10-301/601: Introduction to Machine Learning Lecture 6 - Perceptron

Hoda Heidari, Henry Chai \& Matt Gormley

2/5/24

- Announcements:
- HW2 released 1/24, due 2/5 (today!) at 11:59 PM

Front Matter

- HW3 released on 2/5 (today!), due 2/12 at 11:59 PM
- HW3 is a written-only homework
- You may only use at most 2 late days on HW3

Q \& A:
After we do model selection using a validation dataset, should we train a final model using both the training and the validation datasets?

- Yes, absolutely! So really the sketch from last lecture should look something like:

1. Split \mathcal{D} into $\mathcal{D}_{\text {train }} \cup \mathcal{D}_{\text {val }} \cup \mathcal{D}_{\text {test }}$
2. Learn classifiers using $\mathcal{D}_{\text {train }}$
3. Evaluate models using $\mathcal{D}_{v a l}$ and choose the one with lowest validation error:
4. Learn a new classifier from the best model using $\mathcal{D}_{\text {train }} \cup \mathcal{D}_{\text {val }}$
5. Optionally, use $\mathcal{D}_{\text {test }}$ to estimate the true error

- Yes! We can either:

Q \& A:
Can we use kNNs with categorical features?

1. Convert categorical features into binary ones:

2. Use a distance metric that works over categorical features e.g., the Hamming distance:

$$
d\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\sum_{d=1}^{D} \mathbb{1}\left(x_{d}=x_{d}^{\prime}\right)
$$

- See HW3 for an example of this

Hyperparameter Optimization

- Given $\mathcal{D}=\mathcal{D}_{\text {train }} \cup \mathcal{D}_{\text {val }} \cup \mathcal{D}_{\text {test }}$, suppose we have multiple candidate hyperparameter settings:

$$
\theta_{1}, \theta_{2}, \ldots, \theta_{M}
$$

- Learn a classifier for each setting using only $\mathcal{D}_{\text {train }}$:

$$
h_{1}, h_{2}, \ldots, h_{M}
$$

- Evaluate each one using $\mathcal{D}_{\text {val }}$ and choose the one with lowest validation error:

$$
\widehat{m}=\underset{m \in\{1, \ldots, M\}}{\operatorname{argmin}} \operatorname{err}\left(h_{m}, \mathcal{D}_{\text {val }}\right)
$$

- Now $\operatorname{err}\left(h_{\widehat{m}}, \mathcal{D}_{\text {test }}\right)$ is a good estimate of $\operatorname{err}\left(h_{\widehat{m}}\right)$!

How to pick hyperparameter settings to try?

- Given $\mathcal{D}=\mathcal{D}_{\text {train }} \cup \mathcal{D}_{\text {val }} \cup \mathcal{D}_{\text {test }}$, suppose we have multiple candidate hyperparameter settings:

$$
\theta_{1}, \theta_{2}, \ldots, \theta_{M}
$$

- Learn a classifier for each setting using only $\mathcal{D}_{\text {train }}$:

$$
h_{1}, h_{2}, \ldots, h_{M}
$$

- Evaluate each one using $\mathcal{D}_{v a l}$ and choose the one with lowest validation error:

$$
\widehat{m}=\underset{m \in\{1, \ldots, M\}}{\operatorname{argmin}} \operatorname{err}\left(h_{m}, \mathcal{D}_{v a l}\right)
$$

- Now $\operatorname{err}\left(h_{\widehat{m}}, \mathcal{D}_{\text {test }}\right)$ is a good estimate of $\operatorname{err}\left(h_{\widehat{m}}\right)$!

General Methods for Hyperparameter Optimization

- Idea: set the hyperparameters to optimize some performance metric of the model
- Issue: if we have many hyperparameters that can all take on lots of different values, we might not be able to test all possible combinations
- Commonly used methods:
- Grid search
- Random search
- Bayesian optimization (used by Google DeepMind to optimize the hyperparameters of AlphaGo: https://arxiv.org/pdf/1812.06855v1.pdf)
- Evolutionary algorithms
- Graduate-student descent

General Methods for Hyperparameter Optimization

- Idea: set the hyperparameters to optimize some performance metric of the model
- Issue: if we have many hyperparameters that can all take on lots of different values, we might not be able to test all possible combinations
- Commonly used methods:
- Grid search
- Random search
- Bayesian optimization (used by Google DeepMind to optimize the hyperparameters of AlphaGo: https://arxiv.org/pdf/1812.06855v1.pdf)
- Evolutionary algorithms
- Graduate-student descent

Grid Search vs. Random Search (Bergstra and Bengio, 2012)

Grid Layout

Poll Question 1:

Which hyperparameter optimization method do you think will perform better?

Grid Layout

Random Layout

A. Graduate student descent (TOXIC)
B. Grid search
C. Random search

Grid Search vs. Random Search (Bergstra and Bengio, 2012)

Important parameter

Random Layout

Important parameter

Grid and random search of nine trials for optimizing a function $f(x, y)=g(x)+h(y) \approx g(x)$ with low effective dimensionality. Above each square $g(x)$ is shown in green, and left of each square $h(y)$ is shown in yellow. With grid search, nine trials only test $g(x)$ in three distinct places. With random search, all nine trials explore distinct values of g. This failure of grid search is the rule rather than the exception in high dimensional hyper-parameter optimization.

Model
 Selection Learning Objectives

You should be able to...

- Plan an experiment that uses training, validation, and test datasets to predict the performance of a classifier on unseen data (without cheating)
- Explain the difference between (1) training error, (2) validation error, (3) cross-validation error, (4) test error, and (5) true error
- For a given learning technique, identify the model, learning algorithm, parameters, and hyperparamters
- Select an appropriate algorithm for optimizing (aka. learning) hyperparameters

Recall:
Fisher Iris
Dataset

- Notation: in this class vectors will be assumed to be column vectors by default, i.e.,

$$
\boldsymbol{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{D}
\end{array}\right] \text { and } \boldsymbol{a}^{T}=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{D}
\end{array}\right]
$$

- The dot product between two D-dimensional vectors is

$$
\boldsymbol{a}^{T} \boldsymbol{b}=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{D}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{D}
\end{array}\right]=\sum_{d=1}^{D} a_{d} b_{d}
$$

- The L2-norm of $\boldsymbol{a}=\|\boldsymbol{a}\|_{2}=\sqrt{\boldsymbol{a}^{T} \boldsymbol{a}}$
- Two vectors are orthogonal iff

$$
\boldsymbol{a}^{T} \boldsymbol{b}=0
$$

1. On the axes below, draw the region corresponding to

$$
w_{1} x_{1}+w_{2} x_{2}+b>0
$$

where $w_{1}=1, w_{2}=2$ and $b=-4$.
2. Then draw the vector $w=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$

Geometry Warm-up

- In 2 dimensions, $w_{1} x_{1}+w_{2} x_{2}+b=0$ defines a line
- In 3 dimensions, $w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+b=0$ defines a plane
- In 4+ dimensions, $\boldsymbol{w}^{T} \boldsymbol{x}+b=0$ defines a hyperplane

Linear Decision Boundaries

- The vector \boldsymbol{w} is always orthogonal to this hyperplane and always points in the direction where $\boldsymbol{w}^{T} \boldsymbol{x}+b>0$!
- A hyperplane creates two halfspaces:
- $\mathcal{S}_{+}=\left\{\boldsymbol{x}: \boldsymbol{w}^{T} \boldsymbol{x}+b>0\right\}$ or all \boldsymbol{x} s.t. $\boldsymbol{w}^{T} \boldsymbol{x}+b$ is positive
- $\mathcal{S}_{-}=\left\{\boldsymbol{x}: \boldsymbol{w}^{T} \boldsymbol{x}+b<0\right\}$ or all \boldsymbol{x} s.t. $\boldsymbol{w}^{T} \boldsymbol{x}+b$ is negative

Linear Decision Boundaries:

 Example

Goal: learn classifiers of the form $h(\boldsymbol{x})=$ $\operatorname{sign}\left(\boldsymbol{w}^{T} \boldsymbol{x}+b\right)$ (assuming $y \in\{-1,+1\})$

Key question: how do we learn the parameters, w and b ?

- So far, we've been learning in the batch setting, where we have access to the entire training dataset at once
- A common alternative is the online setting, where data points arrive gradually over time and we learn continuously
- Examples of online learning:
- Predicting stock prices
- Recommender systems
- Medical diagnosis
- Robotics
- For $t=1,2,3, \ldots$
- Receive an unlabeled data point, $\boldsymbol{x}^{(t)}$
- Predict its label, $\hat{y}=h_{w, b}\left(\boldsymbol{x}^{(t)}\right)$
- Observe its true label, $y^{(t)}$
- Pay a penalty if we made a mistake, $\hat{y} \neq y^{(t)}$
- Update the parameters, \boldsymbol{w} and b
- Goal: minimize the number of mistakes made
- Initialize the weight vector and intercept to all zeros:

$$
\boldsymbol{w}=\left[\begin{array}{llll}
0 & 0 & \cdots & 0
\end{array}\right] \text { and } b=0
$$

- For $t=1,2,3, \ldots$
- Receive an unlabeled data point, $\boldsymbol{x}^{(t)}$
(Online)
Perceptron Learning Algorithm
- Predict its label, $\hat{y}=\operatorname{sign}\left(\boldsymbol{w}^{T} \boldsymbol{x}+b\right)=\left\{\begin{array}{l}+1 \text { if } \boldsymbol{w}^{T} \boldsymbol{x}+b \geq 0 \\ -1 \text { otherwise }\end{array}\right.$
- Observe its true label, $y^{(t)}$
- If we misclassified a positive point $\left(y^{(t)}=+1, \hat{y}=-1\right)$:

$$
\begin{aligned}
& \cdot \boldsymbol{w} \leftarrow \boldsymbol{w}+\boldsymbol{x}^{(t)} \\
& \cdot b \leftarrow b+1
\end{aligned}
$$

- If we misclassified a negative point $\left(y^{(t)}=-1, \hat{y}=+1\right)$:

$$
\begin{aligned}
& \cdot \boldsymbol{w} \leftarrow \boldsymbol{w}-\boldsymbol{x}^{(t)} \\
& \cdot b \leftarrow b-1
\end{aligned}
$$

- Initialize the weight vector and intercept to all zeros:

$$
\boldsymbol{w}=\left[\begin{array}{llll}
0 & 0 & \cdots & 0
\end{array}\right] \text { and } b=0
$$

- For $t=1,2,3, \ldots$
- Receive an unlabeled data point, $\boldsymbol{x}^{(t)}$
(Online)
Perceptron Learning Algorithm
- Predict its label, $\hat{\boldsymbol{y}}=\operatorname{sign}\left(\boldsymbol{w}^{T} \boldsymbol{x}+b\right)=\left\{\begin{array}{l}+1 \text { if } \boldsymbol{w}^{T} \boldsymbol{x}+b \geq 0 \\ -1 \text { otherwise }\end{array}\right.$
- Observe its true label, $y^{(t)}$
- If we misclassified a point $\left(y^{(t)} \neq \hat{y}\right)$:

$$
\begin{aligned}
& \boldsymbol{w} \leftarrow \boldsymbol{w}+y^{(t)} \boldsymbol{x}^{(t)} \\
& \cdot b \leftarrow b+y^{(t)}
\end{aligned}
$$
 \title{

(Online)
 \title{ \section*{(Online)

 Perceptron

 Perceptron

 Learning

 Learning

 Algorithm:

 Algorithm:

 Example

 Example (no Intercept)}

 (no Intercept)}}

x_{1}	x_{2}	\hat{y}	y	Mistake?
-1	2	+	-	Yes

x_{2}
$\boldsymbol{w}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

(Online)
 Perceptron
 Learning
 Algorithm:
 Example (no Intercept)

x_{1}	x_{2}	\hat{y}	y	Mistake?
-1	2	+	-	Yes

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+y^{(1)} \boldsymbol{x}^{(1)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]-\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

(Online) Perceptron
 Learning Algorithm: Example (no Intercept)

x_{1}	x_{2}	\hat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No

(Online)
 Perceptron
 Learning
 Algorithm:
 Example (no Intercept)

x_{1}	x_{2}	\widehat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No
1	1	-	+	Yes

$$
\begin{aligned}
& \boldsymbol{w}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \\
& \boldsymbol{w} \leftarrow \boldsymbol{w}+y^{(3)} \boldsymbol{x}^{(3)}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
\end{aligned}
$$

x_{1}	x_{2}	\widehat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No
1	1	-	+	Yes

$$
\begin{aligned}
& \boldsymbol{w}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \\
& \boldsymbol{w} \leftarrow \boldsymbol{w}+y^{(3)} \boldsymbol{x}^{(3)}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
\end{aligned}
$$

(Online)
 Perceptron
 Learning
 Algorithm:
 Example (no Intercept)
 $$
\boldsymbol{w}=\left[\begin{array}{c} 2 \\ -1 \end{array}\right]
$$

x_{1}	x_{2}	\widehat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No
1	1	-	+	Yes
-1	0	-	-	No

(Online)
Perceptron
Learning
Algorithm:
Example (no Intercept)

x_{1}	x_{2}	\widehat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No
1	1	-	+	Yes
-1	0	-	-	No
-1	-2	+	-	Yes

$$
w=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+\boldsymbol{y}^{(5)} \boldsymbol{x}^{(5)}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]-\left[\begin{array}{c}
-1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

(Online)
Perceptron
Learning
Algorithm:
Example (no Intercept)

x_{1}	x_{2}	\hat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No
1	1	-	+	Yes
-1	0	-	-	No
-1	-2	+	-	Yes

$$
w=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+y^{(5)} \boldsymbol{x}^{(5)}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]-\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

(Online) Perceptron Learning Algorithm: Example (no Intercept)

x_{1}	x_{2}	\hat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No
1	1	-	+	Yes
-1	0	-	-	No
-1	-2	+	-	Yes
1	-1	+	+	No

$$
w=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

- The intercept shifts the decision boundary off the origin
- Increasing b shifts the decision boundary towards the negative side
- Decreasing b shifts the decision boundary towards the positive side

Poll Question 2:

- True or False: Unlike Decision Trees and k-Nearest Neighbors, the Perceptron learning algorithm does not suffer from overfitting because it does not have any hyperparameters that could be over-tuned on the training validation data.
A. True
B. True and False (TOXIC)
C. False
- If we add a 1 to the beginning of every feature vector e.g.,

$$
\boldsymbol{x}^{\prime}=\left[\begin{array}{l}
1 \\
x
\end{array}\right]=\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2} \\
\vdots \\
x_{D}
\end{array}\right] \ldots
$$

- ... we can just fold the intercept into the weight vector!

$$
\boldsymbol{\theta}=\left[\begin{array}{c}
b \\
w_{1} \\
w_{2} \\
\vdots \\
w_{D}
\end{array}\right] \rightarrow \boldsymbol{\theta}^{T} \boldsymbol{x}^{\prime}=\boldsymbol{w}^{T} \boldsymbol{x}+b
$$

- Initialize the weight vector and intercept to all zeros:

$$
\boldsymbol{w}=\left[\begin{array}{llll}
0 & 0 & \cdots & 0
\end{array}\right] \text { and } b=0
$$

- For $t=1,2,3, \ldots$
- Receive an unlabeled data point, $\boldsymbol{x}^{(t)}$
(Online)
Perceptron Learning Algorithm
- Predict its label, $\hat{y}=\operatorname{sign}\left(\boldsymbol{w}^{T} \boldsymbol{x}+b\right)=\left\{\begin{array}{l}+1 \text { if } \boldsymbol{w}^{T} \boldsymbol{x}+b \geq 0 \\ -1 \text { otherwise }\end{array}\right.$
- Observe its true label, $y^{(t)}$
- If we misclassified a point $\left(y^{(t)} \neq \hat{y}\right)$:

$$
\begin{aligned}
& \boldsymbol{w} \leftarrow \boldsymbol{w}+y^{(t)} \boldsymbol{x}^{(t)} \\
& \cdot b \leftarrow b+y^{(t)}
\end{aligned}
$$

- Initialize the parameters to all zeros:

$$
\boldsymbol{\theta}=\left[\begin{array}{llll}
0 & 0 & \cdots & 0
\end{array}\right]
$$

- For $t=1,2,3, \ldots$
- Receive an unlabeled data point, $\boldsymbol{x}^{(t)}$

(Online) Perceptron Learning Algorithm

- Predict its label, $\hat{y}=\operatorname{sign}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}^{\prime(t)}\right)=\left\{\begin{array}{l}+1 \text { if } \boldsymbol{\theta}^{T} \boldsymbol{x}^{\prime(t)} \geq 0 \\ -1 \text { otherwise }\end{array}\right.$
- Observe its true label, $y^{(t)}$
- If we misclassified a point $\left(y^{(t)} \neq \hat{y}\right)$:

$$
\cdot \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+y^{(t)} \boldsymbol{x}^{\prime(t)}
$$

Automatically handles updating the intercept
(Online) Perceptron
Learning Algorithm: Inductive Bias

- The decision boundary is linear and recent mistakes are more important than older ones (and should be corrected immediately)
- Initialize the parameters to all zeros:

$$
\boldsymbol{\theta}=\left[\begin{array}{llll}
0 & 0 & \cdots & 0
\end{array}\right]
$$

(Online) Perceptron Learning Algorithm

- For $t=1,2,3, \ldots$
- Receive an unlabeled data point, $\boldsymbol{x}^{(t)}$
- Predict its label, $\hat{y}=\operatorname{sign}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}^{\prime(t)}\right)$
- Observe its true label, $y^{(t)}$
- If we misclassified a point $\left(y^{(t)} \neq \hat{y}\right)$:

$$
\text { - } \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+y^{(t)} \boldsymbol{x}^{\prime(t)}
$$

- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(1)}, y^{(1)}\right),\left(\boldsymbol{x}^{(2)}, y^{(2)}\right), \ldots,\left(\boldsymbol{x}^{(N)}, y^{(N)}\right)\right\}$
- Initialize the parameters to all zeros:

$$
\boldsymbol{\theta}=\left[\begin{array}{llll}
0 & 0 & \cdots & 0
\end{array}\right]
$$

(Batch)
Perceptron Learning Algorithm

- While NOT CONVERGED
- For $t \in\{1, \ldots, N\}$
- Predict the label of $\boldsymbol{x}^{\prime(t)}, \hat{y}=\operatorname{sign}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}^{\prime(t)}\right)$
- Observe its true label, $y^{(t)}$
- If we misclassified $\boldsymbol{x}^{\prime(t)}\left(y^{(t)} \neq \hat{y}\right)$:

$$
\cdot \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+y^{(t)} \boldsymbol{x}^{\prime(t)}
$$

- True or False: The parameter vector \boldsymbol{w} learned by the batch Perceptron Learning Algorithm can be written as a linear combination of the examples, i.e.,

$$
\boldsymbol{w}=c_{1} \boldsymbol{x}^{(1)}+c_{2} \boldsymbol{x}^{(2)}+\cdots+c_{N} \boldsymbol{x}^{(M)}
$$

A. True and False (TOXIC)
B. True
C. False

- Definitions:
- A dataset \mathcal{D} is linearly separable if \exists a linear decision boundary that perfectly classifies the data points in \mathcal{D}
- The margin, γ, of a dataset \mathcal{D} is the greatest possible distance between a linear separator and the closest data point in \mathcal{D} to that linear separator

- Theorem: if the data points seen by the Perceptron Learning Algorithm (online and batch)

1. lie in a ball of radius R (centered around the origin)
2. have a margin of γ
then the algorithm makes at most $(R / \gamma)^{2}$ mistakes.

- Key Takeaway: if the training dataset is linearly separable, the batch Perceptron Learning Algorithm will converge (i.e., stop making mistakes on the training dataset or achieve 0 training error) in a finite number of steps!

Computing the Margin

- Let \boldsymbol{x}^{\prime} be an arbitrary point on the hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+b=0$ and let \boldsymbol{x} " be an arbitrary point
- The distance between \boldsymbol{x} " and $\boldsymbol{w}^{T} \boldsymbol{x}+b=0$ is equal to the magnitude of the projection of $x^{\prime \prime}-x^{\prime}$ onto $\frac{w}{\|w\|_{2}}$, the unit vector orthogonal to the hyperplane

Computing the Margin

- Let \boldsymbol{x}^{\prime} be an arbitrary point on the hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+b=0$ and let \boldsymbol{x} " be an arbitrary point
- The distance between \boldsymbol{x} " and $\boldsymbol{w}^{T} \boldsymbol{x}+b=0$ is equal to the magnitude of the projection of $x^{\prime \prime}-x^{\prime}$ onto $\frac{w}{\|w\|_{2}}$, the unit vector orthogonal to the hyperplane

Computing the Margin

- Let \boldsymbol{x}^{\prime} be an arbitrary point on the hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+b=0$ and let \boldsymbol{x} " be an arbitrary point
- The distance between \boldsymbol{x} " and $\boldsymbol{w}^{T} \boldsymbol{x}+b=0$ is equal to the magnitude of the projection of $x^{\prime \prime}-x^{\prime}$ onto $\frac{w}{\|w\|_{2}}$, the unit vector orthogonal to the hyperplane

- Let \boldsymbol{x}^{\prime} be an arbitrary point on the hyperplane and let $x^{\prime \prime}$ be an arbitrary point
- The distance between \boldsymbol{x} " and $\boldsymbol{w}^{T} \boldsymbol{x}+b=0$ is equal to the magnitude of the projection of $x^{\prime \prime}-x^{\prime}$ onto $\frac{w}{\|w\|_{2}}$, the unit vector orthogonal to the hyperplane

$$
\left|\frac{\boldsymbol{w}^{T}\left(\boldsymbol{x}^{\prime \prime}-\boldsymbol{x}^{\prime}\right)}{\|\boldsymbol{w}\|_{2}}\right|=\frac{\left|\boldsymbol{w}^{T} \boldsymbol{x}^{\prime \prime}-\boldsymbol{w}^{T} \boldsymbol{x}^{\prime}\right|}{\|\boldsymbol{w}\|_{2}}=\frac{\left|\boldsymbol{w}^{T} \boldsymbol{x}^{\prime \prime}+b\right|}{\|\boldsymbol{w}\|_{2}}
$$

Computing the Margin

You should be able to...

- Explain the difference between online learning and batch learning
- Implement the perceptron algorithm for binary classification [CIML]

Perceptron Learning Objectives

- Determine whether the perceptron algorithm will converge based on properties of the dataset, and the limitations of the convergence guarantees
- Describe the inductive bias of perceptron and the limitations of linear models
- Draw the decision boundary of a linear model
- Identify whether a dataset is linearly separable or not
- Defend the use of a bias term in perceptron (shifting points after projection onto weight vector)

