Automatic Differentiation

Matt Gormley, Henry Chai, Hoda Heidari
Lecture 19
Mar. 27, 2024

Reminders

- Homework 6: Learning Theory \& Generative Models
- Out: Mon, Mar 18
- Due: Sun, Mar 24 at 11:59pm
- Exam 2: Thu, Mar 28, 7:00 pm - 9:00 pm

BACKGROUND: HUMAN LANGUAGE TECHNOLOGIES

Human Language Technologies

Speech Recognition

Machine Translation
기계 번역은 특히 영어와 한국어와 같은 언어 쌍의 경우 매우 어렵습니다.

Summarization

Bidirectional RNN

RNNs are a now commonplace backbone in deep learning approaches to natural language processing

BACKGROUND:

N-GRAM LANGUAGE MODELS

n-Gram Language Model

- Goal: Generate realistic looking sentences in a human language
- Key Idea: condition on the last n-1 words to sample the $\mathrm{n}^{\text {th }}$ word

n-Gram Language Model

Question: How can we define a probability distribution over a sequence of length T ?

The
W_{1}
 noise
W_{3}
w_{3}

at night
$W_{5} \quad W_{6}$

$$
\text { n-Gram Model }(\mathbf{n}=\mathbf{2}) \quad p\left(w_{1}, w_{2}, \ldots, w_{T}\right)=\prod_{t=1}^{T} p\left(w_{t} \mid w_{t-1}\right)
$$

$$
\mathrm{p}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \ldots, \mathrm{w}_{6}\right)=
$$

$p\left(w_{1}\right)$
$p\left(w_{2} \mid w_{1}\right)$
$p\left(w_{3} \mid w_{2}\right)$
$p\left(w_{4} \mid w_{3}\right)$
$p\left(w_{5} \mid w_{4}\right)$
$p\left(w_{6} \mid w_{5}\right)$

n-Gram Language Model

Question: How can we define a probability distribution over a sequence of length T ?

The
W_{1}
 noise
W_{3}
W_{3}
W_{2}

at night

$$
p\left(w_{1}, w_{2}, \ldots, w_{T}\right)=\prod_{t=1}^{T} p\left(w_{t} \mid w_{t-1}, w_{t-2}\right)
$$

$$
p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{6}\right)=
$$

$\mathrm{p}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \ldots, \mathrm{w}_{6}\right)=$	
	$\mathrm{p}\left(\mathrm{w}_{1}\right)$
bat	$\mathrm{p}\left(\mathrm{w}_{2} \mid \mathrm{w}_{1}\right)$
bat	made
bat	$\mathrm{p}\left(\mathrm{w}_{3} \mid \mathrm{w}_{2}, \mathrm{w}_{1}\right)$
made	noise
made	$\mathrm{p}\left(\mathrm{w}_{4} \mid \mathrm{w}_{3}, \mathrm{w}_{2}\right)$
noise	at
noise	$\mathrm{at}\left(\mathrm{w}_{5} \mid \mathrm{w}_{4}, \mathrm{w}_{3}\right)$
night	$\mathrm{p}\left(\mathrm{w}_{6} \mid \mathrm{w}_{5}, \mathrm{w}_{4}\right)$

n-Gram Language Model

Question: How can we define a probability distribution over a sequence of length T ?

$$
\mathrm{p}\left(\mathrm{w}_{1}, \mathrm{w} / \mathrm{w}_{3}, \ldots, \mathrm{w}_{6}\right)=
$$

The
The Note: This is called a model because we made some assumptions about how many previous words to condition on

Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram Model?

Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram Model?
Answer: From data! Just count n-gram frequencies

| $\mathrm{p}\left(\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-2}=\right.$ cows,
 $\mathrm{w}_{\mathrm{t}-1}=$ eat $)$
 w_{t} $\mathrm{p}(\cdot \mid \cdot \cdot \cdot)$
 corn $4 / 11$
 grass $3 / 11$
 hay $2 / 11$
 if $1 / 11$
 which $1 / 11$ |
| :--- | :---: |

Sampling from a Language Model

Question: How do we sample from a Language Model?

Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to $p\left(w_{t} \mid w_{t-2}, w_{t-1}\right)$
3. Roll that die and generate whichever word w_{t} lands face up
4. Repeat

noise

Sampling from a Language Model

Question: How do we sample from a Language Model?

Answer:

1. Treat each probability distribution like a (50k-sided) weighted die 2. Pick the die corresponding to $p\left(w_{t} \mid w_{t-2}, w_{t-1}\right)$
2. Roll that die and generate whichever word w_{t} lands face up
3. Repeat

Training Data (Shakespeaere)

I tell you, friends, most charitable care ave the patricians of you. For your wants, Your suffering in this dearth, you may as well Strike at the heaven with your staves as lift them Against the Roman state, whose course will on The way it takes, cracking ten thousand curbs Of more strong link asunder than can ever Appear in your impediment. For the dearth, The gods, not the patricians, make it, and Your knees to them, not arms, must help.

5-Gram Model

Approacheth, denay. dungy Thither! Julius think: grant,--0 Yead linens, sheep's Ancient, Agreed: Petrarch plaguy Resolved pear! observingly honourest adulteries wherever scabbard guess; affirmation--his monsieur; died. jealousy, chequins me. Daphne building. weakness: sunrise, cannot stays carry't, unpurposed. prophet-like drink; back-return 'gainst surmise Bridget ships? wane; interim? She's striving wet;

RECURRENT NEURAL NETWORK (RNN) LANGUAGE MODELS

Recurrent Neural Networks (RNNs)

$$
\begin{array}{rl|l}
\text { inputs: } \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{T}\right), x_{i} \in \mathcal{R}^{I} & \begin{array}{l}
\text { Definition of the RNN: } \\
\text { hidden units: } \mathbf{h}=\left(h_{1}, h_{2}, \ldots, h_{T}\right), h_{i} \in \mathcal{R}^{J}
\end{array} & h_{t}=\mathcal{H}\left(W_{x h} x_{t}+W_{h h} h_{t-1}+b_{h}\right) \\
\text { outputs: } \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{T}\right), y_{i} \in \mathcal{R}^{K} & y_{t}=W_{h y} h_{t}+b_{y} \\
\text { nonlinearity: } \mathcal{H} &
\end{array}
$$

The Chain Rule of Probability

Question: How can we define a probability distribution over a sequence of length T ?

RNN Language Model

$$
\text { RNN Language Model: } p\left(w_{1}, w_{2}, \ldots, w_{T}\right)=\prod_{t=1}^{T} p\left(w_{t} \mid f_{\boldsymbol{\theta}}\left(w_{t-1}, \ldots, w_{1}\right)\right)
$$

Key Idea:

(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Sampling from a Language Model

Question: How do we sample from a Language Model?

Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to $\mathrm{p}\left(\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-2}, \mathrm{w}_{\mathrm{t}-1}\right)$
3. Roll that die and generate whichever word w_{t} lands face up
4. Repeat

The same approach to sampling we used for an \mathbf{n} Gram Language Model also works here for an RNN Language Model

Sampling from an RNN-LM

??

VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy m there My power to give thee but so much service in the noble bondman here, Would her wine.

KING LEAR: O, if you were a feeble , the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

??

CHARLES: Marry, do I, sir; and I came to acquaint you with a matter. I am given, sir, secretly to understand that your younger brother Orlando hath a disposition to come in disguised against me to try a fall. To-morrow, sir, I wrestle for my credit; and he that escapes me without some broken limb shall acquit him well. Your brother is

Which is the real

 Shakespeare?! ender; and, for your love, I would be , as I must, for my own honour, if he from his in yithal, that either you might stay him shall run into, in th lis a thing of his own search and altogether against my will.TOUCHSTONE: For my part, I had rather bear with you than bear you; yet I should bear no cross if I did bear you, for I think you have no money in your purse.

Sampling from an RNN-LM

Shakespeare's As You Like It

VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy master's ready there My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

KING LEAR: 0 , if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

RNN-LM Sample

CHARLES: Marry, do I, sir; and I came to acquaint you with a matter. I am given, sir, secretly to understand that your younger brother Orlando hath a disposition to come in disguised against me to try a fall. To-morrow, sir, I wrestle for my credit; and he that escapes me without some broken limb shall acquit him well. Your brother is but young and tender; and, for your love, I would be loath to foil him, as I must, for my own honour, if he come in: therefore, out of my love to you, I came hither to acquaint you withal, that either you might stay him from his intendment or brook such disgrace well as he shall run into, in that it is a thing of his own search and altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you than bear you; yet I should bear no cross if I did bear you, for I think you have no money in your purse.

Sampling from an RNN-LM

RNN-LM Sample

VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy master's ready there My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

Shakespeare's As You Like It

CHARLES: Marry, do I, sir; and I came to acquaint you with a matter. I am given, sir, secretly to understand that your younger brother Orlando hath a disposition to come in disguised against me to try a fall. To-morrow, sir, I wrestle for my credit; and he that escapes me without some broken limb shall acquit him well. Your brother is but young and tender; and, for your love, I would be loath to foil him, as I must, for my own honour, if he come in: therefore, out of my love to you, I came hither to acquaint you withal, that either you might stay him from his intendment or brook such disgrace well as he shall run into, in that it is a thing of his own search and altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you than bear you; yet I should bear no cross if I did bear you, for I think you have no money in your purse.

Sampling from an RNN-LM

??

VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy m there My power to give thee but so much service in the noble bondman here, Would her wine.

KING LEAR: O, if you were a feeble the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

??

CHARLES: Marry, do I, sir; and I came to acquaint you with a matter. I am given, sir, secretly to understand that your younger brother Orlando hath a disposition to come in disguised against me to try a fall. To-morrow, sir, I wrestle for my credit; and he that escapes me without some broken limb shall acquit him well. Your brother is

Which is the real

 Shakespeare?! ender; and, for your love, I would be , as I must, for my own honour, if he from his in yithal, that either you might stay him shall run into, in th lis a thing of his own search and altogether against my will.TOUCHSTONE: For my part, I had rather bear with you than bear you; yet I should bear no cross if I did bear you, for I think you have no money in your purse.

MODULE-BASED AUTOMATIC DIFFERENTIATION

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function $y=f(x)$. The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
2. Visit each node in topological order.

For variable u_{i} with inputs v_{1}, \ldots, v_{N}
a. Compute $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
b. Store the result at the node

Backward Computation (Version A)

1. Initialize dy/dy = 1 .
2. Visit each node v_{i} in reverse topological order. Let $\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{M}}$ denote all the nodes with v_{i} as an input Assuming that $\mathrm{y}=\mathrm{h}(\mathbf{u})=\mathrm{h}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{M}}\right)$
and $\mathbf{u}=\mathrm{g}(\mathbf{v})$ or equivalently $u_{i}=g_{i}\left(v_{1}, \ldots, v_{j}, \ldots, v_{N}\right)$ for all i
a. We already know dy/du ${ }_{i}$ for all i
b. Compute $\mathrm{dy} / \mathrm{dv} \mathrm{v}_{\mathrm{j}}$ as below (Choice of algorithm ensures
computing $\left(d u_{i} / d v_{j}\right)$ is easy $)$

$$
\frac{d y}{d v_{j}}=\sum_{i=1}^{M} \frac{d y}{d u_{i}} \frac{d u_{i}}{d v_{j}}
$$

Return partial derivatives $\mathrm{dy} / \mathrm{du}_{\mathrm{i}}$ for all variables

Backpropagation

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function $y=f(x)$. The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
2. Visit each node in topological order.

For variable u_{i} with inputs v_{1}, \ldots, v_{N}
a. Compute $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
b. Store the result at the node

Backward Computation (Version B)

1. Initialize all partial derivatives $\mathrm{dy} / \mathrm{du}_{\mathrm{j}}$ to 0 and $\mathrm{dy} / \mathrm{dy}=1$.
2. Visit each node in reverse topological order.

For variable $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
a. We already know dy/dui
b. Increment dy/dvj by $\left(d y / d u_{i}\right)\left(d u_{i} / d v_{j}\right)$
(Choice of algorithm ensures computing $\left(\mathrm{du}_{\mathrm{i}} / \mathrm{d} v_{j}\right)$ is easy $)$

Why is the backpropagation algorithm efficient?

1. Reuses computation from the forward pass in the backward pass
2. Reuses partial derivatives throughout the backward pass (but only if the algorithm reuses shared computation in the forward pass)
(Key idea: partial derivatives in the backward pass should be thought of as variables stored for reuse)

Background

Gradients

1. Given training dat Backpropagation can compute this $\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}$ gradient!
And it's a special case of a more general algorithm called reverse-
2. Choose each of t mode automatic differentiation that

- Decision functior can compute the gradient of any $\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)$ differentiable function efficiently!

Backpropagation: Abstract Picture

Backpropagation: Procedural Method

```
Algorithm 1 Forward Computation
    procedure NNFORWARD(Training example (x, y), Params \(\boldsymbol{\alpha}, \boldsymbol{\beta}\) )
        \(\mathbf{a}=\boldsymbol{\alpha} \mathbf{x}\)
        \(\mathbf{z}=\sigma(\mathbf{a})\)
        \(\mathbf{b}=\boldsymbol{\beta} \mathbf{z}\)
        \(\hat{\mathbf{y}}=\operatorname{softmax}(\mathbf{b})\)
        \(J=-\mathbf{y}^{T} \log \hat{\mathbf{y}}\)
        \(\mathbf{o}=\operatorname{object}(\mathbf{x}, \mathbf{a}, \mathbf{z}, \mathbf{b}, \hat{\mathbf{y}}, J)\)
        return intermediate quantities o
```

```
Algorithm 2 Backpropagation
    procedure NNBACKWARD(Training example (x, y), Params \(\boldsymbol{\alpha}, \boldsymbol{\beta}\),
    Intermediates o)
        Place intermediate quantities \(\mathbf{x}, \mathbf{a}, \mathbf{z}, \mathbf{b}, \hat{\mathbf{y}}, J\) in \(\mathbf{o}\) in scope
        \(\mathbf{g}_{\hat{\mathbf{y}}}=-\mathbf{y} \div \hat{\mathbf{y}}\)
        \(\mathbf{g}_{\mathbf{b}}=\mathbf{g}_{\hat{\mathbf{y}}}^{T}\left(\operatorname{diag}(\hat{\mathbf{y}})-\hat{\mathbf{y}} \hat{\mathbf{y}}^{T}\right)\)
        \(\mathbf{g}_{\boldsymbol{\beta}}=\mathbf{g}_{\mathbf{b}}^{T} \mathbf{z}^{T}\)
        \(\mathbf{g}_{\mathbf{z}}=\boldsymbol{\beta}^{T} \mathbf{g}_{\mathbf{b}}^{T}\)
        \(\mathbf{g}_{\mathbf{a}}=\mathbf{g}_{\mathbf{z}} \odot \mathbf{z} \odot(1-\mathbf{z})\)
        \(\mathbf{g}_{\alpha}=\mathbf{g}_{\mathbf{a}} \mathbf{x}^{T}\)
        return parameter gradients \(\mathrm{g}_{\alpha}, \mathrm{g}_{\boldsymbol{\beta}}\)
```

Drawbacks of
Procedural Method

1. Hard to reuse / adapt for other models
2. (Possibly) harder to make individual steps more efficient
3. Hard to find source of error if finitedifference check reports an error (since it tells you only that there is an error somewhere in those 17 lines of code)

Module-based AutoDiff

Module-based automatic differentiation (AD / Autodiff) is a technique that has long been used to develop libraries for deep learning

- Dynamic neural network packages allow a specification of the computation graph dynamically at runtime
- PyTorch http:/|pytorch.org
- Torch http://torch.ch
- DyNet https://dynet.readthedocs.io
- TensorFlow with Eager Execution https://www.tensorflow.org
- Static neural network packages require a static specification of a computation graph which is subsequently compiled into code
- TensorFlow with Graph Execution https://www.tensorflow.org
- Aesara (and Theano) https://aesara.readthedocs.io
- (These libraries are also module-based, but herein by "module-based AD" we mean the dynamic approach)

Module-based AutoDiff

- Key Idea:
- componentize the computation of the neural-network into layers
- each layer consolidates multiple real-valued nodes in the computation graph (a subset of them) into one vector-valued node (aka. a module)
- Each module is capable of two actions:

1. Forward computation of output $\mathbf{b}=\left[b_{1}, \ldots, b_{B}\right]$ given input
 $\mathbf{a}=\left[a_{1}, \ldots, a_{A}\right]$ via some differentiable function f. That is $\mathbf{b}=f(\mathbf{a})$.
2. Backward computation of the gradient of the input $\mathbf{g}_{\mathbf{a}}=\nabla_{\mathbf{a}} J=\left[\frac{\partial J}{\partial a_{1}}, \ldots, \frac{\partial J}{\partial a_{A}}\right]$ given the gradient of output $\mathbf{g}_{\mathbf{b}}=\nabla_{\mathbf{b}} J=\left[\frac{\partial J}{\partial b_{1}}, \ldots, \frac{\partial J}{\partial b_{B}}\right]$, where J is the final real-valued output of the entire computation graph. This is done via the chain rule $\frac{\partial J}{\partial a_{i}}=\sum_{j=1}^{J} \frac{\partial J}{\partial b_{j}} \frac{d b_{j}}{d a_{i}}$ for all $i \in\{1, \ldots, A\}$.

Module-based AutoDiff

Dimensions: input $\mathbf{a} \in \mathbb{R}^{A}$, output $\mathbf{b} \in \mathbb{R}^{B}$, gradient of output $\mathbf{g}_{\mathbf{a}} \triangleq \nabla_{\mathbf{a}} J \in \mathbb{R}^{A}$, and gradient of input $\mathbf{g}_{\mathbf{b}} \triangleq$ $\nabla_{\mathbf{b}} J \in \mathbb{R}^{B}$.

Sigmoid Module The sigmoid layer has only one input vector a. Below σ is the sigmoid applied elementwise, and \odot is element-wise multiplication s.t. u \odot $\mathbf{v}=\left[u_{1} v_{1}, \ldots, u_{M} v_{M}\right]$.
1: procedure SIGMOIDFORWARD(a) $\mathbf{b}=\sigma(\mathbf{a})$ return b
procedure SIGMOIDBACKWARD($\mathrm{a}, \mathrm{b}, \mathrm{g}_{\mathrm{b}}$) $\mathbf{g}_{\mathbf{a}}=\mathbf{g}_{\mathbf{b}} \odot \mathbf{b} \odot(1-\mathbf{b})$ return ga_{a}

Softmax Module The softmax layer has only one input vector \mathbf{a}. For any vector $\mathbf{v} \in \mathbb{R}^{D}$, we have that diag(v) returns a $D \times D$ diagonal matrix whose diagonal entries are $v_{1}, v_{2}, \ldots, v_{D}$ and whose nondiagonal entries are zero.
1: procedure SOFTMAXFORWARD(a) b $=\operatorname{softmax}(\mathbf{a})$ return b
procedure SOFTMAXBACKWARD($\mathrm{a}, \mathrm{b}, \mathrm{g}_{\mathrm{b}}$) $\mathbf{g}_{\mathbf{a}}=\mathbf{g}_{\mathbf{b}}^{T}\left(\operatorname{diag}(\mathbf{b})-\mathbf{b b}^{T}\right)$ return ga_{a}

Linear Module The linear layer has two inputs: a vector \mathbf{a} and parameters $\omega \in \mathbb{R}^{B \times A}$. The output \mathbf{b} is not used by LINEARBACKWARD, but we pass it in for consistency of form.

```
1: procedure LINEARFORWARD \((\mathrm{a}, \omega)\)
        \(b=\omega \mathbf{a}\)
        return b
procedure LINEARBACKWARD( \(\mathbf{a}, \omega, \mathrm{b}, \mathrm{g}_{\mathrm{b}}\) )
        \(\mathbf{g}_{\boldsymbol{\omega}}=\mathbf{g}_{\mathbf{b}} \mathbf{a}^{T}\)
        \(\mathbf{g}_{\mathrm{a}}=\boldsymbol{\omega}^{T} \mathbf{g}_{\mathrm{b}}\)
        return \(\mathrm{g}_{\omega}, \mathrm{g}_{\mathrm{a}}\)
```

Cross-Entropy Module The cross-entropy layer has two inputs: a gold one-hot vector a and a predicted probability distribution â. It's output $b \in \mathbb{R}$ is a scalar. Below \div is element-wise division. The output b is not used by CrossentropyBackward, but we pass it in for consistency of form.
procedure CROSSENTROPYFORWARD(a, â)
$b=-\mathbf{a}^{T} \log \hat{\mathbf{a}}$
return \mathbf{b}
procedure CROSSENTROPYBACKWARD(a, â, b, g_{b}) $\mathbf{g}_{\hat{\mathbf{a}}}=-g_{b}(\mathbf{a} \div \hat{\mathbf{a}})$ return g_{a}

Module-based AutoDiff

```
Algorithm 1 Forward Computation
    procedure NNFORWARD(Training example (x, y), Parameters \(\boldsymbol{\alpha}\),
    \(\beta\) )
        \(\mathbf{a}=\operatorname{LINEARFORWARD}(\mathbf{x}, \boldsymbol{\alpha})\)
        \(\mathbf{z}=\operatorname{SIGMOIDFORWARD}(\mathbf{a})\)
        \(\mathbf{b}=\operatorname{LINEARFORWARD}(\mathbf{z}, \boldsymbol{\beta})\)
        \(\hat{\mathbf{y}}=\) SOFTMAXFORWARD(b)
        \(J=\operatorname{CROSSENTROPYFORWARD}(\mathbf{y}, \hat{\mathbf{y}})\)
        \(\mathbf{o}=\operatorname{object}(\mathbf{x}, \mathbf{a}, \mathbf{z}, \mathbf{b}, \hat{\mathbf{y}}, J)\)
        return intermediate quantities o
```

```
Algorithm 2 Backpropagation
    procedure NNBACKWARD(Training example ( \(\mathbf{x}, \mathbf{y}\) ), Parameters
    \(\boldsymbol{\alpha}, \boldsymbol{\beta}\), Intermediates o)
            Place intermediate quantities \(\mathbf{x}, \mathbf{a}, \mathbf{z}, \mathbf{b}, \hat{\mathbf{y}}, J\) in \(\mathbf{o}\) in scope
            \(g_{J}=\frac{d J}{d J}=1 \quad \triangleright\) Base case
            \(\mathbf{g}_{\hat{\mathbf{y}}}=\) CROSSENTROPYBACKWARD \(\left(\mathbf{y}, \hat{\mathbf{y}}, J, g_{J}\right)\)
            \(\mathbf{g}_{\mathbf{b}}=\operatorname{SOFTMAXBACKWARD}\left(\mathbf{b}, \hat{\mathbf{y}}, \mathbf{g}_{\hat{\mathbf{y}}}\right)\)
            \(\mathbf{g}_{\boldsymbol{\beta}}, \mathbf{g}_{\mathbf{z}}=\operatorname{LINEARBACKWARD}\left(\mathbf{z}, \mathbf{b}, \mathbf{g}_{\mathbf{b}}\right)\)
            \(\mathbf{g}_{\mathbf{a}}=\operatorname{SIGMOIDBACKWARD}\left(\mathbf{a}, \mathbf{z}, \mathbf{g}_{\mathbf{z}}\right)\)
            \(\mathbf{g}_{\alpha}, \mathbf{g}_{\mathrm{x}}=\operatorname{LINEARBACKWARD}\left(\mathbf{x}, \mathbf{a}, \mathbf{g}_{\mathrm{a}}\right) \quad \triangleright\) We discard \(\mathbf{g}_{\mathrm{x}}\)
            return parameter gradients \(\mathrm{g}_{\alpha}, \mathrm{g}_{\boldsymbol{\beta}}\)
```


Advantages of Module-based AutoDiff

1. Easy to reuse / adapt for other models
2. Encapsulated layers are easier to optimize (e.g. implement in C++ or CUDA)
3. Easier to find bugs because we can run a finitedifference check on each layer separately

Module-based AutoDiff (oop version)

Object-Oriented Implementation:

- Let each module be an object
- Then allow the control flow dictate the creation of the computation graph
- No longer need to implement NNBackward(•), just follow the computation graph in reverse topological order

```
class Sigmoid(Module)
    method forward(a)
        b}=\sigma(\mathbf{a}
        return b
    method backward(a, b, gb)
        \mp@subsup{g}{\mathbf{a}}{=}=\mp@subsup{\mathbf{g}}{\mathbf{b}}{}\odot\mathbf{b}\odot(1-\mathbf{b})
        return ga
class Softmax(Module)
    method forward(a)
        b= softmax(a)
        return b
    method backward(a, b, gb)
        ga}=\mp@subsup{\mathbf{g}}{\mathbf{b}}{T}(\operatorname{diag}(\mathbf{b})-\mp@subsup{\mathbf{bb}}{}{T}
        return ga
```

```
class Linear (Module)
        method forward ( \(\mathbf{a}, \omega\) )
        method forward ( \(\mathbf{a}, \omega\) )
        \(\mathbf{b}=\omega \mathbf{a}\)
        \(\mathbf{b}=\omega \mathbf{a}\)
        return b
        return b
    method backward ( \(\mathbf{a}, \boldsymbol{\omega}, \mathrm{b}, \mathrm{g}_{\mathrm{b}}\) )
    method backward ( \(\mathbf{a}, \boldsymbol{\omega}, \mathrm{b}, \mathrm{g}_{\mathrm{b}}\) )
```

 \(\mathbf{g}_{\boldsymbol{\omega}}=\mathbf{g}_{\mathbf{b}} \mathbf{a}^{T}\)
    ```
        \(\mathbf{g}_{\boldsymbol{\omega}}=\mathbf{g}_{\mathbf{b}} \mathbf{a}^{T}\)
        \(\mathrm{g}_{\mathrm{a}}=\boldsymbol{\omega}^{T} \mathrm{~g}_{\mathrm{b}}\)
        \(\mathrm{g}_{\mathrm{a}}=\boldsymbol{\omega}^{T} \mathrm{~g}_{\mathrm{b}}\)
        return \(\mathrm{g}_{\omega}, \mathrm{g}_{\mathrm{a}}\)
        return \(\mathrm{g}_{\omega}, \mathrm{g}_{\mathrm{a}}\)
class CrossEntropy (Module)
class CrossEntropy (Module)
        method forward (a, \(\hat{\mathbf{a}}\) )
        method forward (a, \(\hat{\mathbf{a}}\) )
            \(b=-\mathbf{a}^{T} \log \hat{\mathbf{a}}\)
            \(b=-\mathbf{a}^{T} \log \hat{\mathbf{a}}\)
            return b
            return b
        \(\operatorname{method} \operatorname{backward}\left(\mathbf{a}, \hat{\mathbf{a}}, b, g_{b}\right)\)
        \(\operatorname{method} \operatorname{backward}\left(\mathbf{a}, \hat{\mathbf{a}}, b, g_{b}\right)\)
            \(\mathbf{g}_{\hat{\mathbf{a}}}=-g_{b}(\mathbf{a} \div \hat{\mathbf{a}})\)
            \(\mathbf{g}_{\hat{\mathbf{a}}}=-g_{b}(\mathbf{a} \div \hat{\mathbf{a}})\)
            return \(\mathrm{ga}_{\mathrm{a}}\)
```

 return \(\mathrm{ga}_{\mathrm{a}}\)
    ```

\section*{Module-based AutoDiff (oop version)}
```

class NeuralNetwork(Module):
method init()
lin1_layer = Linear()
sig_layer = Sigmoid()
lin2_layer = Linear()
soft_layer = Softmax()
ce_layer = CrossEntropy()
method forward(Tensor x , Tensor y , Tensor }\boldsymbol{\alpha}\mathrm{ , Tensor }\boldsymbol{\beta}
a =lin1__layer.apply_fwd(x, \boldsymbol{\alpha})
z =sig_layer.apply_fwd(a)
b}=lin2_layer.apply_fwd(\mathbf{z},\boldsymbol{\beta}
\hat{\mathbf{y}}=\mathrm{ soft__layer.apply_fwd(b)}
J=ce_layer.apply_fwd}(\mathbf{y},\hat{\mathbf{y}}
return J.out_tensor
method backward(Tensor x , Tensor y , Tensor \alpha, Tensor \boldsymbol{\beta})
tape__bwd()
return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]

```

\section*{Module-based AutoDiff (oop version)}
```

class NeuralNetwork(Module):
method init()
lin1_layer = Linear()
sig_layer = Sigmoid()
lin2_layer = Linear()
soft_layer = Softmax()
ce_layer = CrossEntropy()
method forward (Tensor x , Tensor y , Tensor
a =lin1__layer .apply_fwd(x,\boldsymbol{\alpha})
z =sig_layer.apply_fwd(a)
b}=lin2_layer.apply_fwd(\mathbf{z},\boldsymbol{\beta}
\hat{\mathbf{y}}=\mathrm{ soft_layer.apply_fwd(b)}
J=ce_layer.apply_fwd}(\mathbf{y},\hat{\mathbf{y}}
return J.out_tensor
method backward(Tensor x , Tensor y , Tensc
tape__bwd()
return lin1_layer.in_gradients[1] , lin2_le21

```
```

global tape = stack()
class Module:
method init()
out_tensor = null
out_gradient = 1
method apply_fwd(List in_modules)
in_tensors = [x.out_tensor for x in in__modules]
out_tensor = forward(in_tensors)
tape.push(self)
return self
method apply__bwd():
in_gradients = backward(in_tensors , out_tensor, out_gradient)
for i in 1,···, len(in_modules):
in__modules[i].out__gradient += in_gradients[i]
return self
function tape__bwd():
while len(tape) > 0
m = tape.pop()
m.apply__bwd()

```

\section*{Module-based AutoDiff (oop version)}
```

class NeuralNetwork(Module):
method init()
lin1_layer = Linear()
sig_layer = Sigmoid()
lin2_layer = Linear()
soft_layer = Softmax()
ce_layer = CrossEntropy()
method forward (Tensor x , Tensor y , Tensor
a =lin1__layer .apply_fwd(x,\boldsymbol{\alpha})
z =sig_layer.apply_fwd(a)
b}=lin2_layer.apply_fwd(\mathbf{z},\boldsymbol{\beta}
\hat{\mathbf{y}}=\mathrm{ soft_layer.apply_fwd(b)}
J=ce_layer.apply_fwd}(\mathbf{y},\hat{\mathbf{y}}
return J.out_tensor
method backward(Tensor x , Tensor y , Tensc
tape__bwd()
return lin1_layer.in_gradients[1] , lin2_le21

```
```

global tape = stack()
class Module:
method init()
out_tensor = null
out_gradient = 1
method apply_fwd(List in_modules)
in_tensors = [x.out_tensor for x in in__modules]
out_tensor = forward(in_tensors)
tape.push(self)
return self
method apply__bwd():
in_gradients = backward(in_tensors , out_tensor, out_gradient)
for i in 1,···, len(in_modules):
in__modules[i].out__gradient += in_gradients[i]
return self
function tape__bwd():
while len(tape) > 0
m = tape.pop()
m.apply__bwd()

```

\section*{PyTorch}
```

The same simple
neural network
we defined in
The same simple neural network we defined in pseudocode can also be defined in PyTorch.
class NeuralNetwork(nn.Module):
def

```
\(\qquad\)
``` _init (self)
 super(NeuralNetwork, self).__init__()
 self.flatten = nn.Flatten()
 self.linearl = nn.Linear(28*28, 512)
 self.sigmoid = nn.Sigmoid()
 self.linear2 = nn.Linear(512,512)
 def forward(self, x):
 x = self.flatten(x)
 a = self.linearl(x)
 z = self.sigmoid(a)
 b = self.linear2(z)
 return b
1 6
17 # Take one step of SGD
18 def one_step_of_sgd(X, y):
19 loss_fn = nn.CrossEntropyLoss()
20 optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
21
21
22 # Compute prediction error
2 3
24
25
26
27
optimizer.zero_grad()
28 loss.backward()
29 optimizer.step()
```

\# Define model

## PyTorch

## Q: Why don't we call linear.forward() in PyTorch?

A: This is just syntactic sugar. There's a special method in Python __call__ that allows you to define what happens when you treat an object as if it were a function.

In other words, running the following:
linear ( $x$ )
is equivalent to running:
linear.__call (x)
which in PyTorch is (nearly) the same as running:
linear.forward( $x$ )
This is because PyTorch defines every Module's __call __ method to be something like this:

$$
\begin{aligned}
& \text { def } \underset{\text { self.forward( })}{ } .
\end{aligned}
$$

## PyTorch

## Q: Why don't we pass in the parameters to a PyTorch Module?

A: This just makes your code cleaner.
In PyTorch, you store the parameters inside the Module and "mark" them as parameters that should contribute to the eventual gradient used by an optimizer

```
def forward(self, x):
 x = self.flatten(x)
 a = self.linearl(x)
 z = self.sigmoid(a)
 b = self.linear2(z)
 return b
```

```
% method forward(Tensor x, Tensor y , Tensor \boldsymbol{\alpha},\mathrm{ Tensor }\boldsymbol{\beta})
```

% method forward(Tensor x, Tensor y , Tensor \boldsymbol{\alpha},\mathrm{ Tensor }\boldsymbol{\beta})
\mathbf{a}=lin1_layer.apply_fwd(x, \boldsymbol{\alpha})
\mathbf{a}=lin1_layer.apply_fwd(x, \boldsymbol{\alpha})
z =sig_layer.apply_fwd(a)
z =sig_layer.apply_fwd(a)
b =lin1_layer.apply_fwd(z,\boldsymbol{\beta})
b =lin1_layer.apply_fwd(z,\boldsymbol{\beta})
\hat{\mathbf{y}}=\mathrm{ soft_llayer.apply_fwd(b)}
\hat{\mathbf{y}}=\mathrm{ soft_llayer.apply_fwd(b)}
J=ce_layer.apply_fwd}(\mathbf{y},\hat{\mathbf{y}}
J=ce_layer.apply_fwd}(\mathbf{y},\hat{\mathbf{y}}
return J.out_tensor
return J.out_tensor

## Recap

## Deep Learning

- AutoDiff
- is a tool for computing gradients of a differentiable function, $b=f(a)$
- the key building block is a module with a forward() and backward()
- sometimes define fas code in forward() by chaining existing modules together
- Computation Graphs
- are another way to define $f$ (more conducive to slides)
- we are considering various (deep) computation graphs: (1) CNN (2) RNN (3) RNN-LM (4) Transformer-LM
- Learning a Deep Network
- deep networks (e.g. CNN/RNN) are trained by optimizing an objective function with SGD
- compute gradients with AutoDiff

Language Modeling

- key idea: condition on previous words to sample the next word
- to define the probability of the next word...
- ...n-gram LM uses collection of massive 50ksided dice
- ... RNN-LM or Transformer-LM use a neural network
- Learning an LM
- n-gram LMs are easy to learn: just count cooccurrences!
- a RNN-LM / Transformer-LM is trained just like other deep neural networks

LEARNING AN RNN

## Dataset for Supervised Part-of-Speech (POS) Tagging

$$
\text { Data: } \quad \mathcal{D}=\left\{\boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)}\right\}_{n=1}^{N}
$$



## SGD and Mini-batch SGD

```
Algorithm 1 SGD
 1: Initialize \(\theta^{(0)}\)
 2:
 3:
 \(s=0\)
 for \(t=1,2, \ldots, T\) do
 for \(i \in \operatorname{shuffle}(1, \ldots, N)\) do
 Select the next training point \(\left(x_{i}, y_{i}\right)\)
 Compute the gradient \(g^{(s)}=\nabla J_{i}\left(\theta^{(s-1)}\right)\)
 Update parameters \(\theta^{(s)}=\theta^{(s-1)}-\eta g^{(s)}\)
 Increment time step \(s=s+1\)
 Evaluate average training loss \(J(\theta)=\frac{1}{n} \sum_{i=1}^{n} J_{i}(\theta)\)
 return \(\theta^{(s)}\)
```


## SGD and Mini-batch SGD

```
Algorithm 1 Mini-Batch SGD
 1: Initialize \(\theta^{(0)}\)
 2: Divide examples \(\{1, \ldots, N\}\) randomly into batches \(\left\{I_{1}, \ldots, I_{B}\right\}\)
 where \(\bigcup_{b=1}^{B} I_{b}=\{1, \ldots, N\}\) and \(\bigcap_{b=1}^{B} I_{b}=\emptyset\)
 \(s=0\)
 for \(t=1,2, \ldots, T\) do
 for \(b=1,2, \ldots, B\) do
 Select the next batch \(I_{b}\), where \(m=\left|I_{b}\right|\)
 Compute the gradient \(g^{(s)}=\frac{1}{m} \sum_{i \in I_{b}} \nabla J_{i}\left(\theta^{(s)}\right)\)
 Update parameters \(\theta^{(s)}=\theta^{(s-1)}-\eta g^{(s)}\)
 Increment time step \(s=s+1\)
 Evaluate average training loss \(J(\theta)=\frac{1}{n} \sum_{i=1}^{n} J_{i}(\theta)\)
 return \(\theta^{(s)}\)
```


## RNN

```
Algorithm 1 Elman RNN
 procedure FORWARD \(\left(x_{1: T}, W_{a h}, W_{a x}, b_{a}, W_{y h}, b_{y}\right)\)
 Initialize the hidden state \(h_{0}\) to zeros
 for \(t\) in 1 to \(T\) do
 Receive input data at time step \(t\) : \(x_{t}\)
 Compute the hidden state update:
 \(a_{t}=W_{a h} \cdot h_{t-1}+W_{a x} \cdot x_{t}+b_{a}\)
 \(h_{t}=\sigma\left(a_{t}\right)\)
 Compute the output at time step \(t\) :
 \(y_{t}=W_{y h} \cdot h_{t}+b_{y}\)
```


## RNN

```
Algorithm 1 Elman RNN
 procedure FORWARD \(\left(x_{1: T}, W_{a h}, W_{a x}, b_{a}, W_{y h}, b_{y}\right)\)
 Initialize the hidden state \(h_{0}\) to zeros
 for \(t\) in 1 to \(T\) do
 Receive input data at time step \(t\) : \(x_{t}\)
 Compute the hidden state update:
 \(a_{t}=W_{a h} \cdot h_{t-1}+W_{a x} \cdot x_{t}+b_{a}\)
 \(h_{t}=\sigma\left(a_{t}\right)\)
 Compute the output at time step \(t\) :
 \(y_{t}=\operatorname{softmax}\left(W_{y h} \cdot h_{t}+b_{y}\right)\)
```


## RNN + Loss

```
Algorithm 1 Elman RNN + Loss
 procedure FORWARD \(\left(x_{1: T}, y_{1: T}^{*} W_{a h}, W_{a x}, b_{a}, W_{y h}, b_{y}\right)\)
 Initialize the hidden state \(h_{0}\) to zeros
 for \(t\) in 1 to \(T\) do
 Receive input data at time step \(t: x_{t}\)
 Compute the hidden state update:
\[
\begin{aligned}
& a_{t}=W_{a h} \cdot h_{t-1}+W_{a x} \cdot x_{t}+b_{a} \\
& h_{t}=\sigma\left(a_{t}\right)
\end{aligned}
\]
Compute the output at time step \(t\) :
\[
y_{t}=\operatorname{softmax}\left(W_{y h} \cdot h_{t}+b_{y}\right)
\]
Compute the cross-entropy loss at time step \(t\) :
\[
\ell_{t}=-\sum_{k=1}^{K}\left(y_{t}^{*}\right)_{k} \log \left(\left(y_{t}\right)_{k}\right)
\]
Compute the total loss:
\[
\ell=\sum_{t=1}^{T} \ell_{t}
\]
```

LEARNING AN RNN-LM

## Learning a Language Model

Question: How do we learn the probabilities for the n -Gram Model?
Answer: From data! Just count n-gram frequencies

$p\left(w_{t} \mid w_{t-2}=\right.$ cows,    3 $\left.w_{t-1}=e a t\right)$	
$w_{t}$	$p(\cdot \mid \cdot \cdot)$
corn	$4 / 11$
grass	$3 / 11$
hay	$2 / 11$
if	$1 / 11$
which	$1 / 11$

MLE for n-gram LM

- This counting method gives us the maximum likelihood estimate of the n-gram LM parameters
- We can derive it in the usual way:
- Write the likelihood of the sentences under the n-gram LM
- Set the gradient to zero and impose the constraint that the probabilities sum-to-one
- Solve for the MLE


## Learning a Language Model

## MLE for Deep Neural LM

- We can also use maximum likelihood estimation to learn the parameters of an RNN-LM or Transformer-LM too!
- But not in closed form - instead we follow a different recipe:
- Write the likelihood of the sentences under the Deep Neural LM model
- Compute the gradient of the (batch) likelihood w.r.t. the parameters by AutoDiff
- Follow the negative gradient using Mini-batch SGD (or your favorite optimizer)

MLE for n-gram LM

- This counting method gives us the maximum likelihood estimate of the n-gram LM parameters
- We can derive it in the usual way:
- Write the likelihood of the sentences under the n-gram LM
- Set the gradient to zero and impose the constraint that the probabilities sum-to-one
- Solve for the MLE


## RNN + Loss

## How can we use this to compute the loss for an RNN-LM?

```
Algorithm 1 Elman RNN + Loss
 procedure FORWARD \(\left(x_{1: T}, y_{1: T}^{*} W_{a h}, W_{a x}, b_{a}, W_{y h}, b_{y}\right)\)
 Initialize the hidden state \(h_{0}\) to zeros
 for \(t\) in 1 to \(T\) do
 Receive input data at time step \(t\) : \(x_{t}\)
 Compute the hidden state update:
\[
\begin{aligned}
& a_{t}=W_{a h} \cdot h_{t-1}+W_{a x} \cdot x_{t}+b_{a} \\
& h_{t}=\sigma\left(a_{t}\right)
\end{aligned}
\]
Compute the output at time step \(t\) :
\[
y_{t}=\operatorname{softmax}\left(W_{y h} \cdot h_{t}+b_{y}\right)
\]
Compute the cross-entropy loss at time step \(t\) :
\[
\ell_{t}=-\sum_{k=1}^{K}\left(y_{t}^{*}\right)_{k} \log \left(\left(y_{t}\right)_{k}\right)
\]
Compute the total loss:
\[
\ell=\sum_{t=1}^{T} \ell_{t}
\]
```


## RNN-LM + Loss

## How can we use this to compute the loss for an RNN-LM?



Algorithm 1 Elman RNN + Loss
procedure FORWARD $\left(x_{1: T}, y_{1: T}^{*} W_{a h}, W_{a x}, b_{a}, W_{y h}, b_{y}\right)$ Initialize the hidden state $h_{0}$ to zeros for $t$ in 1 to $T$ do

Receive input data at time step $t$ : $x_{t}$ Compute the hidden state update:

$$
\begin{aligned}
& a_{t}=W_{a h} \cdot h_{t-1}+W_{a x} \cdot x_{t}+b_{a} \\
& h_{t}=\sigma\left(a_{t}\right)
\end{aligned}
$$

Compute the output at time step $t$ :

$$
y_{t}=\operatorname{softmax}\left(W_{y h} \cdot h_{t}+b_{y}\right)
$$

Compute the cross-entropy loss at time step $t$ :

$$
\ell_{t}=-\sum_{k=1}^{K}\left(y_{t}^{*}\right)_{k} \log \left(\left(y_{t}\right)_{k}\right)
$$

Compute the total loss:

$$
\ell=\sum_{t=1}^{T} \ell_{t}
$$

## RNN-LM + Loss

## How can we use this to compute the loss for an RNN-LM?

$$
\begin{aligned}
\log p(w) & =\log p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{T}\right) \\
& =\log p\left(w_{1} \mid h_{1}\right)+\ldots+\log p\left(w_{2} \mid h_{T}\right)
\end{aligned}
$$

## Algorithm 1 Elman RNN + Loss

$$
\text { procedure FORWARD }\left(x_{1: T}, y_{1: T}^{*} W_{a h}, W_{a x}, b_{a}, W_{y h}, b_{y}\right)
$$

$$
\ell=\log \mathrm{p}(\mathrm{w}) \square+
$$ Initialize the hidden state $h_{0}$ to zeros for $t$ in 1 to $T$ do Receive input data at time step $t: x_{t}$ Compute the hidden state update:

$$
\begin{aligned}
& a_{t}=W_{a h} \cdot h_{t-1}+W_{a x} \cdot x_{t}+b_{a} \\
& h_{t}=\sigma\left(a_{t}\right)
\end{aligned}
$$

Compute the output at time step $t$ :

$$
y_{t}=\operatorname{softmax}\left(W_{y h} \cdot h_{t}+b_{y}\right)
$$

Compute the cross-entropy loss at time step $t$ :

$$
\ell_{t}=-\sum_{k=1}^{K}\left(y_{t}^{*}\right)_{k} \log \left(\left(y_{t}\right)_{k}\right)
$$

Compute the total loss:

$$
\ell=\sum_{t=1}^{T} \ell_{t}
$$

## Learning an RNN-LM

- Each training example is a sequence (e.g. sentence), so we have training data $\mathrm{D}=\left\{\mathbf{w}^{(1)}\right.$, $\left.\mathbf{w}^{(2)}, \ldots, \mathbf{w}^{(\mathrm{N})}\right\}$
- The objective function for a Deep LM (e.g. RNNLM or Tranformer-LM) is typically the log-
likelihood of the training examples:

$$
J(\boldsymbol{\theta})=\Sigma_{\mathrm{i}} \log \mathrm{p}_{\theta}\left(\mathbf{w}^{(\mathrm{i})}\right)
$$

- We train by mini-batch SGD (or your favorite flavor of mini-batch SGD)

$$
\begin{aligned}
\log p(\mathbf{w}) & =\log p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{T}\right) \\
& =\log p\left(w_{1} \mid h_{1}\right)+\log p\left(w_{2} \mid h_{2}\right)+\ldots+\log p\left(w_{2} \mid h_{T}\right)
\end{aligned}
$$


training example

## LARGE LANGUAGE MODELS

## How large are LLMs?

Comparison of some recent large language models (LLMs)

Model	Creators	Year of   release	Training Data (\#   tokens)	Model Size (\#   parameters)
	OpenAI	2019	$\sim 10$ billion (40Gb)	1.5 billion
GPT-2	OpenAI	2020	300 billion	175 billion
GPT-3   (cf. ChatGPT)	Google	2022	780 billion	540 billion
PaLM	DeepMind	2022	1.4 trillion	70 billion
Chinchilla	Google	2022	1.56 trillion	137 billion
LaMDA   (cf. Bard)	Meta	2023	1.4 trillion	65 billion
LLaMA	OpenAI	2023	$?$	$?$
GPT-4				

## What is ChatGPT?

- ChatGPT is a large (in the sense of having many parameters) language model, fine-tuned to be a dialogue agent
- The base language model is GPT-3.5 which was trained on a large quantity of text

Transformer Language Models
MODEL: GPT

## Attention



## Attention



## Attention



## Attention



## Attention



## Attention


$\mathbf{x}_{t}^{\prime}=\sum_{j=1}^{t} a_{t, j} \mathbf{v}_{j}$
attention weights
scores
values

## Scaled Dot-Product Attention



## Scaled Dot-Product Attention



## Scaled Dot-Product Attention



## Scaled Dot-Product Attention



## Scaled Dot-Product Attention


$\mathbf{a}_{4}=\operatorname{softmax}\left(\mathbf{s}_{4}\right)$ attention weights
$s_{4, j}=\mathbf{k}_{j}^{T} \mathbf{q}_{4} / \sqrt{d_{k}}$ scores $\mathbf{q}_{j}=\mathbf{W}_{q}^{T} \mathbf{x}_{j} \quad$ queries $\mathbf{k}_{j}=\mathbf{W}_{k}^{T} \mathbf{x}_{j} \quad$ keys

$$
\mathbf{v}_{j}=\mathbf{W}_{v}^{T} \mathbf{x}_{j} \quad \text { values }
$$

## Scaled Dot-Product Attention



## Scaled Dot-Product Attention



$$
\mathbf{x}_{t}^{\prime}=\sum_{j=1}^{t} a_{t, j} \mathbf{v}_{j}
$$

$\mathbf{a}_{t}=\operatorname{softmax}\left(\mathbf{s}_{t}\right)$ attention weights

$$
\begin{array}{rlr}
s_{t, j} & =\mathbf{k}_{j}^{T} \mathbf{q}_{t} / \sqrt{d_{k}} \text { scores } \\
\mathbf{q}_{j} & =\mathbf{W}_{q}^{T} \mathbf{x}_{j} & \text { queries } \\
\mathbf{k}_{j} & =\mathbf{W}_{k}^{T} \mathbf{x}_{j} & \text { keys } \\
\mathbf{v}_{j} & =\mathbf{W}_{v}^{T} \mathbf{x}_{j} & \text { values }
\end{array}
$$

## Animation of 3D Convolution

http://cs231n.github.io/convolutional-networks/


## Multi-headed Attention



- Just as we can have multiple channels in a convolution layer, we can use multiple heads in an attention layer
- Each head gets its own parameters
- We can concatenate all the outputs to get a single vector for each time step
- To ensure the dimension of the input embedding $x_{t}$ is the same as the output embedding $\mathbf{x}_{\mathrm{t}}{ }^{\prime}$,


## Multi-headed Attention

 Transformers usually choose the embedding sizes and number of heads appropriately:- $\mathrm{d}_{\text {model }}=$ dim. of inputs
- $\mathrm{d}_{\mathrm{k}}=$ dim. of each output
- $\mathrm{h}=$ \# of heads
- Choose $\mathrm{d}_{\mathrm{k}}=\mathrm{d}_{\text {model }} / \mathrm{h}$
- Then concatenate the outputs
$\mathbf{W}_{\mathrm{k}}$
$\mathbf{W}_{\mathrm{v}}$

$\mathbf{x}_{1}$

multi-headed attention

- Just as we can have multiple channels in a convolution layer, we can use multiple heads in an attention layer
- Each head gets its own parameters
- We can concatenate all the outputs to get a single vector for each time step
- To ensure the dimension of the input embedding $x_{t}$ is the same as the output embedding $\mathbf{x}_{\mathrm{t}}{ }^{\prime}$, Transformers usually choose the embedding sizes and number of heads appropriately:
- $\mathrm{d}_{\text {model }}=$ dim. of inputs
- $\mathrm{d}_{\mathrm{k}}=$ dim. of each output
- $\mathrm{h}=$ \# of heads
- Choose $\mathrm{d}_{\mathrm{k}}=\mathrm{d}_{\text {model }} / \mathrm{h}$
- Then concatenate the outputs

- Just as we can have multiple channels in a convolution layer, we can use multiple heads in an attention layer
- Each head gets its own parameters
- We can concatenate all the outputs to get a single vector for each time step


## RNN Language Model



Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

## Transformer Language Model

Important!

- RNN computation graph grows linearly with the number of input tokens
- Transformer-LM computation graph grows quadratically with the number of input tokens


Each hidden vector looks back at the hidden vectors of the current and previous timesteps in the previous layer.

The language model part is just like an RNN-LM!

## Transformer Language Model

## Important!

- RNN computation graph grows linearly with the number of input tokens
- Transformer-LM computation graph grows quadratically with the number of input tokens


Each layer of a Transformer LM consists of several sublayers:

1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at the hidden vectors of the current and previous timesteps in the previous layer.

The language model part is just like an RNN-LM!

## Layer Normalization

- The Problem: internal covariate shift occurs during training of a deep network when a small change in the low layers amplifies into a large change in the high layers
- One Solution: Layer normalization normalizes each layer and learns elementwise gain/bias
- Such normalization allows for higher learning rates (for faster convergence) without issues of diverging gradients

Given input $\mathbf{a} \in \mathbb{R}^{K}$, LayerNorm computes output $\mathbf{b} \in \mathbb{R}^{K}$ :

$$
\mathbf{b}=\gamma \odot \frac{\mathbf{a}-\mu}{\sigma} \oplus \boldsymbol{\beta}
$$

where we have mean $\mu=\frac{1}{K} \sum_{k=1}^{K} a_{k}$,
standard deviation $\sigma=\sqrt{\frac{1}{K} \sum_{k=1}^{K}\left(a_{k}-\mu\right)^{2}}$, and parameters $\gamma \in \mathbb{R}^{K}, \boldsymbol{\beta} \in \mathbb{R}^{K}$.
$\odot$ and $\oplus$ denote elementwise multiplication and addition.


## Residual Connections

- The Problem: as network depth grows very large, a performance degradation occurs that is not explained by overfitting (i.e. train / test error both worsen)
- One Solution: Residual connections pass a copy of the input alongside another function so that information can flow more directly
- These residual connections allow for effective training of very deep networks that perform better than their shallower (though still deep) counterparts


Residual Connection


## Residual Connections

- The Problem: as network depth grows very large, a performance degradation occurs that is not explained by overfitting (i.e. train / test error both worsen)
- One Solution: Residual connections pass a copy of the input alongside another function so that information can flow more directly
- These residual connections allow for effective training of very deep networks that perform better than their shallower (though still deep) counterparts

Residual Connection
Plain Connection


## Why are residual connections helpful?

Instead of $f(a)$ having to learn a full transformation of $\mathrm{a}, \mathrm{f}(\mathrm{a})$ only needs to learn an additive modification of a (i.e. the residual).

## Transformer Layer



Each layer of a Transformer LM consists of several sublayers:

1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

## Transformer Layer



Each layer of a Transformer LM consists of several sublayers:

1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

## Transformer Layer



## Transformer

Layer


## Transformer Layer

Each layer of a Transformer LM consists of several sublayers:

1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections


## Transformer Language Model



Each layer of a Transformer LM consists of several sublayers:

1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at the hidden vectors of the current and previous timesteps in the previous layer.

The language model part is just like an RNN-LM.

## In-Class Poll

## Question:

Suppose we have the following input embeddings and attention weights:

- $x_{1}=[1,0,0,0] a_{4,1}=0.1$
- $x_{2}=[0,1,0,0] a_{4,2}=0.2$
- $x_{3}=[0,0,2,0] a_{4,3}=0.6$
- $x_{4}=[0,0,0,1] a_{4,4}=0.1$

And $W_{v}=I$. Then we can compute $x_{4}{ }^{\prime}$.

## Answer:

Now suppose we swap the embeddings $x_{2}$ and $x_{3}$ such that

- $X_{2}=[0,0,2,0]$
- $x_{3}=[0,1,0,0]$

What is the new value of $x_{4}$ '?
$\mathbf{x}_{4}^{\prime}=\sum_{j=1}^{4} a_{4, j} \mathbf{v}_{j}$
$\mathbf{a}_{4}=\operatorname{softmax}\left(\mathbf{s}_{4}\right)$ attention weights
$s_{4, j}=\mathbf{k}_{j}^{T} \mathbf{q}_{4} / \sqrt{d_{k}}$ scores
$\mathbf{q}_{j}=\mathbf{W}_{q}^{T} \mathbf{x}_{j} \quad$ queries
$\mathbf{k}_{j}=\mathbf{W}_{k}^{T} \mathbf{x}_{j} \quad$ keys
$\mathbf{v}_{j}=\mathbf{W}_{v}^{T} \mathbf{x}_{j} \quad$ values

## $\stackrel{x_{1}}{\square} \stackrel{x_{2}}{\square} \stackrel{x_{3}}{\square} \square \overbrace{\square}^{x_{4}}$

## Position Embeddino

- The Problem: Because attention is position invariant, we need a way to learn about positions
- The Solution: Use (or learn) a collection of position specific embeddings: $p_{t}$ represents what it means to be in position $t$. And add this to the word embedding $\mathbf{w}_{\mathrm{t}}$.
The key idea is that every word that appears in position $t$ uses the same position embedding $\mathbf{p}_{\mathrm{t}}$
- There are a number of varieties of position embeddings:
- Some are fixed (based on sine and cosine), whereas others are learned (like word embeddings)
- Some are absolute (as described above) but we can also use relative position embeddings (i.e. relative to the position of the query vector)



## GPT-3

- GPT stands for Generative Pre-trained Transformer
- GPT is just a Transformer LM, but with a huge number of parameters

Model	\# layers	dimension   of states	dimension   of inner   states	\# attention   heads	\#params
GPT (2018)	12	768	3072	12	117 M
GPT-2   $(2019)$	48	1600	--	--	1542 M
GPT-3   $(2020)$	96	12288	$4 * 12288$	96	175000 M

## Matrix Version of Scaled Dot-Product Attention



- For speed, we compute all the queries at once using matrix operations
- First we pack the queries, keys, values into matrices:

$$
\begin{aligned}
& -\mathrm{Q}=\left[\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{N}}\right]^{\top} \\
& -\mathrm{K}=\left[\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{N}}\right]^{\top} \\
& -\mathrm{V}=\left[\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}\right]^{\top}
\end{aligned}
$$

- Then we compute all the queries at once:
$\operatorname{Attn}\left(\mathbf{x}_{1: N}\right)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}} V\right)$


## Matrix Version of Scaled Dot-Product Attention



In practice, the attention weights are computed for all time steps T , then we mask out (by setting to -inf) all the inputs to the softmax that are for the timesteps to the right of the query.

- For speed, we compute all the queries at once using matrix operations
- First we pack the queries, keys, values into matrices:

$$
\begin{aligned}
& -\mathrm{Q}=\left[\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{N}}\right]^{\top} \\
& -\mathrm{K}=\left[\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{N}}\right]^{\top} \\
& -\mathrm{V}=\left[\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}\right]^{\top}
\end{aligned}
$$

- Then we compute all the queries at once:

$$
\operatorname{Attn}\left(\mathbf{x}_{1: N}\right)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}} V\right)
$$

## LEARNING A TRANSFORMER LM

## Learning a Transformer LM

- Each training example is a sequence (e.g. sentence), so we have training data $\mathrm{D}=\left\{\mathbf{w}^{(1)}\right.$, $\left.\mathbf{w}^{(2)}, \ldots, \mathbf{w}^{(\mathrm{N})}\right\}$
- The objective function for a Deep LM (e.g. RNNLM or Tranformer-LM) is typically the log-
likelihood of the training examples:

$$
J(\boldsymbol{\theta})=\Sigma_{\mathrm{i}} \log \mathrm{p}_{\theta}\left(\mathbf{w}^{(\mathrm{i})}\right)
$$

- We train by mini-batch SGD (or your favorite flavor of mini-batch SGD)
Training a Transformer-LM is the same, except we swap in a different deep language model.

$$
\begin{aligned}
\log p(w) & =\log p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{T}\right) \\
& =\log p\left(w_{1} \mid h_{1}\right)+\log p\left(w_{2} \mid h_{2}\right)+\ldots+\log p\left(w_{2} \mid h_{T}\right)
\end{aligned}
$$



## Language Modeling

An aside:

- State-of-the-art language models currently tend to rely on transformer networks (e.g. GPT-3)
- RNN-LMs comprised most of the early neural LMs that led to current SOTA architectures

Language Modelling on Penn Treebank (Word Level)
Leaderboard Dataset


## Why does efficiency matter?

## Case Study: GPT-3

- \# of training tokens $=500$ billion
- \# of
parameters = 175 billion
- \# of cycles = 50 petaflop/s-days (each of which are $8.64 \mathrm{e}+19$ flops)

	Quantity   (tokens)	Weight in   training mix	Epochs elapsed when   training for 300B tokens
Common Crawl (filtered)	410 billion	$60 \%$	0.44
WebText2	19 billion	$22 \%$	2.9
Books1	12 billion	$8 \%$	1.9
Books2	53 billion	$8 \%$	0.43
Bikipedia	3 billion	$3 \%$	3.4

Table 2.2: Datasets used to train GPT-3. "Weight in training mix" refers to the fraction of examples during training that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets are seen less than once.

Model Name	$n_{\text {params }}$	$n_{\text {layers }}$	$d_{\text {model }}$	$n_{\text {heads }}$	$d_{\text {head }}$	Batch Size	Learning Rate
GPT-3 Small	125 M	12	768	12	64	0.5 M	$6.0 \times 10^{-4}$
GPT-3 Medium	350 M	24	1024	16	64	0.5 M	$3.0 \times 10^{-4}$
GPT-3 Large	760 M	24	1536	16	96	0.5 M	$2.5 \times 10^{-4}$
GPT-3 XL	1.3 B	24	2048	24	128	1 M	$2.0 \times 10^{-4}$
GPT-3 2.7B	2.7 B	32	2560	32	80	1 M	$1.6 \times 10^{-4}$
GPT-3 6.7B	6.7B	32	4096	32	128	2 M	$1.2 \times 10^{-4}$
GPT-3 13B	13.0 B	40	5140	40	128	2 M	$1.0 \times 10^{-4}$
GPT-3 175B or "GPT-3"	175.0 B	96	12288	96	128	3.2 M	$0.6 \times 10^{-4}$

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.


Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models [ $\mathrm{KMH}^{+}$20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3
is almost 10 B
larger than RoBERTa-Large ( 355 M params), both models took roughly 50 petaflop/s-days of compute during pre-training. Methodology for these calculations can be found in Appendix D.

## Recap

## Deep Learning

- AutoDiff
- is a tool for computing gradients of a differentiable function, $b=f(a)$
- the key building block is a module with a forward() and backward()
- sometimes define $f$ as code in forward() by chaining existing modules together
- Computation Graphs
- are another way to define $f$ (more conducive to slides)
- we are considering various (deep) computation graphs: (1) CNN (2) RNN (3) RNN-LM (4) Transformer-LM
- Learning a Deep Network
- deep networks (e.g. CNN/RNN) are trained by optimizing an objective function with SGD
- compute gradients with AutoDiff

Language Modeling

- key idea: condition on previous words to sample the next word
- to define the probability of the next word...
- ...n-gram LM uses collection of massive 50ksided dice
- ... RNN-LM or Transformer-LM use a neural network
- Learning an LM
- n-gram LMs are easy to learn: just count cooccurrences!
- a RNN-LM / Transformer-LM is trained just like other deep neural networks

