10-301/601: Introduction to Machine Learning Lecture 15 - Learning Theory (Infinite Case)

Henry Chai \& Matt Gormley \& Hoda Heidari

- Announcements
- HW5 released 10/9, due 10/27 (Friday) at 11:59 PM

Front Matter

- Exam 3 scheduled
- Tuesday, December $12^{\text {th }}$ from 5:30 PM to 8:30 PM
- Sign up for peer tutoring! See Piazza for more details

Recall Theorem 1:
Finite,
Realizable Case

- For a finite hypothesis set \mathcal{H} such that $c^{*} \in \mathcal{H}$ (realizable) and arbitrary distribution p^{*}, if the number of labelled training data points satisfies

$$
N \geq \frac{1}{\epsilon}\left(\ln (|\mathcal{H}|)+\ln \left(\frac{1}{\delta}\right)\right)
$$

then with probability at least $1-\delta$, all $h \in \mathcal{H}$ with $\hat{R}(h)=0$ have $R(h) \leq \epsilon$

Recall Theorem 1:
Finite,
Realizable Case

- For a finite hypothesis set \mathcal{H} such that $c^{*} \in \mathcal{H}$ (realizable) and arbitrary distribution p^{*}, if the number of labelled training data points satisfies

$$
N=\frac{1}{\epsilon}\left(\ln (|\mathcal{H}|)+\ln \left(\frac{1}{\delta}\right)\right)
$$

then with probability at least $1-\delta$, all $h \in \mathcal{H}$ with $\hat{R}(h)=0$ have $R(h) \leq \epsilon$

- Making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary

- For a finite hypothesis set \mathcal{H} such that $c^{*} \in \mathcal{H}$ (realizable) and arbitrary distribution p^{*}, given a training dataset S where $|S|=N$, all $h \in \mathcal{H}$ with $\hat{R}(h)=0$ have

$$
R(h) \leq \frac{1}{N}\left(\ln (|\mathcal{H}|)+\ln \left(\frac{1}{\delta}\right)\right)
$$

with probability at least $1-\delta$.

- For a finite hypothesis set \mathcal{H} and arbitrary distribution p^{*}, if the number of labelled training data points satisfies

Recall -
Theorem 2:
Finite,
Agnostic Case

$$
N \geq \frac{1}{2 \epsilon^{2}}\left(\ln (|\mathcal{H}|)+\ln \left(\frac{2}{\delta}\right)\right)
$$

then with probability at least $1-\delta$, all $h \in \mathcal{H}$ satisfy $|R(h)-\hat{R}(h)| \leq \epsilon$

- Bound is inversely quadratic in ϵ, e.g., halving ϵ means we need four times as many labelled training data points

Statistical Learning Theory Corollary

- For a finite hypothesis set \mathcal{H} and arbitrary distribution p^{*}, given a training dataset S where $|S|=N$, all $h \in \mathcal{H}$ have

$$
R(h) \leq \hat{R}(h)+\sqrt{\frac{1}{2 N}\left(\ln (|\mathcal{H}|)+\ln \left(\frac{2}{\delta}\right)\right)}
$$

with probability at least $1-\delta$.

What happens when $|\mathcal{H}|=\infty$?

- For a finite hypothesis set \mathcal{H} and arbitrary distribution p^{*}, given a training data set S where $|S|=N$, all $h \in \mathcal{H}$ have

$$
R(h) \leq \hat{R}(h)+\sqrt{\frac{1}{2 N}\left(\ln (|\mathcal{H}|)+\ln \left(\frac{2}{\delta}\right)\right)}
$$

with probability at least $1-\delta$.

- Given some finite set of data points $S=\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(N)}\right\}$ and some hypothesis $h \in \mathcal{H}$, applying h to each point in S results in a labelling
- $\left[h\left(\boldsymbol{x}^{(1)}\right), \ldots, h\left(\boldsymbol{x}^{(N)}\right)\right]$ is a vector of $N+1$'s and -1 's (recall: our discussion of PAC learning assumes binary classification)
- Given $S=\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(N)}\right\}$, each hypothesis in \mathcal{H} induces a labelling but not necessarily a unique labelling
- The set of labellings induced by \mathcal{H} on S is

$$
\mathcal{H}(S)=\left\{\left[h\left(\boldsymbol{x}^{(1)}\right), \ldots, h\left(\boldsymbol{x}^{(N)}\right)\right] \mid h \in \mathcal{H}\right\}
$$

Example: Labellings

$$
\mathcal{H}=\left\{h_{1}, h_{2}, h_{3}\right\}
$$

Example: Labellings

$$
\begin{aligned}
& \mathcal{H} \mathcal{E}=\left\{h_{1}, h_{2}, h_{3}\right\} \\
& {\left[h_{1}\left(x^{(1)}\right), h_{1}\left(x^{(2)}\right), h_{1}\left(x^{(3)}\right), h_{1}\left(x^{(4)}\right)\right]} \\
& =(-1,+1,-1,+1)
\end{aligned}
$$

Example: Labellings

$$
\begin{aligned}
& \mathcal{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \\
& {\left[h_{1}\left(x^{(1)}\right), h_{1}\left(x^{(2)}\right), h_{1}\left(x^{(3)}\right), h_{1}\left(x^{(4)}\right)\right]} \\
& =(-1,+1,-1,+1)
\end{aligned}
$$

Example: Labellings

$$
\begin{aligned}
& \mathcal{H} \mathcal{E}=\left\{h_{1}, h_{2}, h_{3}\right\} \\
& {\left[h_{1}\left(x^{(1)}\right), h_{1}\left(x^{(2)}\right), h_{1}\left(x^{(3)}\right), h_{1}\left(x^{(4)}\right)\right]} \\
& =(+1,+1,-1,-1)
\end{aligned}
$$

Example: Labellings

$$
\begin{aligned}
& \mathcal{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \\
& \mathcal{H}(S) \\
& =\{[+1,+1,-1,-1],[-1,+1,-1,+1]\} \\
& |\mathcal{H}(S)|=2
\end{aligned}
$$

Example: Labellings

$$
\begin{aligned}
& \mathcal{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \\
& \mathcal{H}(S) \\
& =\{[+1,+1,-1,-1]\} \\
& |\mathcal{H}(S)|=1
\end{aligned}
$$

- $\mathcal{H}(S)$ is the set of all labellings induced by \mathcal{H} on S
- If $|S|=N$, then $|\mathcal{H}(S)| \leq 2^{N}$
- \mathcal{H} shatters S if $|\mathcal{H}(S)|=2^{N}$
- The VC-dimension of $\mathcal{H}, V C(\mathcal{H})$, is the size of the largest

VC-Dimension

 set S that can be shattered by \mathcal{H}.- If \mathcal{H} can shatter arbitrarily large finite sets, then

$$
V C(\mathcal{H})=\infty
$$

- To prove that $V C(\mathcal{H})=d$, you need to show

1. \exists some set of d data points that \mathcal{H} can shatter and
2. \nexists a set of $d+1$ data points that \mathcal{H} can shatter

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators

- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?

VC-Dimension:

 Example
S

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?

VC-Dimension:

 Example
S

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

 Example
S

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

 Example
S

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

 Example
S

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

 Example
S

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

 Example
S_{1}

S_{2}

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

Example

$$
\left|\mathcal{H}\left(S_{1}\right)\right|=6
$$

$\left|\mathcal{H}\left(S_{2}\right)\right|=8$

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension: Example

S_{1}
All points on the convex hull

S_{2}
At least one point inside the convex hull

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension: Example

S_{1}
All points on the convex hull

S_{2}
At least one point inside the convex hull

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension: Example

S_{1}
All points on the convex hull

S_{2}
At least one point inside the convex hull

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension: Example

$\left|\mathcal{H}\left(S_{1}\right)\right|=14$
All points on the convex hull

S_{2}
At least one point inside the convex hull

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension: Example

$\left|\mathcal{H}\left(S_{1}\right)\right|=14$
All points on the convex hull

S_{2}
At least one point inside the convex hull

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension: Example

$\left|\mathcal{H}\left(S_{1}\right)\right|=14$
All points on the convex hull

S_{2}
At least one point inside the convex hull

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension: Example

$\left|\mathcal{H}\left(S_{1}\right)\right|=14$
All points on the convex hull

$$
\left|\mathcal{H}\left(S_{2}\right)\right|=14
$$

At least one point inside the convex hull

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- $V C(\mathcal{H})=3$
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension: Example

$\left|\mathcal{H}\left(S_{1}\right)\right|=14$
All points on the convex hull

$$
\left|\mathcal{H}\left(S_{2}\right)\right|=14
$$

At least one point inside the convex hull

- $\boldsymbol{x} \in \mathbb{R}^{d}$ and $\mathcal{H}=$ all d-dimensional linear separators
- $V C(\mathcal{H})=d+1$

VC-Dimension: Example

VC-Dimension: Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

VC-Dimension: Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

VC-Dimension:

Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

VC-Dimension: Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

VC-Dimension: Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

VC-Dimension: Example

VC-Dimension:

Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

- $V C(\mathcal{H})=1$
- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive intervals

VC-Dimension: Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive intervals

Poll Question 1:

What is $V C(\mathcal{H})$?
A. 0
B. 1
C. 1.5 (TOXIC)
D. 2
E. 3

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive intervals

VC-Dimension:

Example

- $V C(\mathcal{H})=2$

Theorem 3: VapnikChervonenkis (VC)-Bound

- Infinite, realizable case: for any hypothesis set \mathcal{H} such that $c^{*} \in \mathcal{H}$ and arbitrary distribution p^{*}, if the number of labelled training data points satisfies

$$
M=O\left(\frac{1}{\epsilon}\left(V C(\mathcal{H}) \log \left(\frac{1}{\epsilon}\right)+\log \left(\frac{1}{\delta}\right)\right)\right)
$$

then with probability at least $1-\delta$, all $h \in \mathcal{H}$ with $\hat{R}(h)=0$ have $R(h) \leq \epsilon$

Statistical
 Learning Theory Corollary 3

- Infinite, realizable case: for any hypothesis set \mathcal{H} such that $c^{*} \in \mathcal{H}$ and arbitrary distribution p^{*}, given a training dataset S where $|S|=N$, all $h \in \mathcal{H}$ with $\hat{R}(h)=0$ have

$$
R(h) \leq O\left(\frac{1}{N}\left(V C(\mathcal{H}) \log \left(\frac{N}{V C(\mathcal{H})}\right)+\log \left(\frac{1}{\delta}\right)\right)\right)
$$

with probability at least $1-\delta$.

Theorem 4: VapnikChervonenkis (VC)-Bound

- Infinite, agnostic case: for any hypothesis set \mathcal{H} and arbitrary distribution p^{*}, if the number of labelled training data points satisfies

$$
N=O\left(\frac{1}{\epsilon^{2}}\left(V C(\mathcal{H})+\log \left(\frac{1}{\delta}\right)\right)\right)
$$

then with probability at least $1-\delta$, all $h \in \mathcal{H}$ have $|R(h)-\hat{R}(h)| \leq \epsilon$

Statistical
 Learning Theory Corollary 4

- Infinite, agnostic case: for any hypothesis set \mathcal{H} and arbitrary distribution p^{*}, given a training dataset S where $|S|=N$, all $h \in \mathcal{H}$ have

$$
R(h) \leq \hat{R}(h)+O\left(\sqrt{\frac{1}{N}\left(V C(\mathcal{H})+\log \left(\frac{1}{\delta}\right)\right)}\right)
$$

with probability at least $1-\delta$.

Approximation Generalization Tradeoff

$R(h) \leq \underbrace{\hat{R}}(h)+O\left(\sqrt{\frac{1}{N}\left(V C(\mathcal{H})+\log \left(\frac{1}{\delta}\right)\right)}\right)$
How well does h approximate c^{*} ?

Increases as
$V C(\mathcal{H})$ increases
Approximation Generalization Tradeoff
$R(h) \leq \underbrace{\hat{R}}(h)+O\left(\sqrt{\frac{1}{N}\left(V C(\mathcal{H})+\log \left(\frac{1}{\delta}\right)\right)}\right)$
Decreases as
$V C(\mathcal{H})$ increases

Can we use this corollary to guide model selection?

- Infinite, agnostic case: for any hypothesis set \mathcal{H} and arbitrary distribution p^{*}, given a training dataset S where $|S|=N$, all $h \in \mathcal{H}$ have

$$
R(h) \leq \hat{R}(h)+O\left(\sqrt{\frac{1}{N}\left(V C(\mathcal{H})+\log \left(\frac{1}{\delta}\right)\right)}\right)
$$

with probability at least $1-\delta$.

Learning Theory and Model
 Selection

Learning Theory and Model Selection

- How can we find this "best tradeoff" for linear separators?
- Use a regularizer! By (effectively) reducing the number of features our model considers, we reduce its VC-dimension.

You should be able to...

- Identify the properties of a learning setting and assumptions required to ensure low generalization error
- Distinguish true error, train error, test error
- Define PAC and explain what it means to be approximately correct and what occurs with high probability
- Apply sample complexity bounds to real-world machine learning examples
- Theoretically motivate regularization

10-301/601: Introduction

 to Machine Learning Lecture 15 Societal Impacts of MLHenry Chai \& Matt Gormley \& Hoda Heidari 10/23/23

ML in Societal Applications

8 WAYS MACHINE LEARNING WILL IMPROVE EDUCATION

sY Matruewlycch । © June 12, 2018 ।

: TheUpshot
ROBO RECRUITING

Artificial Intelligence and Accessibility: Examples of a Technology that Serves People with Disabilities

Elbe Atcu? Your Future Doctor May Not be Human. This Is the Rise of AI in Medicine.
From mental health apps to robot surgeons, artificial intelligence is already changing the practice of medicine.

Can an Algorithm Hire Better Than a Human?

[^0]
Algorithms and bias: What lenders need to know

Misinformation on coronavirus is proving highly contagious
The algorithms that power fintech may discrimin can be difficult to anticipate-and financial institut
accountable even when alleged discrimination is
unintentional.

Wanted: The 'perfect babysitter.' Must

I.R.S. Changes Audit Practice That Discriminated Against Black Taxpayers

The agency will overhaul how it scrutinizes returns that claim the earned-income tax credit, which is aimed at alleviating poverty.
\qquad

If you're not a white male, artificial intelligence's use in healthcare could be dangerous

Artificial intelligence is slated to disrupt 4.5 million jobs for African Americans, who have a 10\% greater likelihood of automation-based job loss than other workers

Allana Akhtar Oct7,2019, 12:57 PM

Societal Goals

Foster:

- Productivity and efficiency gains
- Innovation and economic growth
- Due process
- Consistency
- Traceability
- Making choices \& biases evident

Mitigate:

- Violations of human rights

O Justice, equity, and non-discrimination
O Privacy and non-surveillance
O Freedom of communication and expression

- Economic freedom
- Negative impact on human flourishing and wellbeing
- Loss of human sovereignty and control
O Human cognitive abilities
O

Al Incidents on the Rise

Summary visualisations

Summary statistics

Incidents	Articles
6264	36345
317	1768
616	3227
$\underline{2023-10}$	$\underline{2023-10}$
616	3227
23.2	51.22
13.01	13.87
961.58	690.9
ed on preceding full months (i.e. the	

Principles

- Fairness
- Accountability
- Transparency
- Safety and reliability
- Privacy
- ...

Safe and Effective
Systems

Algorithmic Discrimination Protections

Notice and Explanation

Human Alternatives, Consideration, and Fallback

Beyond Principles

Concerns around impact:

- Economic (IP, Antitrust, labor market effects)
- Sustainability and environmental
- Eroding democratic values
- misinformation and disinformation

Concerns around the process:

- Human sovereignty, autonomy, agency, self-determination
- Participation
- Recourse / appeal
- Mental health

Unfairness and Discrimination

Amazon scraps secret AI recruiting tool that showed bias against women

Jeffrey Dastin

8 MIN READ

v f

SAN FRANCISCO (Reuters) - Amazon.com Inc's (AMZN.O) machine-learning specialists uncovered a big problem: their new recruiting engine did not like women.

Machine Bias
(Outcome) Unfairness

Formal Principle of Distributive Justice:

"Equals should be treated equally, and unequals unequally, in proportion to relevant similarities and differences." [Aristotle, ..., Feinberg'1973]

Working Definition of Outcome Unfairness:
Disparate or unequal allocation of harm/benefit across socially salient, but morally irrelevant groups of people.

Mathematical Notions of Fairness

- Group notions
- Statistical parity
- Equality of accuracy
- Equality of false positive/false negative rates
- Equality of positive/negative predictive value
- Individual notions
- Treat similar individuals similarly.
- Counterfactual notions

Statistical/Demographic Parity

- Equal selection rate across different groups:

$$
P\left[Y^{\wedge}=1 \mid S=S_{1}\right]=P\left[Y^{\wedge}=1 \mid S=s_{2}\right]
$$

- Equal Employment Opportunity Commission:
"A selection rate for any race, sex, or ethnic group which is less than four-fifths (or 80\%) of the rate for the group with the highest rate will generally be regarded by the Federal enforcement agencies as evidence of [discrimination]."

Equality of Accuracy

- Equality of the prediction accuracy (L) across groups:

$$
E\left[L\left(y^{\wedge}, y\right) \mid S=s_{1}\right]=E\left[L\left(y^{\wedge}, y\right) \mid S=s_{2}\right]
$$

- Example: Gender shades (Buolamwini et al.'18)

Equality of FPR/FNR

- Equality of the False Positive Rate (FPR) across groups:

$$
P\left[Y^{\wedge}=1 \mid Y=0, S=s_{1}\right]=P\left[Y^{\wedge}=1 \mid Y=0, S=s_{2}\right]
$$

- Equality of the False Negative Rate (FNR) across groups:

$$
P\left[Y^{\wedge}=0 \mid Y=1, S=s_{1}\right]=P\left[Y^{\wedge}=0 \mid Y=1, S=s_{2}\right]
$$

- Equality of Odds: equal FNR and FPR simultaneously

Equality of PPV/NPV

- Equality of the Positive Predictive Value (PPV)

$$
P\left[Y=1 \mid Y^{\wedge}=1, S=s_{1}\right]=P\left[Y=1 \mid Y^{\wedge}=1, S=s_{2}\right]
$$

- Equality of the Negative Predictive Value (NPV)

$$
P\left[Y=0 \mid Y^{\wedge}=0, S=s_{1}\right]=P\left[Y=0 \mid Y^{\wedge}=0, S=s_{2}\right]
$$

- Predictive Value Parity (PVP): equal PPV and NPV simultaneously

Common Pros and Cons

- Ignores possible correlation between Y and S.
- Allows for trading off different types of error.
- Allows laziness.
- Doesn't consider practical considerations.
- e.g., High accuracy difficult to attain for small groups

Summary of Fairness Notions w. Confusion Matrix

For each group s, form:

	$\hat{Y}=0$	$\hat{Y}=1$
$\mathrm{Y}=0$	a (true negative)	b (false positive)
$\mathrm{Y}=1$	c (false negative)	d (true positive)

- Statistical parity $=$ Equality of $\frac{b+d}{a+b+c+d}$
- Equality of accuracy = Equality of $\frac{a+d}{a+b+c+d}$
- Equality of FPR/FNR $=$ Equality of $\frac{b}{a+b} / \frac{c}{c+d}$
- Equality of PPV/NPV $=$ Equality of $\frac{d}{d+b} / \frac{a}{a+c}$
across alls.

Individual vs. Group Fairness

- Treating people as individuals, regardless of their group membership.
- Disparate Treatment:
"Similarly situated individuals must be treated similarly."
- Similarity must be defined with respect to the task at hand.

Example: movie casting vs. employment decisions in tech sector

Formalizing Individual Fairness

(Dwork et al. 2012):

- $d\left(\mathbf{x}_{i}, \mathbf{x}_{\mathrm{j}}\right)$: a metric defining distance between two individuals
- D: a measure of distance between distributions
- A randomized classifier h mapping \mathbf{x} to $\Delta_{h}(\mathbf{x})$ satisfies the (D, d)-Lipschitz property if $\forall \mathbf{x}_{i}, \mathbf{x}_{j}$,

$$
\mathrm{D}\left(\Delta_{h}\left(\mathbf{x}_{\mathrm{i}}\right), \Delta_{h}\left(\mathbf{x}_{\mathrm{j}}\right)\right) \leq \mathrm{d}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right) .
$$

Several problems with the Formulation

- Does not treat dissimilar individuals differently.
- How should we pick d and D?
- Applicable to probabilistic models, only.
- Computationally expensive $\left(\mathrm{O}\left(\mathrm{n}^{2}\right)\right.$ pairwise constraints)
- ...

[^0]: By Claire Cain Miller

