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Reminders

• Homework 6: Learning Theory & Generative Models
– Out: Mon, Mar 18
– Due: Sun, Mar 24 at 11:59pm
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THE BIG PICTURE
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ML Big Picture
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Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?

 

boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete & 
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards
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Classification and Regression: The Big Picture

14



Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs) are simply fancy computation graphs (aka. 

hypotheses or decision functions).

Our recipe also applies to these models and (again) relies on 
the backpropagation algorithm to compute the necessary 

gradients.
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BACKGROUND: COMPUTER VISION
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Example: Image Classification
• ImageNet LSVRC-2011 contest: 
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/
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Feature Engineering for CV
Edge detection (Canny)

21
Figures from http://opencv.org

Corner Detection (Harris) Scale Invariant Feature Transform (SIFT)

Figure from Lowe (1999) and Lowe (2004)



Example: Image Classification
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input 
image 

(pixels)

• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax



CNNs for Image Recognition
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Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)
Slide from Kaiming He



Feed-forward Neural Networks for Computer Vision
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Feed-forward Neural Networks for Computer Vision
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CONVOLUTION
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2D Convolution
• Basic idea:

– Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
– Slide this over an image and compute the “inner product” (similarity) of F and the 

corresponding field of the image, and replace the pixel in the center of the field with the 
output of the inner product operation

• Key point:
– Different convolutions extract different types of low-level “features” from an image
– All that we need to vary to generate these different features is the weights of F

Slide adapted from William Cohen

y11 = α11x11 + α12x12 + α21x21 + α22x22 + α0

y12 = α11x12 + α12x13 + α21x22 + α22x23 + α0

y21 = α11x21 + α12x22 + α21x31 + α22x32 + α0

y22 = α11x22 + α12x23 + α21x32 + α22x33 + α0

x11 x12 x13

x21 x22 x23

x31 x32 x33

α11 α12

α21 α22

y11 y12

y21 y22

Example: 1 input channel, 1 output channel

Input Kernel Output



2D Convolution
• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation
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0 0 0

0 1 1

0 1 0

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0
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2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1
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1 0 0 0 0

0 0 0

0 1 1

0 1 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0
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3 1 0 0 0

1 0 0 0 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0
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2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0
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• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



2D Convolution
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

• Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
• Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the 

image, and replace the pixel in the center of the field with the output of the inner product operation



Padding
Suppose you want to preserve the size of the original input image in 
your convolved image.
You can accomplish this by padding your input image with zeros.

40

Identity 
Convolution

Input Image

Convolved Image

0 0 0

0 1 0

0 0 0

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0



Padding
Suppose you want to preserve the size of the original input image in 
your convolved image.
You can accomplish this by padding your input image with zeros.
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0 0 0

0 1 0

0 0 0

Identity 
Convolution

Input Image

Convolved Image0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0



Kernels for Image Processing
A convolution matrix (aka. kernel) is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Identity 
Convolution

Input Image

Convolved Image

0 0 0

0 1 0

0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0



Kernels for Image Processing
A convolution matrix (aka. kernel) is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Input Image

Convolved Image

.1 .1 .1

.1 .2 .1

.1 .1 .1

Blurring
Convolution

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0
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0 1 0 0 0 0 0
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.1 .2 .3 .3 .3 .2 .1
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.3 .4 .2 .3 .6 .3 .1
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Kernels for Image Processing
A convolution matrix (aka. kernel) is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Vertical 
Edge 

Detector

Input Image

Convolved Image

-1 0 1

-1 0 1

-1 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

-1 -1 0 0 0 1 1

-2 -1 1 -1 0 2 1

-3 -1 1 -1 1 2 1

-3 -1 2 0 1 1 0

-3 -1 2 1 1 0 0

-2 -1 2 1 0 0 0

-1 0 1 0 0 0 0



Kernels for Image Processing
A convolution matrix (aka. kernel) is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Horizontal 
Edge 

Detector

Input Image

Convolved Image

-1 -1 -1

0 0 0

1 1 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

-1 -2 -3 -3 -3 -2 -1

-1 -1 -1 -1 -1 -1 0

0 1 1 2 2 2 1

0 -1 -1 0 1 1 0

0 0 1 1 1 0 0

1 2 2 1 0 0 0

1 1 1 0 0 0 0



Convolution Examples
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Original 
Image



Convolution Examples
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1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Smoothing 
Convolution



Convolution Examples
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.01 .04 .06 .04 .01

.04 .19 .25 .19 .04

.06 .25 .37 .25 .06

.04 .19 .25 .19 .04

.01 .04 .06 .04 .01

Gaussian 
Blur



Convolution Examples
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0 -1 0

-1 5 -1

0 -1 0

Sharpening 
Kernel



Convolution Examples

59

-1 -1 -1

-1 8 -1

-1 -1 -1

Edge 
Detector



2D Convolution
• Basic idea:

– Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
– Slide this over an image and compute the “inner product” (similarity) of F and the 

corresponding field of the image, and replace the pixel in the center of the field with the 
output of the inner product operation

• Key point:
– Different convolutions extract different types of low-level “features” from an image
– All that we need to vary to generate these different features is the weights of F

Slide adapted from William Cohen

y11 = α11x11 + α12x12 + α21x21 + α22x22 + α0

y12 = α11x12 + α12x13 + α21x22 + α22x23 + α0

y21 = α11x21 + α12x22 + α21x31 + α22x32 + α0

y22 = α11x22 + α12x23 + α21x32 + α22x33 + α0

x11 x12 x13

x21 x22 x23

x31 x32 x33

α11 α12

α21 α22

y11 y12

y21 y22

Example: 1 input channel, 1 output channel

Input Kernel Output



DOWNSAMPLING
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

62

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0
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1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3
1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

66

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3
1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0
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3 3 1

3 1 0

1 0 0

1 1
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Downsampling by Averaging
• Downsampling by averaging is a special case of convolution 

where the weights are fixed to a uniform distribution
• The example below uses a stride of 2
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0
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3/4 3/4 1/4

3/4 1/4 0

1/4 0 0

1/4 1/4

1/4 1/4



Max-Pooling
• Max-pooling with a stride > 1 is another form of downsampling
• Instead of averaging, we take the max value within the same range as 

the equivalently-sized convolution
• The example below uses a stride of 2
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Max-
pooling

Input Image
Max-Pooled 

Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

1 1 1

1 1 0

1 0 0

xi,j xi,j+1

xi+1,j xi+1,j+1



CONVOLUTIONAL NEURAL NETS
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

76

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

77

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

• Convolutional Neural Networks (CNNs) provide 
another form of decision function

• Let’s see what they look like…



Convolutional Layer
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0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

.4 .5 .5 .5 .4

.4 .2 .3 .6 .3

.5 .4 .4 .2 .1

.5 .6 .2 .1 0

.4 .3 .1 0 0

θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

Learned
Convolution

Input Image

Convolved Image

CNN key idea: 
Treat convolution matrix as 
parameters and learn them!



Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies

79

Architecture #1: LeNet-5



TRAINING CNNS
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

81

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

82

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

• Q: Now that we have the CNN 
as a decision function, how do 
we compute the gradient?

• A: Backpropagation of course!



SGD for CNNs
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Given x, y∗ and parameters θ = [α,β,W]

J = !(y, y∗)

y = softmax(z(5))

z(5) = linear(z(4),W)

z(4) = relu(z(3))

z(3) = conv(z(2),β)

z(2) = max‐pool(z(1))

z(1) = conv(x,α)

Algorithm 1 Stochastic Gradient Descent (SGD)
1: Initialize θ
2: while not converged do
3: Sample i ∈ {1, . . . , N}
4: Forward: y = hθ(x(i)),
5: J(θ) = !(y, y(i))
6: Backward: Compute∇θJ(θ)
7: Update: θ ← θ − η∇θJ(θ)

Example: Simple CNN Architecture



LAYERS OF A CNN
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ReLU Layer
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Softmax Layer
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Input: x ∈ R
K , Output: y ∈ R

K

Forward: for each i,

yi =
exp(xi)

∑K

k=1
exp(xk)

Backward: for each j,

∂J

∂xj

=

K
∑

i=1

∂J

∂yi

∂yi

∂xj

where

∂yi

∂xj

=

{

yi(1− yi) if i = j

−yiyj otherwise
…

…

Output

Input

Hidden Layer

…



Fully-Connected Layer
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2D Convolution

y
(1)
11 = α

(1)
11 x11 + α

(1)
12 x12 + α

(1)
21 x21 + α

(1)
22 x22 + α

(1)
0

y
(1)
12 = α

(1)
11 x12 + α

(1)
12 x13 + α

(1)
21 x22 + α

(1)
22 x23 + α

(1)
0

y
(1)
21 = α

(1)
11 x21 + α

(1)
12 x22 + α

(1)
21 x31 + α

(1)
22 x32 + α

(1)
0

y
(1)
22 = α

(1)
11 x22 + α

(1)
12 x23 + α

(1)
21 x32 + α

(1)
22 x33 + α

(1)
0

x11 x12 x13

x21 x22 x23

x31 x32 x33

α
(1)
11 α

(1)
12

α
(1)
21 α

(1)
22

y
(1)
11 y

(1)
12

y
(1)
21 y

(1)
22

Example: 1 input channel, 2 output channels

Input Kernel Output
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y
(2)
11 = α

(2)
11 x11 + α

(2)
12 x12 + α
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22 x22 + α
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21 α
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11 y
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21 y

(2)
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Convolution of a Color Image
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Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201623

A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

• Color images consist of 3 floats per pixel for 
RGB (red, green blue) color values

• Convolution must also be 3-dimensional



Animation of 3D Convolution

91
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

http://cs231n.github.io/convolutional-networks/ 

http://cs231n.github.io/convolutional-networks/


Convolutional Layer
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Max-Pooling Layer
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y11 = max(x11, x12, x21, x22)

y12 = max(x12, x13, x22, x23)

y21 = max(x21, x22, x31, x32)

y22 = max(x22, x23, x32, x33)

x11 x12 x13

x21 x22 x23

x31 x32 x33

y11 y12

y21 y22

Example: 1 input channel, 1 output channel, stride of 1

Input Pool Size Output



Max-Pooling Layer
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Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies
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Architecture #1: LeNet-5



Architecture #2: AlexNet

98

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input 
image 

(pixels)

• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax



CNNs for Image Recognition
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(slide from Kaiming He’s recent presentation)
Slide from Kaiming He



Convolutional Neural Network (CNN)
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Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/ 



Convolutional Neural Network (CNN)
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Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/ 



Convolutional Neural Network (CNN)
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Typical Architectures
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1x1 conv, 256
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AlexNet, 8 layers
(ILSVRC 2012)

Revolution of Depth
ResNet, 152 layers

(ILSVRC 2015)

3x3 conv, 64

3x3 conv, 64, pool/2

3x3 conv, 128

3x3 conv, 128, pool/2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256, pool/2
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3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

fc, 4096
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5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

VGG, 19 layers
(ILSVRC 2014)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.



In-Class Poll

Question:
Why do many layers 
used in computer 
vision not have 
location specific 
parameters?
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Answer:



Convolutional Layer
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0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

θ11 θ12

θ21 θ22

2x2 
Convolution

Input Image
θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

3x3 
Convolution

θ11 θ12 θ13 θ14

θ21 θ22 θ23 θ24

θ31 θ32 θ33 θ34

θ41 θ42 θ43 θ44

4x4 
Convolution

For a convolutional layer, how do we pick the kernel size 
(aka. the size of the convolution)?

• A small kernel can only see a very small part of the image, 
but is fast to compute

• A large kernel can see more of the image, but at the 
expense of speed



CNN VISUALIZATIONS
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Visualization of CNN
https://adamharley.com/nn_vis/cnn/2d.html 

https://adamharley.com/nn_vis/cnn/2d.html


MNIST Digit Recognition with CNNs 
(in your browser)
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html 

Figure from Andrej Karpathy

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html


CNN Summary

CNNs
– Are used for all aspects of computer vision, and have won 

numerous pattern recognition competitions
– Able learn interpretable features at different levels of abstraction
– Typically, consist of convolution layers, pooling layers, 

nonlinearities, and fully connected layers
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Deep Learning Objectives
You should be able to…
• Implement the common layers found in Convolutional Neural 

Networks (CNNs) such as linear layers, convolution layers, max-
pooling layers, and rectified linear units (ReLU)

• Explain how the shared parameters of a convolutional layer 
could learn to detect spatial patterns in an image

• Describe the backpropagation algorithm for a CNN
• Identify the parameter sharing used in a basic recurrent neural 

network, e.g. an Elman network
• Apply a recurrent neural network to model sequence data
• Differentiate between an RNN and an RNN-LM
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