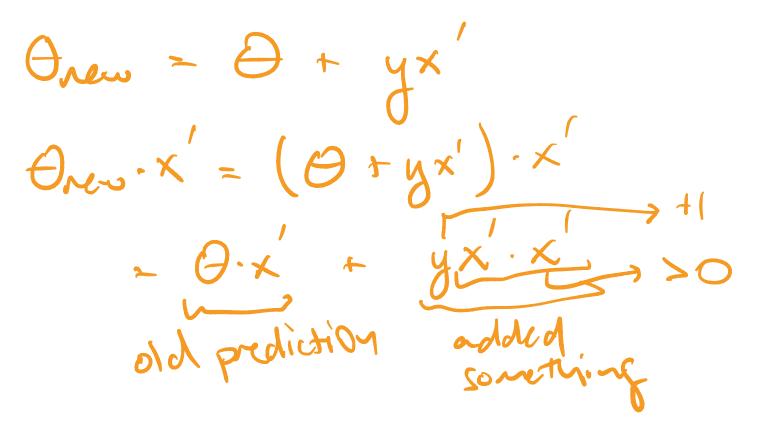
- Observe its true label, $y^{(t)}$
- If we misclassified an example $(y^{(t)} \neq \hat{y})$:

$$\bullet \theta \leftarrow \theta + y^{(t)} x'^{(t)}$$

Automatically handles updating the intercept

(Online)
Perceptron
Learning
Algorithm:
Intuition

•Suppose $(x, y) \in \mathcal{D}$ is a misclassified training example and y = +1 (the y = -1 case is similar)



(Online)
Perceptron
Learning
Algorithm:
Inductive Bias

don't change too fast linear decision bol. outlier sensitiel - higher scale ex continuos ests represent bd. important higher scale fontures mor insportant

(Batch) Perceptron Learning Algorithm

•Input:
$$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), ..., (\mathbf{x}^{(N)}, y^{(N)}) \}$$

• Initialize the parameters to all zeros:

$$\theta = [0 \quad 0 \quad \cdots \quad 0]$$

- While NOT CONVERGED
 - For $t \in \{1,...,N\}$ [optionally: permute each epoch]
 - Predict the label of $\mathbf{x}^{\prime(t)}$, $\hat{\mathbf{y}} = \operatorname{sign}\left(\mathbf{\theta}^T \mathbf{x}^{\prime(t)}\right)$
 - •Observe its true label, $y^{(t)}$
 - If we misclassified $\mathbf{x}^{\prime(t)}$ ($\mathbf{y}^{(t)} \neq \mathbf{\hat{y}}$):

$$\bullet \theta \leftarrow \theta + y^{(t)} x'^{(t)}$$

(Batch) Perceptron Learning Algorithm

•Input:
$$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), ..., (\mathbf{x}^{(N)}, y^{(N)}) \}$$

• Initialize the parameters to all zeros:

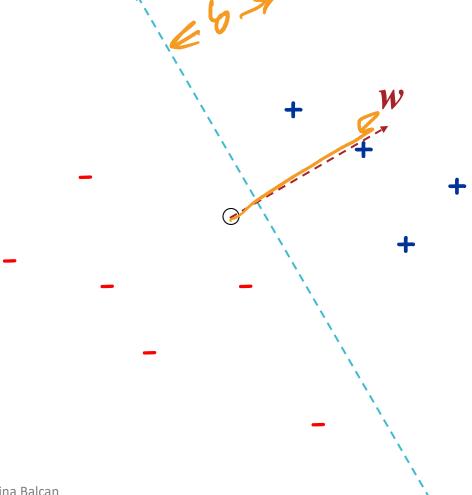
$$\theta = [0 \ 0 \ \cdots \ 0]$$

- While NOT CONVERGED ← what does this mean?
 - For $t \in \{1,...,N\}$ [optionally: permute each epoch]
 - Predict the label of $\mathbf{x}^{\prime(t)}$, $\hat{\mathbf{y}} = \operatorname{sign}\left(\mathbf{\theta}^T \mathbf{x}^{\prime(t)}\right)$
 - •Observe its true label, $y^{(t)}$
 - If we misclassified $\mathbf{x}^{\prime(t)}$ ($\mathbf{y}^{(t)} \neq \mathbf{\hat{y}}$):

$$\bullet \theta \leftarrow \theta + y^{(t)} x'^{(t)}$$

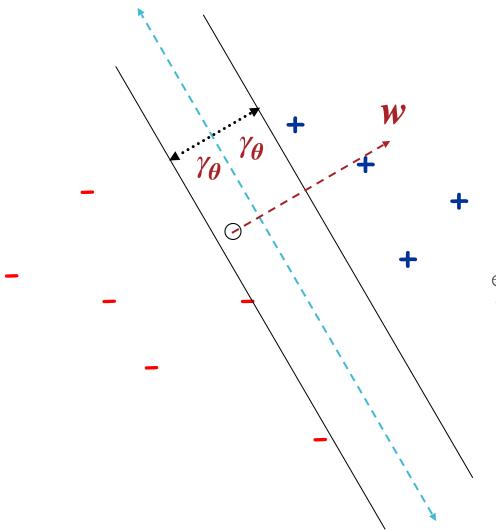
Linearly separable

•A dataset \mathscr{D} is *linearly separable* if \exists a linear decision boundary $\theta = (w, b)$ that perfectly classifies all examples in \mathscr{D}



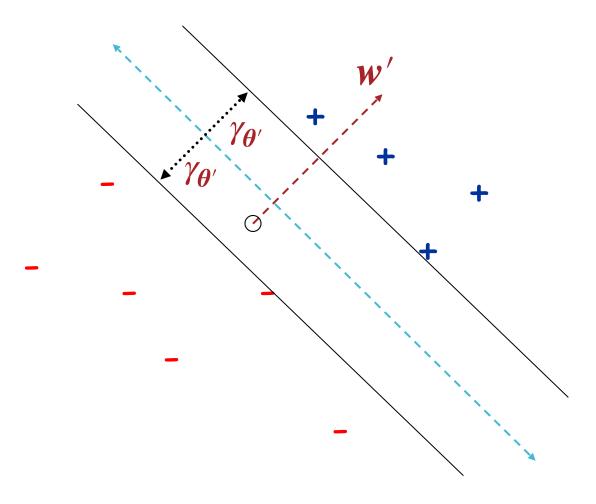
Margin

• The margin, γ_{θ} , of any separator θ is the distance of the closest example in $\mathscr D$ to that separator



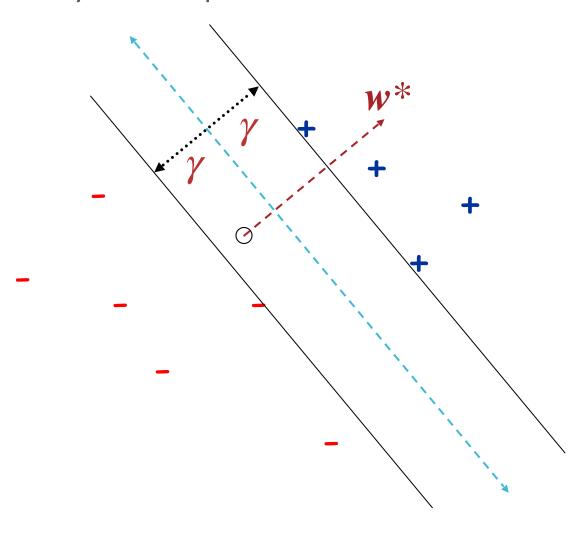
expand a slab around the separator until it touches an example on one side or the other Margin

Different separators can have different margins



Margin

•The margin, γ , of the entire dataset $\mathscr D$ is the largest margin of any linear separator



Perceptron Mistake Bound

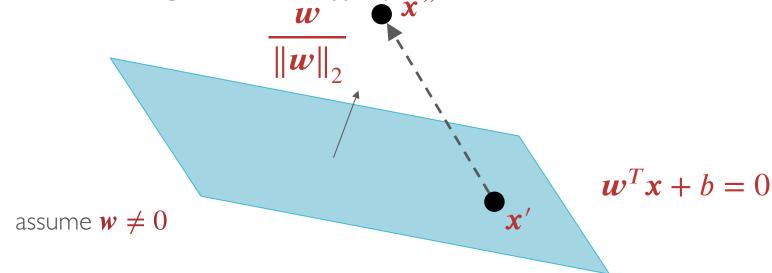
- Theorem: if the examples seen by the Perceptron Learning Algorithm (either online or batch)
 - 1. lie in a ball of radius R (centered around the origin)
 - 2. have a margin of $\gamma > 0$

then the algorithm makes at most $(R/\gamma)^2$ mistakes total!

• Key Takeaway: if the training dataset is linearly separable, the batch Perceptron Learning Algorithm will converge (i.e., stop making mistakes on the training dataset or achieve 0 training error) in a finite number of steps!

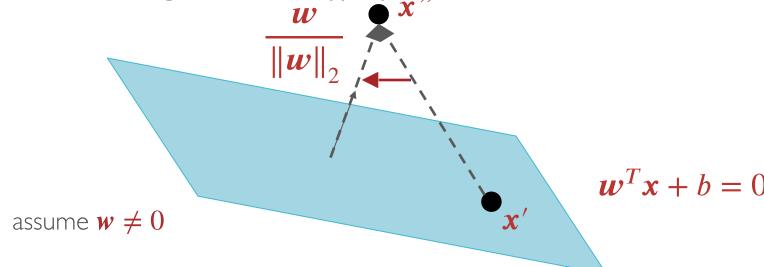
- •Let x' be an arbitrary point on the hyperplane $w^Tx + b = 0$ and let x" be an arbitrary point
- •The distance between \mathbf{x} " and $\mathbf{w}^T\mathbf{x} + b = 0$ is equal to the magnitude of the projection of \mathbf{x} " \mathbf{x}' onto $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$, the unit

vector orthogonal to the hyperplane



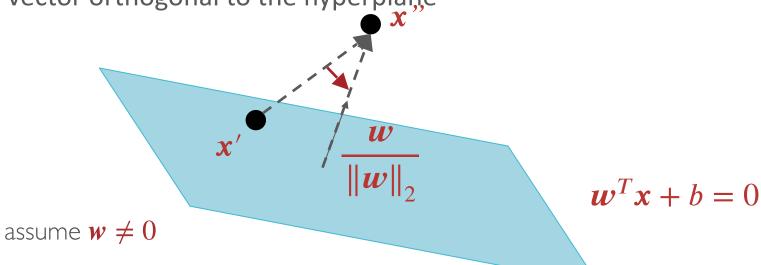
- •Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T\mathbf{x} + b = 0$ and let \mathbf{x} " be an arbitrary point
- •The distance between x " and $w^Tx + b = 0$ is equal to the magnitude of the projection of x" x' onto $\frac{w}{\|w\|_2}$, the unit

vector orthogonal to the hyperplane



- •Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T\mathbf{x} + b = 0$ and let \mathbf{x} " be an arbitrary point
- The distance between x " and $w^Tx + b = 0$ is equal to the magnitude of the projection of x " -x " onto $\frac{w}{\|w\|_2}$, the unit

vector orthogonal to the hyperplane



- •Let x' be an arbitrary point on the hyperplane and let x" be an arbitrary point
- The distance between x " and $w^Tx + b = 0$ is equal to the magnitude of the projection of x " -x " onto $\frac{w}{\|w\|_2}$,

the unit vector orthogonal to the hyperplane

$$\left| \frac{\boldsymbol{w}^{T}(\boldsymbol{x}" - \boldsymbol{x}')}{\|\boldsymbol{w}\|_{2}} \right| = \frac{\left| \boldsymbol{w}^{T}\boldsymbol{x}" - \boldsymbol{w}^{T}\boldsymbol{x}' \right|}{\|\boldsymbol{w}\|_{2}} = \frac{\left| \boldsymbol{w}^{T}\boldsymbol{x}" + b \right|}{\|\boldsymbol{w}\|_{2}}$$

Perceptron Learning Objectives

You should be able to...

- Explain the difference between online learning and batch learning
- Implement the perceptron algorithm for binary classification [CIML]
- Determine whether the perceptron algorithm will converge based on properties of the dataset, and the limitations of the convergence guarantees
- Describe the inductive bias of perceptron and the limitations of linear models
- Draw the decision boundary of a linear model
- Identify whether a dataset is linearly separable or not
- Defend the use of a bias term in perceptron (shifting points after projection onto weight vector)