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10-301/601: Introduction 
to Machine Learning
Lecture 15 – Learning 
Theory (Infinite Case)



Front Matter

� Announcements
� HW5 released 10/9, due 10/27 (Friday) at 11:59 PM

� Exam 3 scheduled

� Tuesday, December 12th from 5:30 PM to 8:30 PM

� Sign up for peer tutoring! See Piazza for more details

210/23/23

https://piazza.com/class/l6xoswmdxo10m/post/985


Recall -
Theorem 1: 
Finite, 
Realizable Case
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� For a finite hypothesis set ℋ such that 𝑐∗ ∈ ℋ
(realizable) and arbitrary distribution 𝑝∗, if the number 
of labelled training data points satisfies 

𝑁 ≥
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
/𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖
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� For a finite hypothesis set ℋ such that 𝑐∗ ∈ ℋ
(realizable) and arbitrary distribution 𝑝∗, if the number 
of labelled training data points satisfies 

𝑁 =
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
/𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

� Making the bound tight and solving for 𝜖 gives…



Statistical 
Learning 
Theory 
Corollary
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� For a finite hypothesis set ℋ such that 𝑐∗ ∈ ℋ
(realizable) and arbitrary distribution 𝑝∗, given a training 
dataset 𝑆 where 𝑆 = 𝑁, all ℎ ∈ ℋ with /𝑅 ℎ = 0 have

𝑅 ℎ ≤
1
𝑁

ln ℋ + ln
1
𝛿

with probability at least 1 − 𝛿.



Recall -
Theorem 2: 
Finite,  
Agnostic Case
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� For a finite hypothesis set ℋ and arbitrary distribution 
𝑝∗, if the number of labelled training data points satisfies 

𝑁 ≥
1
2𝜖"

ln ℋ + ln
2
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ satisfy  

𝑅 ℎ − /𝑅 ℎ ≤ 𝜖

� Bound is inversely quadratic in 𝜖, e.g., halving 𝜖 means 

we need four times as many labelled training data points



Statistical 
Learning 
Theory 
Corollary

10/23/23 7

� For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training dataset 𝑆 where 𝑆 = 𝑁, all ℎ ∈ ℋ
have

𝑅 ℎ ≤ /𝑅 ℎ +
1
2𝑁

ln ℋ + ln
2
𝛿

with probability at least 1 − 𝛿.
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� For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 where 𝑆 = 𝑁, all ℎ ∈ ℋ
have

𝑅 ℎ ≤ /𝑅 ℎ +
1
2𝑁

ln ℋ + ln
2
𝛿

with probability at least 1 − 𝛿.

What happens 
when ℋ = ∞?



Labellings

� Given some finite set of data points 𝑆 = 𝒙 # , … , 𝒙 $

and some hypothesis ℎ ∈ ℋ, applying ℎ to each point in 
𝑆 results in a labelling

� ℎ 𝒙 # , … , ℎ 𝒙 $ is a vector of 𝑁 +1’s and -1’s 

(recall: our discussion of PAC learning assumes 
binary classification)

� Given 𝑆 = 𝒙 # , … , 𝒙 $ , each hypothesis in ℋ
induces a labelling but not necessarily a unique labelling

� The set of labellings induced by ℋon 𝑆 is        

ℋ 𝑆 = ℎ 𝒙 # , … , ℎ 𝒙 $ ℎ ∈ ℋ

910/23/23



Example: Labellings

ℋ = {ℎ#, ℎ", ℎ%}
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ℋ = {ℎ#, ℎ", ℎ%}

ℎ# 𝒙 # , ℎ# 𝒙 " , ℎ# 𝒙 % , ℎ# 𝒙 (

= −1,+1,−1,+1
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Example: Labellings
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Example: Labellings
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ℋ = {ℎ#, ℎ", ℎ%}
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Example: Labellings
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ℋ = {ℎ#, ℎ", ℎ%}

ℋ 𝑆

= +1,+1,−1,−1 , −1,+1,−1,+1

ℋ 𝑆 = 2



Example: Labellings

ℋ = ℎ#, ℎ", ℎ%

ℋ 𝑆

= +1,+1,−1,−1

ℋ 𝑆 = 1
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�ℋ 𝑆 is the set of all labellings induced by ℋon 𝑆

� If 𝑆 = 𝑁, then ℋ 𝑆 ≤ 2$

�ℋ shatters 𝑆 if ℋ 𝑆 = 2$

� The VC-dimension of ℋ, 𝑉𝐶 ℋ , is the size of the largest 

set 𝑆 that can be shattered by ℋ. 

� If ℋ can shatter arbitrarily large finite sets, then 
𝑉𝐶 ℋ = ∞

� To prove that 𝑉𝐶 ℋ = 𝑑, you need to show

1. ∃ some set of 𝑑 data points that ℋ can shatter and

2. ∄ a set of 𝑑 + 1 data points that ℋ can shatter 

VC-Dimension

1610/23/23



VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 

17
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VC-Dimension: 
Example
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� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
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� Can ℋ shatter some set of 2 points? 
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19

𝑆

10/23/23



VC-Dimension: 
Example
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
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ℋ 𝑆" = 8ℋ 𝑆# = 6
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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𝑆# 𝑆"
All points on the 

convex hull
At least one point 

inside the convex hull
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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𝑆"
All points on the 

convex hull
At least one point 

inside the convex hull
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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𝑆"
All points on the 

convex hull

ℋ 𝑆# = 14
At least one point 

inside the convex hull
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
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� Can ℋ shatter some set of 4 points? 

29

𝑆"
All points on the 

convex hull

ℋ 𝑆# = 14
At least one point 

inside the convex hull
10/23/23



VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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All points on the 
convex hull

ℋ 𝑆# = 14
At least one point 

inside the convex hull
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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All points on the 
convex hull

ℋ 𝑆# = 14 ℋ 𝑆" = 14
At least one point 

inside the convex hull
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ" andℋ = all 2-dimensional linear separators 

� 𝑉𝐶 ℋ = 3
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 

32

All points on the 
convex hull

At least one point 
inside the convex hull

ℋ 𝑆# = 14 ℋ 𝑆" = 14
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ) andℋ = all 𝑑-dimensional linear separators 

� 𝑉𝐶 ℋ = 𝑑 + 1
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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All points on the 
convex hull

One point inside 
the convex hull

ℋ 𝑆# = 14 ℋ 𝑆" = 14
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VC-Dimension: 
Example

34

� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑎

10/23/23



VC-Dimension: 
Example
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑎

𝑥 "
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VC-Dimension: 
Example
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑎

𝑥 "
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VC-Dimension: 
Example
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑎

𝑥 " 𝑥 !
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VC-Dimension: 
Example
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑥 " 𝑥 !

𝑎
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VC-Dimension: 
Example
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑥 " 𝑥 !

𝑎
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VC-Dimension: 
Example
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� 𝑉𝐶 ℋ = 1

𝑥 " 𝑥 !

𝑎
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

VC-Dimension: 
Example

41

𝑎 𝑏
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

Poll Question 1: 

What is 𝑉𝐶 ℋ ?

A. 0
B. 1
C. 1.5 (TOXIC)
D. 2
E. 3

42

𝑎 𝑏
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

� 𝑉𝐶 ℋ = 2

VC-Dimension: 
Example

43

𝑎 𝑏

𝑥 " 𝑥 #𝑥 !
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Theorem 3: 
Vapnik-
Chervonenkis
(VC)-Bound

44

� Infinite, realizable case: for any hypothesis set ℋ such 
that 𝑐∗ ∈ ℋ and arbitrary distribution 𝑝∗, if the number 
of labelled training data points satisfies 

𝑀 = 𝑂
1
𝜖
𝑉𝐶 ℋ log

1
𝜖
+ log

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
/𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

10/23/23



Statistical 
Learning 
Theory 
Corollary 3

45

� Infinite, realizable case: for any hypothesis set ℋ such 

that 𝑐∗ ∈ ℋ and arbitrary distribution 𝑝∗, given a training 
dataset 𝑆 where 𝑆 = 𝑁, all ℎ ∈ ℋ with /𝑅 ℎ = 0 have

𝑅 ℎ ≤ 𝑂
1
𝑁

𝑉𝐶 ℋ log
𝑁

𝑉𝐶 ℋ
+ log

1
𝛿

with probability at least 1 − 𝛿.

10/23/23



Theorem 4: 
Vapnik-
Chervonenkis
(VC)-Bound
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� Infinite, agnostic case: for any hypothesis set ℋ and 

arbitrary distribution 𝑝∗, if the number of labelled 
training data points satisfies 

𝑁 = 𝑂
1
𝜖"

𝑉𝐶 ℋ + log
1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ have 

𝑅 ℎ − /𝑅 ℎ ≤ 𝜖

10/23/23



Statistical 
Learning 
Theory 
Corollary 4

47

� Infinite, agnostic case: for any hypothesis set ℋ and 

arbitrary distribution 𝑝∗, given a training dataset 𝑆
where 𝑆 = 𝑁, all ℎ ∈ ℋ have 

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑁

𝑉𝐶 ℋ + log
1
𝛿

with probability at least 1 − 𝛿.

10/23/23



Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈
ℋ have 

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑁

𝑉𝐶 ℋ + log
1
𝛿

with probability at least 1 − 𝛿.

48

Approximation 
Generalization 
Tradeoff

How well does ℎ
approximate 𝑐∗?

How well does 
ℎ generalize?

10/23/23



Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈
ℋ have 

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑁

𝑉𝐶 ℋ + log
1
𝛿

with probability at least 1 − 𝛿.
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Approximation 
Generalization 
Tradeoff

Increases as 
𝑉𝐶 ℋ increases

Decreases as 
𝑉𝐶 ℋ increases

10/23/23



Can we use 
this corollary to 
guide model 
selection? 

50

� Infinite, agnostic case: for any hypothesis set ℋ and 

arbitrary distribution 𝑝∗, given a training dataset 𝑆
where 𝑆 = 𝑁, all ℎ ∈ ℋ have 

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑁

𝑉𝐶 ℋ + log
1
𝛿

with probability at least 1 − 𝛿.

10/23/23



Learning 
Theory and 
Model 
Selection

51

𝑉𝐶 ℋ
er

ro
r

10/23/23

/𝑅 ℎ (training error)

𝑂
1
𝑁

𝑉𝐶 ℋ + log
1
𝛿

/𝑅 ℎ + 𝑂
1
𝑁

𝑉𝐶 ℋ + log
1
𝛿



Learning 
Theory and 
Model 
Selection

52

𝑉𝐶 ℋ
er

ro
r

/𝑅 ℎ (training error)

𝑂
1
𝑁

𝑉𝐶 ℋ + log
1
𝛿

𝑅 ℎ (true error)

/𝑅 ℎ + 𝑂
1
𝑁

𝑉𝐶 ℋ + log
1
𝛿

Best tradeoff

� How can we find this “best tradeoff” for linear separators?

� Use a regularizer! By (effectively) reducing the number of 
features our model considers, we reduce its VC-dimension. 

10/23/23



Learning 
Theory 
Learning 
Objectives

You should be able to…
� Identify the properties of a learning setting and 

assumptions required to ensure low generalization error
� Distinguish true error, train error, test error
� Define PAC and explain what it means to be 

approximately correct and what occurs with high 
probability

� Apply sample complexity bounds to real-world machine 
learning examples

� Theoretically motivate regularization

5310/23/23
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10-301/601: Introduction 
to Machine Learning
Lecture 15 –
Societal Impacts of ML



ML in Societal Applications





Societal Goals

Mitigate:
● Violations of human rights

○ Justice, equity, and non-discrimination 
○ Privacy and non-surveillance
○ Freedom of communication and 

expression 
○ Economic freedom

● Negative impact on human 
flourishing and wellbeing
○ Loss of human sovereignty and 

control
○ Human cognitive abilities 
○ ...

Foster:
● Productivity and efficiency gains
● Innovation and economic growth
● Due process

○ Consistency
○ Traceability
○ Making choices & biases evident

● …



AI Incidents on the Rise



Principles

● Fairness
● Accountability
● Transparency
● Safety and reliability
● Privacy
● …



Beyond Principles

Concerns around impact:
● Economic (IP, Antitrust, labor market effects)
● Sustainability and environmental 
● Eroding democratic values

○ misinformation and disinformation

Concerns around the process:
● Human sovereignty, autonomy, agency, self-determination 

○ Participation
○ Recourse / appeal
○ Mental health 

● …



Unfairness and Discrimination



(Outcome) Unfairness

Formal Principle of Distributive Justice:

“Equals should be treated equally, and unequals unequally, in proportion to relevant 
similarities and differences.” [Aristotle, ..., Feinberg’1973]

Working Definition of Outcome Unfairness:
Disparate or unequal allocation of harm/benefit across socially salient, but 

morally irrelevant groups of people.



Mathematical Notions of Fairness

● Group notions
○ Statistical parity
○ Equality of accuracy
○ Equality of false positive/false negative rates 
○ Equality of positive/negative predictive value

● Individual notions
○ Treat similar individuals similarly.

● Counterfactual notions



Statistical/Demographic Parity

● Equal selection rate across different groups: 

P[Yˆ= 1|S = s1] = P[Yˆ= 1|S = s2]

● Equal Employment Opportunity Commission: 

“A selection rate for any race, sex, or ethnic group which is less than 
four-fifths (or 80%) of the rate for the group with the highest rate will 
generally be regarded by the Federal enforcement agencies as evidence 
of [discrimination].”



Equality of Accuracy

● Equality of the prediction accuracy (L) across groups: 

E[L(yˆ, y) |S = s1] = E[ L(yˆ, y)| S = s2]

● Example: Gender shades (Buolamwini et al.’18)



Equality of FPR/FNR

● Equality of the False Positive Rate (FPR) across groups: 

P[Yˆ=1|Y =0, S = s1]=P[Yˆ=1|Y =0, S = s2]

● Equality of the False Negative Rate (FNR) across groups: 

P[Yˆ=0|Y =1, S = s1]=P[Yˆ=0|Y =1, S = s2]

● Equality of Odds: equal FNR and FPR simultaneously



Equality of PPV/NPV

● Equality of the Positive Predictive Value (PPV) 

P[Y =1|Yˆ=1, S = s1]=P[Y=1|Yˆ=1, S = s2]

● Equality of the Negative Predictive Value (NPV) 

P[Y =0|Yˆ=0, S = s1]=P[Y =0|Yˆ=0, S = s2]

● Predictive Value Parity (PVP): equal PPV and NPV simultaneously



Common Pros and Cons

● Ignores possible correlation between Y and S.
● Allows for trading off different types of error.
● Allows laziness.
● Doesn’t consider practical considerations.

○ e.g., High accuracy difficult to attain for small groups
● …



Summary of Fairness Notions w. Confusion Matrix

For each group s, form:

● Statistical parity = Equality of  

● Equality of accuracy = Equality of  

● Equality of FPR/FNR = Equality of 

● Equality of PPV/NPV = Equality of 

across all s.

Y=0 a (true negative) b (false 
positive)

Y=1 c (false negative) d (true 
positive)



Individual vs. Group Fairness

● Treating people as individuals, regardless of their group membership.
● Disparate Treatment: 

“Similarly situated individuals must be treated similarly.”

● Similarity must be defined with respect to the task at hand.

Example: movie casting vs. employment decisions in tech sector



Formalizing Individual Fairness

(Dwork et al. 2012):

● d(xi,xj): a metric defining distance between two individuals
● D: a measure of distance between distributions
● A randomized classifier h mapping x to ∆h(x) satisfies the (D, d)-Lipschitz property if ∀xi , xj ,

D(∆h(xi), ∆h(xj)) ≤ d(xi , xj ).



Several problems with the Formulation

● Does not treat dissimilar individuals differently.
● How should we pick d and D?
● Applicable to probabilistic models, only.
● Computationally expensive (O(n2) pairwise constraints)
● …


