10-301/601: Introduction to Machine Learning Lecture 24: Clustering \& Bagging

Hoda Heidari, Henry Chai \& Matt Gormley
4/15/24

- Announcements
- HW8 released 4/8, due 4/19 (Friday) at 11:59 PM

Front Matter

- HW9 released 4/19 (Friday), due 4/25 at 11:59 PM
- HW9 is a written-only homework
- You may only use at most 2 late days on HW9
- Goal: split an unlabeled data set into groups or clusters of "similar" data points
- Use cases:
- Organizing data
- Discovering patterns or structure
- Preprocessing for downstream machine learning tasks
- Applications:

Clustering

Recall:
Similarity for kNN

- Intuition: predict the labelof a data point to be the labelof the "most similar" training point two points are "similar" if the distance between them is small
- Euclidean distance: $d\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}$
- Given a desired number of clusters, K, return a partition of the data set into K groups or clusters, $\left\{C_{1}, \ldots, C_{K}\right\}$, that optimize some objective function

Partition-Based Clustering

1. What objective function should we optimize?
2. How can we perform optimization in this setting?
\%
$\because \because$

Example Clusterings

$\%$

$\%$

Option B

Example Clusterings

- Define a model and model parameters

Recipe for K-means

- Write down an objective function
- Optimize the objective w.r.t. the model parameters
- Goal: minimize some objective

$$
\widehat{\boldsymbol{\theta}}=\operatorname{argmin} J(\boldsymbol{\theta})
$$

- Idea: iteratively pick one variable and minimize the objective w.r.t. just that variable, keeping all others fixed.

Coordinate Descent

- Goal: minimize some objective

$$
\widehat{\boldsymbol{\alpha}}, \widehat{\boldsymbol{\beta}}=\operatorname{argmin} J(\boldsymbol{\alpha}, \boldsymbol{\beta})
$$

- Idea: iteratively pick one block of variables ($\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$) and

Block
 Coordinate Descent

 minimize the objective w.r.t. that block, keeping the other(s) fixed.- Ideally, blocks should be the largest possible set of variables that can be efficiently optimized simultaneously

$$
\widehat{\boldsymbol{\mu}}_{1}, \ldots, \widehat{\boldsymbol{\mu}}_{K}, z^{(1)}, \ldots, z^{(\mathrm{N})}=\operatorname{argmin} \sum_{n=1}^{N}\left\|\boldsymbol{x}^{(n)}-\boldsymbol{\mu}_{z^{(n)}}\right\|_{2}
$$

Optimizing the K-means objective

- If $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$ are fixed
- If $Z^{(1)}, \ldots, Z^{(N)}$ are fixed
- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(n)}\right)\right\}_{n=1}^{N}, K$

1. Initialize cluster centers $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$

2. While NOT CONVERGED

a. Assign each data point to the cluster with the nearest cluster center:

$$
z^{(n)}=\underset{k}{\operatorname{argmin}}\left\|\boldsymbol{x}^{(n)}-\boldsymbol{\mu}_{k}\right\|_{2}
$$

b. Recompute the cluster centers:

$$
\boldsymbol{\mu}_{k}=\frac{1}{N_{k}} \sum_{n: z^{(n)}=k} \boldsymbol{x}^{(n)}
$$

where N_{k} is the number of data points in cluster k

- Output: cluster centers $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$ and cluster assignments $z^{(1)}, \ldots, Z^{(N)}$

K-means:
Example (K = 3)

K-means:
Example
(K = 3)

K-means:

 Example ($K=3$)

K-means:

 Example ($K=3$)

K-means:

 Example ($K=3$)

K-means:

Example (K = 3)

K-means:

Example (K = 3)

K-means:

Example (K = 3)

K-means:
Example
(K = 2)

K-means:

 Example (K = 2)

K-means:

 Example (K = 2)

K-means:

 Example (K = 2)

K-means:

Example (K = 2)

K-means:

Example (K = 2)

K-means:

 Example (K = 2)

K-means:

Example (K = 2)

- Idea: choose the value of K that minimizes the objective function

Setting K

- Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)

Initializing K-means

- Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)

Initializing K-means

- Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)

Initializing
 K-means

Initializing
 K-means

- Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)

Initializing
 K-means

- Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)
- Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)

Initializing K-means

- Lloyd's method converges to a local minimum and that local minimum can be arbitrarily bad (relative to the optimal clusters)
- This is because the K-means objective is nonconvex!
- Intuition: want initial cluster centers to be far apart from one another

K-means++ (Arthur and Vassilvitskii, 2007)

1. Choose the first cluster center randomly from the data points.
2. For each other data point \boldsymbol{x}, compute $D(\boldsymbol{x})$, the distance between \boldsymbol{x} and the nearest cluster center.
3. Select the next cluster center proportional to $D(\boldsymbol{x})^{2}$.
4. Repeat 2 and $3 K-1$ times.

- K-means++ achieves a $O(\log K)$ approximation to the optimal clustering in expectation
- Both Lloyd's method and K-means++ can benefit from multiple random restarts.
- You should be able to...

1. Distinguish between coordinate descent and block coordinate descent
2. Define an objective function that gives rise to a "good" clustering
3. Apply block coordinate descent to an objective function preferring each point to be close to its nearest objective function to obtain the K-Means algorithm
4. Implement the K-Means algorithm
5. Connect the non-convexity of the K-Means objective function with the (possibly) poor performance of random initialization

Netflix Prize

COMPLETED

- 500,000 users
- 20,000 movies
- 100 million ratings
- Goal: To obtain lower error than Netflix's existing system on 3 million held out ratings

Congratulations!

The Netflix Prize sought to substantially improve the accuracy of predictions about improve the accuracy of predictions ab how much someone is going to enjoy a movie based on their movie preferences.

On September 21, 2009 we awarded the \$1M Grand Prize to team "BellKor's \$1M Grand Prize to team "BellKor's Pragmatic Chaos". Read about their algorithm, checkout team scores on the Leaderboard, and join the discussions on the Forum.
We applaud all the contributors to this quest, which improves our ability to connect people to the movies they love.

The Netflix
 Prize

Leaderboard

Showing Test Score. Click here to show quiz score
Display top $20 \quad$ leaders.

Rank	Team Name	Best Test Score	\% Improvement	Best Submit Time
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos				
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory.	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11

MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	$18 M$	1980	8.7	PG	Y
2	105	Action	30 M	1984	7.8	PG	Y
3	103	Comedy	6 M	1986	7.8	PG-13	N
4	98	Adventure	16 M	1987	8.1	PG	Y
5	128	Comedy	16.4 M	1989	8.1	PG	Y
6	120	Comedy	11 M	1992	7.6	R	N
7	120	Drama	14.5 M	1996	6.7	PG-13	N
8	136	Action	115 M	1999	6.5	PG	Y
9	90	Action	90 M	2001	6.6	PG-13	Y
10	161	Adventure	100 M	2002	7.4	PG	N
11	201	Action	94 M	2003	8.9	PG-13	Y
12	94	Comedy	26 M	2004	7.2	PG-13	Y
13	157	Biography	100 M	2007	7.8	R	N
14	128	Action	110 M	2007	7.1	PG-13	N
15	107	Drama	$39 M$	2009	7.1	PG-13	N
16	158	Drama	61 M	2012	7.6	PG-13	N
17	169	Adventure	165 M	2014	8.6	PG-13	Y
18	100	Biography	$9 M$	2016	6.7	R	N
19	130	Action	$180 M$	2017	7.9	PG-13	Y
20	141	Action	$275 M$	2019	6.5	PG-13	Y

Movie Recommendations

Decision Trees

- Pros
- Interpretable
- Efficient (computational cost and storage)
- Can be used for classification and regression tasks
- Compatible with categorical and real-valued features

Recall:

Decision Tree Pros \& Cons

- Cons
- Learned greedily: each split only considers the immediate impact on the splitting criterion
- Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0 .
- Prone to overfit
- High variance

Decision Trees

MovieID	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18 M	1980	8.7	PG	Y
2	105	Action	30 M	1984	7.8	PG	Y
3	103	Comedy	6 M	1986	7.8	PG-13	N
4	98	Adventure	16 M	1987	8.1	PG	Y
5	128	Comedy	16.4 M	1989	8.1	PG	Y
6	120	Comedy	11 M	1992	7.6	R	N
7	120	Drama	14.5 M	1996	6.7	PG-13	N
8	136	Action	115 M	1999	6.5	PG	Y
9	90	Action	90 M	2001	6.6	PG-13	Y
10	161	Adventure	100 M	2002	7.4	PG	N
11	201	Action	94 M	2003	8.9	PG-13	Y
12	94	Comedy	26 M	2004	7.2	PG-13	Y
13	157	Biography	100 M	2007	7.8	R	N
14	128	Action	110 M	2007	7.1	PG-13	N
15	107	Drama	39 M	2009	7.1	PG-13	N
16	158	Drama	61 M	2012	7.6	PG-13	Y
17	169	Adventure	165 M	2014	8.6	PG-13	Y
18	100	Biography	9 M	2016	6.7	R	N
19	130	Action	180 M	2017	7.9	PG-13	Y
20	141	Action	275 M	2019	6.5	PG-13	Y

Budget

Decision Trees

Decision Trees

- Pros
- Interpretable
- Efficient (computational cost and storage)
- Can be used for classification and regression tasks
- Compatible with categorical and real-valued features
- Cons
- Learned greedily: each split only considers the immediate impact on the splitting criterion
- Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0 .
- Prone to overfit
- High variance
- Can be addressed via ensembles \rightarrow random forests
- Combines the prediction of many diverse decision trees to reduce their variability

Random Forests

- If B independent random variables $x^{(1)}, x^{(2)}, \ldots, x^{(B)}$ all have variance σ^{2}, then the variance of $\frac{1}{B} \sum_{b=1}^{B} x^{(b)}$ is $\frac{\sigma^{2}}{B}$
- Random forests = sample bagging + feature bagging
= bootstrap aggregating + split-feature randomization
- Combines the prediction of many diverse decision trees to reduce their variability

Random Forests

- If B independent random variables $x^{(1)}, x^{(2)}, \ldots, x^{(B)}$ all have variance σ^{2}, then the variance of $\frac{1}{B} \sum_{b=1}^{B} x^{(b)}$ is $\frac{\sigma^{2}}{B}$
- Random forests = sample bagging + feature bagging
= bootstrap aggregating + split-feature randomization
- How can we combine multiple decision trees, $\left\{t_{1}, t_{2}, \ldots, t_{B}\right\}$, to arrive at a single prediction?
- Regression - average the predictions:

$$
\bar{t}(\boldsymbol{x})=\frac{1}{B} \sum_{b=1}^{B} t_{b}(\boldsymbol{x})
$$

- Classification - plurality (or majority) vote; for binary labels encoded as $\{-1,+1\}$:

$$
\bar{t}(\boldsymbol{x})=\operatorname{sign}\left(\frac{1}{B} \sum_{b=1}^{B} t_{b}(\boldsymbol{x})\right)
$$

- Combines the prediction of many diverse decision trees to reduce their variability

Random Forests

- If B independent random variables $x^{(1)}, x^{(2)}, \ldots, x^{(B)}$ all have variance σ^{2}, then the variance of $\frac{1}{B} \sum_{b=1}^{B} x^{(b)}$ is $\frac{\sigma^{2}}{B}$
- Random forests = sample bagging + feature bagging
= bootstrap aggregating + split-feature randomization

Bootstrapping

- Insight: one way of generating different decision trees is by changing the training data set
- Issue: often, we only have one fixed set of training data
- Idea: resample the data multiple times with replacement

Movield	\ldots
1	\ldots
2	\ldots
3	\ldots
\vdots	\vdots
19	\ldots
20	\ldots
Training data	

MovielD	\ldots
1	\cdots
1	\ldots
1	\cdots
\vdots	\vdots
14	\cdots
19	\cdots
Bootstrapped Sample	

MovielD	\ldots
4	\cdots
4	\cdots
5	\cdots
\vdots	\vdots
16	\cdots
16	\cdots
Bootstrapped Sample 2	

Bootstrapping

- Idea: resample the data multiple times with replacement
- Each bootstrapped sample has the same number of data points as the original data set
- Duplicated points cause different decision trees to focus on different parts of the input space

Movield	\ldots
1	\ldots
2	\ldots
3	\ldots
\vdots	\vdots
19	\ldots
20	\cdots
Training data	

Movield	\cdots	Movield	\ldots
1	\cdots	4	\cdots
1	\cdots	4	\cdots
1	\cdots	5	\cdots
\vdots	\vdots	\vdots	\vdots
14	\cdots	16	\cdots
19	\cdots	16	\cdots
Bootstrapp Sample		Bootstrapped Sample	

Split-feature Randomization

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

Runtime	Genre	Budget	Year	IMDB	Rating

Split-feature Randomization

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

Split-feature Randomization

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

Split-feature Randomization

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}, B, \rho$
- For $b=1,2, \ldots, B$
- Create a dataset, \mathcal{D}_{b}, by sampling N points from the original training data \mathcal{D} with replacement
- Learn a decision tree, t_{b}, using \mathcal{D}_{b} and the ID3 algorithm with split-feature randomization, sampling ρ features for each split
- Output: $\bar{t}=f\left(t_{1}, \ldots, t_{B}\right)$, the aggregated hypothesis

Random Forests

Recall:
 Validation Sets

- For each training point, $\boldsymbol{x}^{(n)}$, there are some decision trees which $\boldsymbol{x}^{(n)}$ was not used to train (roughly B / e trees or 37%)
- Let these be $t^{(-n)}=\left\{t_{1}^{(-n)}, t_{2}^{(-n)}, \ldots, t_{N_{-n}}^{(-n)}\right\}$

Out-of-bag Error

- Compute an aggregated prediction for each $\boldsymbol{x}^{(n)}$ using the trees in $t^{(-n)}, \bar{t}^{(-n)}\left(\boldsymbol{x}^{(n)}\right)$
- Compute the out-of-bag (OOB) error, e.g., for regression

$$
E_{O O B}=\frac{1}{N} \sum_{n=1}^{N}\left(\bar{t}^{(-n)}\left(\boldsymbol{x}^{(n)}\right)-y^{(n)}\right)^{2}
$$

- For each training point, $\boldsymbol{x}^{(n)}$, there are some decision trees which $\boldsymbol{x}^{(n)}$ was not used to train (roughly B / e trees or 37%)
- Let these be $t^{(-n)}=\left\{t_{1}^{(-n)}, t_{2}^{(-n)}, \ldots, t_{N_{-n}}^{(-n)}\right\}$

Out-of-bag Error

- Compute an aggregated prediction for each $\boldsymbol{x}^{(n)}$ using the trees in $t^{(-n)}, \bar{t}^{(-n)}\left(\boldsymbol{x}^{(n)}\right)$
- Compute the out-of-bag (OOB) error, e.g., for classification

$$
E_{O O B}=\frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\left(\bar{t}^{(-n)}\left(x^{(n)}\right) \neq y^{(n)}\right)
$$

- $E_{O O B}$ can be used for hyperparameter optimization!

Out-of-bag Error

- Suppose we want to compare different numbers of trees in our random forest B_{1}, \ldots, B_{K}
- For $k=1,2, \ldots, K$
$D_{\text {train }}$
- Train a random forest on $D_{\text {train }}$ with B_{k} trees
- Compute $E_{O O B}$ for each random forest and find the best number of trees, $B_{k^{*}}$
- Evaluate the random forest with $B_{k^{*}}$ trees on $D_{\text {test }}$

Setting Hyperparameters

- Some of the interpretability of decision trees gets lost when switching to random forests
- Random forests allow for the computation of "feature importance", a way of ranking features based on how useful they are at predicting the target
- Initialize each feature's importance to zero
- Each time a feature is chosen to be split on, add the reduction in entropy (weighted by the number of data points in the split) to its importance

Feature Importance

Feature Importance

