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* Announcements
* HWS5 released 10/9, due 10/27 (Friday) at 11:59 PM

Front Matter * Exam 3 scheduled
* Tuesday, December 12t from 5:30 PM to 8:30 PM

* Sign up for peer tutoring! See Piazza for more details
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https://piazza.com/class/l6xoswmdxo10m/post/985

Recall -
Theorem 1:

Finite,
Realizable Case

10/23/23

* For a finite hypothesis set H such thatc* € H
(realizable) and arbitrary distribution p*, if the number

of labelled training data points satisfies

N > %(ln(l?—[l) +1n (%))

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€



Recall -
Theorem 1:

Finite,
Realizable Case
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* For a finite hypothesis set H such thatc* € H
(realizable) and arbitrary distribution p*, if the number

of labelled training data points satisfies

N = % (ln(l?—[l) + In (%))

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€

- Making the bound tight and solving for € gives...



* For a finite hypothesis set H such that c* € H

(realizable) and arbitrary distribution p*, given a training

Statistical dataset S where |S| = N, all h € H with R(h) = 0 have
' 1 1
Learning R(h) < N(ln(l}fl) +1n (E))

Theory
Corollary with probability at least 1 — 6.
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Recall -
Theorem 2:

Finite,
Agnostic Case
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* For a finite hypothesis set H and arbitrary distribution

p*, if the number of labelled training data points satisfies

N > zi(ln(lﬂ-fl) + In (E))

€2 )
then with probability at least 1 — §, all h € H satisfy
IR(h) —R(h)| <€

* Bound is inversely quadratic in €, e.g., halving € means

we need four times as many labelled training data points



* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset S where |S| = N,allh € H

Statistical have
Learning

R(R) < R(h) + w % (1n(|}[|) +1In @)

with probability at least 1 — 6.

Theory
Corollary
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* For a finite hypothesis set H and arbitrary distribution
p*, given a training data set S where |S| = N,allh € H

have

What happens

R(R) < R(h) + w % (1n(|}[|) +1In @)

with probability at least 1 — 6.

when ?
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Labellings
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* Given some finite set of data points § = {x¥), ..., (")}

and some hypothesis h € H, applying h to each point in

S results in a labelling

. [h(x(l)), e h(x(N))] is a vector of N +1’s and -1’s
(recall: our discussion of PAC learning assumes

binary classification)

* Given § = {x(l), ...,x(N)}, each hypothesis in H

induces a labelling but not necessarily a unique labelling

* The set of labellings induced by Hon S is
7(S) = {[R(xD), ..., h(x™)] | h € 7)



Example: Labellings

H = {h1; h2' h3}
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Example: Labellings

H = {hli h2' h3}

[hy (x), hy (22), by (x(2)), Ry (x®)]
=(—-1,+1,-1,+1)
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Example: Labellings

H = {hli h2' h3}

[hy (x), hy (22), by (x(2)), Ry (x®)]
=(—-1,+1,-1,+1)
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Example: Labellings

H = {hli h2' h3}

[hy (x), hy (22), by (x(2)), Ry (x®)]
=(+1,+1,—-1,—-1)
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Example: Labellings

H = {hl' hZi h3}

H(S)
= {[+1,+1,—-1,—-1],[-1,+1,—1,+1]}

[H (S| =2
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Example: Labellings

H = {hl! hz, hB}

H(S)
={[+1,+1,—-1,—1]}

[H S| =1

10/23/23



VC-Dimension

10/23/23

* H(S) is the set of all labellings induced by Hon S

- If |S| = N, then |H(S)]| < 2V
- I shatters S if |H(S)| = 2V

* The VC-dimension of H, VC (H), is the size of the largest

set S that can be shattered by H.

* If H can shatter arbitrarily large finite sets, then
VC(H) = oo

* To prove that VC(H) = d, you need to show

1. 3 some set of d data points that H can shatter and
2. A asetofd+ 1data points that H can shatter

16



VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?

17



VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

- What is VC (7)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?

18



VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

- What is VC (7)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
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VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

- What is VC (7)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
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VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

- What is VC (7)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
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VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

- What is VC (7)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
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VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

* Whatis VC(H)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
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VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

* Whatis VC(H)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
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VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

®
°
o [ [ o
° °
51 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
°
® ® [ o
O °
51 52
All points on the At least one point

convex hull inside the convex hull

26



VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
°
o ® [ o
o °
51 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
°
O O ® ®
o °
|H (S| =14 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
O
o @ ® ®
o O
|H (S| =14 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
o
o @ ® ®
o o
|H (S| =14 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
o
o @ ® ®
o o
[FH (S| =14 [F(S2)] = 14
All points on the At least one point

convex hull inside the convex hull

31



VC-Dimension:

Example
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- x € R? and I = all 2-dimensional linear separators

VC(H) =3

* Can H shatter some set of 1 point?

* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
o
o @ ® ®
o o
[FH (S| =14 [F(S2)] = 14
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R% and H = all d-dimensional linear separators

CVC(H)=d + 1

33



- x € Rand H = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

VC-Dimension: « .

Example

10/23/23 34



VC-Dimension:

Example
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- x € Rand H = all 1-dimensional positive rays, i.e., all

hypotheses of the form h(x; a) = sign(x — a)

X+
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VC-Dimension:

Example

10/23/23

- x € Rand H = all 1-dimensional positive rays, i.e., all

hypotheses of the form h(x; a) = sign(x — a)

X+
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VC-Dimension:

Example
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- x € Rand H = all 1-dimensional positive rays, i.e., all

hypotheses of the form h(x; a) = sign(x — a)

xD @
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VC-Dimension:

Example
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- x € Rand H = all 1-dimensional positive rays, i.e., all

hypotheses of the form h(x; a) = sign(x — a)

xD @
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VC-Dimension:

Example
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- x € Rand H = all 1-dimensional positive rays, i.e., all

hypotheses of the form h(x; a) = sign(x — a)

x| @
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VC-Dimension:

Example

10/23/23

- x € Rand H = all 1-dimensional positive rays, i.e., all

hypotheses of the form h(x; a) = sign(x — a)

"VC(H) =1

40



VC-Dimension:

Example
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- x € Rand H = all 1-dimensional positive intervals

41



- x € Rand H = all 1-dimensional positive intervals

Poll Question 1:

What is VC(H)?

A.0

B. 1

C. 1.5 (TOXIC)
D. 2

. 3

10/23/23 42



VC-Dimension:

Example
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- x € Rand H = all 1-dimensional positive intervals

“VC(H) =2

43



Theorem 3:
Vapnik-

Chervonenkis
(VC)-Bound
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* Infinite, realizable case: for any hypothesis set H such

that ¢™ € H and arbitrary distribution p*, if the number

of labelled training data points satisfies

=0 {¢(revors(() +re(3)

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€

44



Statistical
Learning

Theory
Corollary 3
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* Infinite, realizable case: for any hypothesis set H such
that ¢™ € H and arbitrary distribution p*, given a training
dataset S where |S| = N, all h € H with R(h) = 0 have

w20 (3{vc00 08(s) + 8 (2)

with probability at least 1 — 6.

45



Theorem 4:
Vapnik-

Chervonenkis
(VC)-Bound
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* Infinite, agnostic case: for any hypothesis set H and

arbitrary distribution p*, if the number of labelled

training data points satisfies

N =0 (Elz (VC(}[) + log (%)))

then with probability at least 1 — 6, all h € H have
IR(h) —R(h)| < e

46



Statistical
Learning

Theory
Corollary 4

10/23/23

* Infinite, agnostic case: for any hypothesis set H and

arbitrary distribution p*, given a training dataset S
where |S| = N, all h € H have

R(h) <R(h)+0 . %(VC(?—[) + log (%))

with probability at least 1 — 6.

47



How well does
h generalize?

. . N J
Approximation Y |
Generalization ) 1 1
T deoff R(h) < }j(\h) +0 VN(I/C(}r) + log (5))

s N

How well does h
approximate c¢*?

10/23/23 48



Increases as
VC(H) increases

: : N J
Approximation e

Generalization ) 1 N
T deoff R(h)S}j(\h)+0 VN(VC(:H)Hog(g))
- N

Decreases as
VC(H) increases

10/23/23 49



Can we use
this corollary to

guide model
selection?

10/23/23

* Infinite, agnostic case: for any hypothesis set H and

arbitrary distribution p*, given a training dataset S
where |S| = N, all h € H have

R(h) <R(h)+0 . %(VC(?—[) + log (%))

with probability at least 1 — 6.

50



Learning
Theory and

Model
Selection

10/23/23

error
>

~ 1
R(h)+ 0 (VN(VC(}[) +log(

)

0 (V %(VC(S’-[) + 1og(

R(h) (training error)

VC (%)

)

)
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Learning
Theory and

Model
Selection

10/23/23

error

>

rew+o| [ (v +10s(1))

\ N )
R(h) (true error)

0 V %(VC(S’-[) +log (%))

R(h) (training error)
|

>
Best tradeoff VE(H)

* How can we find this “best tradeoff” for linear separators?

 Use a regularizer! By (effectively) reducing the number of

features our model considers, we reduce its VC-dimension.

52



Learning
Theory

Learning
Objectives

10/23/23

You should be able to...

* Identify the properties of a learning setting and
assumptions required to ensure low generalization error

* Distinguish true error, train error, test error

* Define PAC and explain what it means to be
approximately correct and what occurs with high
probability

- Apply sample complexity bounds to real-world machine
learning examples

- Theoretically motivate regularization

53
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ML in Societal Applications

Deep learning is being used to predict critical COVID-19 cases

8 WAYS MACHINE LEARNING WILL T T A N -
IMPROVE EDUCATION . o .
’ k) Artificial Intelligence and

Accessibility: Examples of a
Technology that Serves People with
_Disabilities

s

Can an@gorithin el
When-ids Are in Dangg

Child protective agencies are haunted when they fail to v

save kids. Pittsburgh officials believe a new data analysis o v a SRveow

program is helping them make better judgment calls. €he Newl Your Future Doctor May Not be
Human. This Is the Rise of Al in
Medicine.

— ‘te C h 9] |’| d Features Technology Innovation Partner Zone the techies TheUpshot From mental health apps to robot surgeons, artificial intelligence is already
FROM IDG Ch[]ngmg the prGCtiCB of medicine.

ROBO RECRUITING

) g ok momtonFsre _ Can an Algorithm Hire
Researcher explains how algorithms can Better Than a Human?
create a fairer legal system )

Home ) Features ) Emerging tech & innovation Features

By Claire Cain Miller



HOME > STRATEGY

| Artificial intelligence is slated to disrupt 4.5 million jobs for
Kevin Petrasic | Benjamin Sau African Americans, who have a 10% greater likelihood of

automation-based job loss than other workers
Algorithms and bias: What | j
lenders need to know

m Email address ‘ ‘ 2IP code ] :

unintentional BECOMEAMEMBER / RENEW / TAKEACT

The Switch

Wanted: The ‘perfect babysitter.” Must
pass Al scan for respect and attitude.

How Facebook Is Giving Sex Discrimination in
Employment Ads a New Life

By Galen Sherwin, ACLU Women's Rights Project
£ SEPTEMBER 18, 2018 10:00 AM

MEDICAL MALAISE

If you’re not a white male, artificial
e - intelligence’s use in healthcare
| €he New Jork Times could be dangerous

LR.S. Changes Audit Practice That
Discriminated Against Black
Taxpayers

The agency will overhaul how it scrutinizes returns that claim the

Machine Bias

There's software used across the country to predict future criminals. And
it's biased against blacks.

earned-income tax credit, which is aimed at alleviating poverty.

by Julia Angwin, Jeff Larso uren Kirchner, ProPublica




Societal Goals

Foster:
Productivity and efficiency gains

Innovation and economic growth

Due process

O

Consistency

o Traceability

O

Making choices & biases evident

Mitigate:

e Violations of human rights
O Justice, equity, and non-discrimination
O  Privacy and non-surveillance
O  Freedom of communication and
expression
O  Economic freedom

e Negative impact on human

flourishing and wellbeing
O  Loss of human sovereignty and
control

O  Human cognitive abilities
O



Al Incidents on the Rise

Summary visualisations Summary statistics
Evolution of incidents by Al principle v Incidents Articles
6264 36345
Privacy & data governance: 256
3 — [ otal ST 1768
00 | Respect of human rights: 313
42 250 Transparency & explainability: 325 | 616 3227
[
Fai :163
s B 2023-10 2023-10
= Robustness & digital security: 341
Y
S 150 Reskill or upskill: 30 616 3227
3]
E S -over-month)  23.2 5192
2 Human wellbeing: 17
r-over-quarter) 13.01 13.87
50 ‘ Performance: 94
“ Safety: 118 er year) 961.58 690.9

SEE S EES A S SRS e s S EE S *Note: Percent change is calculated based on preceding full months (i.e. the
< S N NN W O NN OOWOOWO OO OO H & N N M ™M .

S E s aa=28Ba28328838888¢8 8 current month is excluded).

AN AN AN AN AN AN AN AN AN AN AN NN NN NN NN NN

Date



Principles

Fairness
Accountability
Transparency
Safety and reliability
Privacy

o))

Safe and Effective Algorithmic

Q

Systems Discrimination

Protections

/ Al Ethics Guidelines Global Inventory

AlgorithmWatch's inventory of principles, voluntary commitments and
frameworks for an ethical use of algorithms and Al (work in progress)...

PROJECT

9 APRIL 2019

AUF DEUTSCH LESEN

#AIETHICS ~ #ETHICSGUIDELINES

Q

Data Privacy

Notice and

Explanation

Human Alternatives,
Consideration, and
Fallback



Beyond Principles

Concerns around impact:
e Economic (IP, Antitrust, labor market effects)
e Sustainability and environmental

e Eroding democratic values
o misinformation and disinformation

Concerns around the process:

e Human sovereignty, autonomy, agency, self-determination
o  Participation
o Recourse / appeal
o Mental health



Unfairness and Discrimination

Amazon scraps secret Al recruiting tool that
showed bias against women

Jeffrey Dastin 8 MIN READ - f

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZN.O) machine-learning

specialists uncovered a big problem: their new recruiting engine did not like women.

Machine Bias

There's software used across the country to predict future criminals. And
it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

El ¥ B Donate




(Outcome) Unfairness

Formal Principle of Distributive Justice:

“Equals should be treated equally, and unequals unequally, in proportion to relevant
similarities and differences.” [Aristotle, ..., Feinberg'1973]

|

Working Definition of Outcome Unfairness:

Disparate or unequal allocation of harm/benefit across socially salient, but
morally irrelevant groups of people.



Mathematical Notions of Fairness

e Group notions
o  Statistical parity
o Equality of accuracy
o Equality of false positive/false negative rates
o Equality of positive/negative predictive value

e Individual notions
o Treat similar individuals similarly.

e Counterfactual notions



Statistical/Demographic Parity

Equal selection rate across different groups:

PIY*=1|S=5]=P[Y =1|S=5,]

Equal Employment Opportunity Commission:

-

\

‘A selection rate for any race, sex, or ethnic group which is less than
four-fifths (or 80%) of the rate for the group with the highest rate will
generally be regarded by the Federal enforcement agencies as evidence
of [discrimination].”

~

)




Equality of Accuracy

e Equality of the prediction accuracy (L) across groups:
E[LGy",y) [S=si]1=E[LY", y)| S =53]

e Example: Gender shades (Buolamwini et al."18)

Gender Darker Darker Lighter Lighter Largest

Classifier Male Female Male Female Gap

B™ Microsoft 94.0% 79.2% 100% 98.3% 20.8%
I N

I FACE" 99.3% 65.5% 99.2% 94.0% 33.8%
- -

IEM 88.0% 65.3% 99.7% 92.9% 34.4%




Equality of FPR/FNR

e Equality of the False Positive Rate (FPR) across groups:
PIY"=1]Y =0, S =5,]=P[Y"=1]Y =0, S = s,]
e Equality of the False Negative Rate (FNR) across groups:
PIY"=0|Y =1, S =5,]=P[Y"=0]Y =1, S = s,]
e Equality of Odds: equal FNR and FPR simultaneously

Machine Bias

There's software used across the country to predict future criminals. And it's biased
against blacks.



Equality of PPV/NPV

e Equality of the Positive Predictive Value (PPV)
PIY=1|Y"=1,S5=5]=P[Y=1|Y"=1,S = 5]

e Equality of the Negative Predictive Value (NPV)
P[Y=0|Y"=0,S=35]=P[Y=0|Y"=0, S = s;]

e Predictive Value Parity (PVP): equal PPV and NPV simultaneously

COMPAS Risk Scales:
Demonstrating
Accuracy Equity and Predictive Parity

PERFORMANCE
oF THE COMPAS RiISK SCALES
IN BROwARD COUNTY

NORTHPOINTE INC.
RESEARCH DEPARTMENT




Common Pros and Cons

e Ignores possible correlation between Y and S.
o Allows for trading off different types of error.
e Allows laziness.
e Doesn't consider practical considerations.
o e.g., High accuracy difficult to attain for small groups



Summary of Fairness Notions w. Confusion Matrix

For each group s, form: Y — 0 Y —1
Y=0 a (true negative) b (false
positive)
Y=1 c (false negative) d (true
positive)
b+ d
o Statistical parity = Equality of a+bt+ec+d
a—+d

o Equality of accuracy = Equality of ;3" g

. Equality of FPR/FNR = Equality of — p——

at+b’ c+d
e Equality of PPV/NPV = Equality of / -
9 y d y d+b" a+c

across all s.



Individual vs. Group Fairness

e Treating people as individuals, regardless of their group membership.
e Disparate Treatment:

“Similarly situated individuals must be treated similarly.”

e Similarity must be defined with respect to the task at hand.

Example: movie casting vs. employment decisions in tech sector



Formalizing Individual Fairness

(Dwork et al. 2012):

e d(x;X): a metric defining distance between two individuals
e D:ameasure of distance between distributions
e Arandomized classifier h mapping x to A,(x) satisfies the (D, d)-Lipschitz property if vX;, X;,

D(An(xi), An(x;)) < d(X;, X; ).



Several problems with the Formulation

e Does not treat dissimilar individuals differently.

e How should we pick d and D?

e Applicable to probabilistic models, only.

e Computationally expensive (O(n?) pairwise constraints)



