

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Convolutional Neural Networks (CNNs)

Matt Gormley, Henry Chai, Hoda Heidari Lecture 17 Mar. 20, 2024

Reminders

- Homework 6: Learning Theory & Generative Models
 - Out: Mon, Mar 18
 - Due: Sun, Mar 24 at 11:59pm

THE BIG PICTURE

ML Big Picture

b

Ca

0

0

b

cont.

Learning Paradigms:

What data is available and when? What form of prediction?

- supervised learning
- unsupervised learning
- semi-supervised learning
- reinforcement learning
- active learning
- imitation learning
- domain adaptation
- online learning
- density estimation
- recommender systems
- feature learning
- manifold learning
- dimensionality reduction
- ensemble learning
- distant supervision
- hyperparameter optimization

Theoretical Foundations:

What principles guide learning?

- **probabilistic**
- information theoretic
- evolutionary search
- ML as optimization

roblem Formulation:					
Vhat is the structu	are of our output prediction?				
oolean	Binary Classification				
ategorical	Multiclass Classification				
rdinal	Ordinal Classification				
eal	Regression				
rdering	Ranking				
ultiple discrete	Structured Prediction				
ultiple continuous	e.g. dynamical systems)				
oth discrete &	(e.g. mixed graphical models)				

Facets of Building ML Systems:

How to build systems that are robust, efficient, adaptive, effective?

- 1. Data prep
- 2. Model selection
- 3. Training (optimization / search)
- 4. Hyperparameter tuning on validation data
- 5. (Blind) Assessment on test data

Big Ideas in ML:

Which are the ideas driving development of the field?

- inductive bias
- generalization / overfitting
- bias-variance decomposition

Application Areas

Key challenges?

Medicine,

Robotics.

Vision, I Search

omputei

ā

S

Z

- generative vs. discriminative
- deep nets, graphical models
- PAC learning
- distant rewards

Classification and Regression: The Big Picture

Recipe for Machine Learning

- 1. Given data $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$
- 2. (a) Choose a decision function $h_{\theta}(\mathbf{x}) = \cdots$ (parameterized by θ)
 - (b) Choose an objective function $J_D(\theta) = \cdots$ (relies on data)
- 3. Learn by choosing parameters that optimize the objective $J_{\mathcal{D}}(\boldsymbol{ heta})$

$$\hat{\boldsymbol{\theta}} \approx \operatorname*{argmin}_{\boldsymbol{\theta}} J_{\mathcal{D}}(\boldsymbol{\theta})$$

4. Predict on new test example $\mathbf{x}_{\mathsf{new}}$ using $h_{\boldsymbol{\theta}}(\cdot)$

 $\hat{y} = h_{\boldsymbol{\theta}}(\mathbf{x}_{\mathsf{new}})$

Optimization Method

- Gradient Descent: $\theta \rightarrow \theta \gamma \nabla_{\theta} J(\theta)$
- SGD: $\theta \to \theta \gamma \nabla_{\theta} J^{(i)}(\theta)$ for $i \sim \text{Uniform}(1, \dots, N)$ where $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} J^{(i)}(\theta)$
- mini-batch SGD
- closed form
 - 1. compute partial derivatives
 - 2. set equal to zero and solve

Decision Functions

- Perceptron: $h_{\theta}(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$
- Linear Regression: $h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}$
- Discriminative Models: $h_{\theta}(\mathbf{x}) = \operatorname*{argmax}_{y} p_{\theta}(y \mid \mathbf{x})$
 - Logistic Regression: $p_{\theta}(y = 1 \mid \mathbf{x}) = \sigma(\theta^T \mathbf{x})$
 - Neural Net (classification): $p_{\theta}(y = 1 | \mathbf{x}) = \sigma((\mathbf{W}^{(2)})^T \sigma((\mathbf{W}^{(1)})^T \mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)})$

• Generative Models:
$$h_{\theta}(\mathbf{x}) = \operatorname*{argmax}_{\mathcal{H}} p_{\theta}(\mathbf{x}, y)$$

• Naive Bayes:
$$p_{\theta}(\mathbf{x}, y) = p_{\theta}(y) \prod_{m=1}^{M} p_{\theta}(x_m \mid y)$$

Objective Function

• MLE:
$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{N} \log p(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$$

• MCLE:
$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{N} \log p(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)})$$

- L2 Regularized: $J'(\theta) = J(\theta) + \lambda ||\theta||_2^2$ (same as Gaussian prior $p(\theta)$ over parameters)
- L1 Regularized: $J'(\theta) = J(\theta) + \lambda ||\theta||_1$ (same as Laplace prior $p(\theta)$ over parameters)

Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and **recurrent neural networks** (RNNs) are simply fancy computation graphs (aka. hypotheses or decision functions).

Our recipe also applies to these models and (again) relies on the **backpropagation algorithm** to compute the necessary gradients.

BACKGROUND: COMPUTER VISION

Example: Image Classification

- ImageNet LSVRC-2011 contest:
 - Dataset: 1.2 million labeled images, 1000 classes
 - Task: Given a new image, label it with the correct class
 - Multiclass classification problem
- Examples from http://image-net.org/

Feature Engineering for CV

Edge detection (Canny)

Corner Detection (Harris)

Scale Invariant Feature Transform (SIFT)

Figures from http://opencv.org

Figure from Lowe (1999) and Lowe (2004)

Example: Image Classification

CNNs for Image Recognition

Feed-forward Neural Networks for Computer Vision

Feed-forward Neural Networks for Computer Vision

CONVOLUTION

- Basic idea:
 - Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
 - Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation
- Key point:
 - Different convolutions extract different types of low-level "features" from an image
 - All that we need to vary to generate these different features is the weights of F

Example: 1 input channel, 1 output channel

 $y_{11} = \alpha_{11}x_{11} + \alpha_{12}x_{12} + \alpha_{21}x_{21} + \alpha_{22}x_{22} + \alpha_{0}$ $y_{12} = \alpha_{11}x_{12} + \alpha_{12}x_{13} + \alpha_{21}x_{22} + \alpha_{22}x_{23} + \alpha_{0}$ $y_{21} = \alpha_{11}x_{21} + \alpha_{12}x_{22} + \alpha_{21}x_{31} + \alpha_{22}x_{32} + \alpha_{0}$ $y_{22} = \alpha_{11}x_{22} + \alpha_{12}x_{23} + \alpha_{21}x_{32} + \alpha_{22}x_{33} + \alpha_{0}$

Slide adapted from William Cohen

- Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

Convolution

0	0	0
0	1	1
0	1	0

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

- Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

Convolution

0	1	1
0	1	0

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

- Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

- Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

- Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

			0	0	0	0
	1	1	1	1	1	0
	1		0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

- Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

0				0	0	0
0		1	1	1	1	0
0		0		1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

- Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

0	0				0	0
0	1		1	1	1	0
0	1		0		0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

- Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

0	0	0				0
0	1	1		1	1	0
0	1	0		1		0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

- Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

0	0	0	0			
0	1	1	1		1	0
0	1	0	0		0	
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

- Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

0	0	0	0	0	0	0
			1	1	1	0
	1	0	0	1	0	0
	1		1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

- Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

0	0	0	0	0	0	0
0				1	1	0
0		0	0	1	0	0
0		0		0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

- Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

Padding

Suppose you want to preserve the size of the original input image in your convolved image.

You can accomplish this by padding your input image with zeros.

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

Identity Convolution

0	0	0
0	1	0
0	0	0

1	1	1	1	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	0	0	0	0

Padding

Suppose you want to preserve the size of the original input image in your convolved image.

You can accomplish this by padding your input image with zeros.

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	0	0
0	0	1	0	0	1	0	0	0
0	0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Input Image

Identity Convolution							
0 0 0							
0	1	0					
0	0	0					

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

A **convolution matrix** (aka. kernel) is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	0	0
0	0	1	0	0	1	0	0	0
0	0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Input Image

Identity Convolution								
0 0 0								
0	1	0						
0	0	0						

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

A **convolution matrix** (aka. kernel) is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	0	0
0	0	1	0	0	1	0	0	0
0	0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Input Image

Blurring Convolution									
.1 .1 .1									
.1	.2	.1							
.1	.1	.1							

.1	.2	•3	•3	•3	.2	.1
.2	•4	•5	•5	•5	•4	.1
•3	•4	.2	•3	.6	•3	.1
•3	•5	•4	.4	.2	.1	0
•3	•5	.6	.2	.1	0	0
.2	•4	.3	.1	0	0	0
.1	.1	.1	0	0	0	0

A **convolution matrix** (aka. kernel) is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

					_			
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	0	0
0	0	1	0	0	1	0	0	0
0	0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Input Image

-1	0	1
-1	0	1

-1	-1	0	0	0	1	1
-2	-1	1	-1	0	2	1
-3	-1	1	-1	1	2	1
-3	-1	2	0	1	1	0
-3	-1	2	1	1	0	0
-2	-1	2	1	0	0	0
-1	0	1	0	0	0	0

A **convolution matrix** (aka. kernel) is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	0	0
0	0	1	0	0	1	0	0	0
0	0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Input Image

0

1

0

1

-1	-2	-3	-3	-3	-2	-1
-1	-1	-1	-1	-1	-1	0
0	1	1	2	2	2	1
0	-1	-1	0	1	1	0
0	0	1	1	1	0	0
1	2	2	1	0	0	0
1	1	1	0	0	0	0

Original Image

Smoothing Convolution

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Gaussian Blur

.01	.04	.06	.04	.01
.04	.19	.25	.19	.04
.06	.25	•37	.25	.06
.04	.19	.25	.19	.04
.01	.04	.06	.04	.01

Sharpening Kernel

0	-1	0
-1	5	-1
0	-1	0

Edge Detector

-1	-1	-1
-1	8	-1
-1	-1	-1

2D Convolution

- Basic idea:
 - Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)
 - Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation
- Key point:
 - Different convolutions extract different types of low-level "features" from an image
 - All that we need to vary to generate these different features is the weights of F

Example: 1 input channel, 1 output channel

 $y_{11} = \alpha_{11}x_{11} + \alpha_{12}x_{12} + \alpha_{21}x_{21} + \alpha_{22}x_{22} + \alpha_{0}$ $y_{12} = \alpha_{11}x_{12} + \alpha_{12}x_{13} + \alpha_{21}x_{22} + \alpha_{22}x_{23} + \alpha_{0}$ $y_{21} = \alpha_{11}x_{21} + \alpha_{12}x_{22} + \alpha_{21}x_{31} + \alpha_{22}x_{32} + \alpha_{0}$ $y_{22} = \alpha_{11}x_{22} + \alpha_{12}x_{23} + \alpha_{21}x_{32} + \alpha_{22}x_{33} + \alpha_{0}$

Slide adapted from William Cohen

DOWNSAMPLING

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

Downsampling by Averaging

- Downsampling by averaging is a special case of convolution where the weights are fixed to a uniform distribution
- The example below uses a stride of 2

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

Max-Pooling

• Max-pooling with a stride > 1 is another form of downsampling

Y

- Instead of averaging, we take the max value within the same range as the equivalently-sized convolution
- The example below uses a stride of 2

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Maxpooling X_{i,j} X_{i,j+1} X_{i+1,j} X_{i+1,j+1}

Max-Pooled Image

$$egin{aligned} & x_{ij}, \ & x_{i,j+1}, \ & x_{i+1,j}, \ & x_{i+1,j+1} \end{aligned}$$

CONVOLUTIONAL NEURAL NETS

Background

A Recipe for Machine Learning

1. Given training data: $\{m{x}_i,m{y}_i\}_{i=1}^N$

3. Define goal:

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^N \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

2. Choose each of these:

– Decision function

 $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$

Loss function

 $\ell(\hat{\pmb{y}}, \pmb{y}_i) \in \mathbb{R}$

4. Train with SGD:(take small stepsopposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Background

A Recipe for Machine Learning

- Convolutional Neural Networks (CNNs) provide another form of **decision function**
- Let's see what they look like...

2. choose each of these.

- Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

 $\ell(\hat{\pmb{y}}, \pmb{y}_i) \in \mathbb{R}$

Train with SGD:
 ke small steps
 opposite the gradient)

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Convolutional Layer

•4	•5	•5	•5	•4
•4	.2	•3	.6	•3
•5	•4	•4	.2	.1
•5	.6	.2	.1	0
•4	•3	.1	0	0

Convolutional Neural Network (CNN)

- Typical layers include:
 - Convolutional layer
 - Max-pooling layer
 - Fully-connected (Linear) layer
 - ReLU layer (or some other nonlinear activation function)
 - Softmax
- These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

7

TRAINING CNNS

Background

A Recipe for Machine Learning

1. Given training data: $\{m{x}_i,m{y}_i\}_{i=1}^N$

3. Define goal:

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^N \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

2. Choose each of these:

– Decision function

 $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$

Loss function

 $\ell(\hat{\pmb{y}}, \pmb{y}_i) \in \mathbb{R}$

4. Train with SGD:(take small stepsopposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Background

A Recipe for **Machine Learning**

1. Given training data: 3. Define goal:

2. Choose each of t

Decision function

 $\hat{y} = f_{\theta}(x_i)$

Loss function

 $\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}_i) \in \mathbb{R}$

- $\{x_i, y_i\}_{i=1}^N$ Q: Now that we have the CNN as a decision function, how do we compute the gradient?
 - A: Backpropagation of course!

opposite the gradient)
$$\boldsymbol{\theta}^{(t)} = -\eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

SGD for CNNs

Example: Simple CNN Architecture

Given \mathbf{x}, \mathbf{y}^* and parameters $oldsymbol{ heta} = [oldsymbol{lpha}, oldsymbol{eta}, \mathbf{W}]$

$$J = \ell(\mathbf{y}, \mathbf{y}^*)$$

$$\mathbf{y} = \operatorname{softmax}(\mathbf{z}^{(5)})$$

$$\mathbf{z}^{(5)} = \operatorname{linear}(\mathbf{z}^{(4)}, \mathbf{W})$$

$$\mathbf{z}^{(4)} = \operatorname{relu}(\mathbf{z}^{(3)})$$

$$\mathbf{z}^{(3)} = \operatorname{conv}(\mathbf{z}^{(2)}, \boldsymbol{\beta})$$

$$\mathbf{z}^{(2)} = \operatorname{max-pool}(\mathbf{z}^{(1)})$$

$$\mathbf{z}^{(1)} = \operatorname{conv}(\mathbf{x}, \boldsymbol{\alpha})$$

Algorithm 1 Stochastic Gradient Descent (SGD)

- 1: Initialize heta
- 2: while not converged do
- 3: Sample $i \in \{1, ..., N\}$

4: Forward:
$$\mathbf{y} = h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})$$
,
5: $J(\boldsymbol{\theta}) = \ell(\mathbf{y}, \mathbf{y}^{(i)})$

- 6: Backward: Compute $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
- 7: Update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} \eta \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

LAYERS OF A CNN

Softmax Layer

Input: $\mathbf{x} \in \mathbb{R}^{K}$, Output: $\mathbf{y} \in \mathbb{R}^{K}$

Forward: for each *i*,

$$y_i = \frac{\exp(x_i)}{\sum_{k=1}^{K} \exp(x_k)}$$

Backward: for each *j*,

$$\frac{\partial J}{\partial x_j} = \sum_{i=1}^{K} \frac{\partial J}{\partial y_i} \frac{\partial y_i}{\partial x_j}$$

where

$$\frac{\partial y_i}{\partial x_j} = \begin{cases} y_i(1-y_i) & \text{if } i=j\\ -y_iy_j & \text{otherwise} \end{cases}$$

Fully-Connected Layer

2D Convolution

Example: 1 input channel, 2 output channels

$$y_{11}^{(1)} = \alpha_{11}^{(1)} x_{11} + \alpha_{12}^{(1)} x_{12} + \alpha_{21}^{(1)} x_{21} + \alpha_{22}^{(1)} x_{22} + \alpha_{0}^{(1)}$$

$$y_{12}^{(1)} = \alpha_{11}^{(1)} x_{12} + \alpha_{12}^{(1)} x_{13} + \alpha_{21}^{(1)} x_{22} + \alpha_{22}^{(1)} x_{23} + \alpha_{0}^{(1)}$$

$$y_{21}^{(1)} = \alpha_{11}^{(1)} x_{21} + \alpha_{12}^{(1)} x_{22} + \alpha_{21}^{(1)} x_{31} + \alpha_{22}^{(1)} x_{32} + \alpha_{0}^{(1)}$$

$$y_{22}^{(1)} = \alpha_{11}^{(1)} x_{22} + \alpha_{12}^{(1)} x_{23} + \alpha_{21}^{(1)} x_{32} + \alpha_{22}^{(1)} x_{33} + \alpha_{0}^{(1)}$$

$$y_{11}^{(2)} = \alpha_{11}^{(2)} x_{11} + \alpha_{12}^{(2)} x_{12} + \alpha_{21}^{(2)} x_{21} + \alpha_{22}^{(2)} x_{22} + \alpha_{0}^{(2)}$$

$$y_{12}^{(2)} = \alpha_{11}^{(2)} x_{12} + \alpha_{12}^{(2)} x_{13} + \alpha_{21}^{(2)} x_{22} + \alpha_{22}^{(2)} x_{23} + \alpha_{0}^{(2)}$$

$$y_{21}^{(2)} = \alpha_{11}^{(2)} x_{21} + \alpha_{12}^{(2)} x_{22} + \alpha_{21}^{(2)} x_{31} + \alpha_{22}^{(2)} x_{32} + \alpha_{0}^{(2)}$$

$$y_{22}^{(2)} = \alpha_{11}^{(2)} x_{22} + \alpha_{12}^{(2)} x_{23} + \alpha_{21}^{(2)} x_{32} + \alpha_{22}^{(2)} x_{33} + \alpha_{0}^{(2)}$$

Convolution of a Color Image

- Color images consist of 3 floats per pixel for RGB (red, green blue) color values
- Convolution must also be 3-dimensional

activation map

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

Animation of 3D Convolution

http://cs231n.github.io/convolutional-networks/

Convolutional Layer

Max-Pooling Layer

Example: 1 input channel, 1 output channel, stride of 1

$$y_{11} = \max(x_{11}, x_{12}, x_{21}, x_{22})$$
$$y_{12} = \max(x_{12}, x_{13}, x_{22}, x_{23})$$
$$y_{21} = \max(x_{21}, x_{22}, x_{31}, x_{32})$$
$$y_{22} = \max(x_{22}, x_{23}, x_{32}, x_{33})$$

- Typical layers include:
 - Convolutional layer
 - Max-pooling layer
 - Fully-connected (Linear) layer
 - ReLU layer (or some other nonlinear activation function)
 - Softmax
- These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

7

Architecture #2: AlexNet

CNNs for Image Recognition

Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/

Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/

Typical Architectures

VGG, 19 layers (ILSVRC 2014) ResNet, 152 layers (ILSVRC 2015) Microsoft[®]

Research

In-Class Poll

Question:

Why do many layers used in computer vision *not have* location specific parameters?

Answer:

Convolutional Layer

For a convolutional layer, how do we pick the kernel size (aka. the size of the convolution)?

A large kernel can see more of the image, but at the • expense of speed

CNN VISUALIZATIONS

Visualization of CNN

https://adamharley.com/nn_vis/cnn/2d.html

MNIST Digit Recognition with CNNs (in your browser)

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Network Visualization	
input (24x24x1) max activation: 1, min: 0 max gradient: 0.00015, min: -0.00014	Activations: Activation Gradients:
$\begin{array}{l} \mbox{conv} (24x24x8) \\ \mbox{filter size } 5x5x1, \mbox{stride 1} \\ \mbox{max activation: } 4.78388, \mbox{min: } -3.44063 \\ \mbox{max gradient: } 0.00005, \mbox{min: } -0.00006 \\ \mbox{parameters: } 8x5x5x1+8 = 208 \end{array} \qquad \mbox{Activation Gradients: } \\ \mbox{Activation Gradients: } \\ \mbox{Weights: } \\ \mbox{(*)(*)(*)(*)(*)(*)(*)(*)(*)) \\ \mbox{Weight Gradients: } \\ \mbox{(*)(*)(*)(*)(*)(*)(*)(*)(*)(*) \\ \mbox{Weight Gradients: } \\ \mbox{(*)(*)(*)(*)(*)(*)(*)(*)(*)(*) \\ \mbox{Weight Gradients: } \\ \mbox{(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*) \\ \mbox{Weight Gradients: } \\ \mbox{(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*) \\ \mbox{Weight Gradients: } \\ (*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)($	
softmax (1x1x10) max activation: 0.99768, min: 0 max gradient: 0, min: 0	Activations:
Example predictions on Test set	
4	9 ⁸ / _{7 8}

Figure from Andrej Karpathy

CNN Summary

CNNs

- Are used for all aspects of computer vision, and have won numerous pattern recognition competitions
- Able learn interpretable features at different levels of abstraction
- Typically, consist of convolution layers, pooling layers, nonlinearities, and fully connected layers

Deep Learning Objectives

You should be able to...

- Implement the common layers found in Convolutional Neural Networks (CNNs) such as linear layers, convolution layers, maxpooling layers, and rectified linear units (ReLU)
- Explain how the shared parameters of a convolutional layer could learn to detect spatial patterns in an image
- Describe the backpropagation algorithm for a CNN
- Identify the parameter sharing used in a basic recurrent neural network, e.g. an Elman network
- Apply a recurrent neural network to model sequence data
- Differentiate between an RNN and an RNN-LM