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10-301/601: Introduction 
to Machine Learning
Lecture 15 – Learning 
Theory (Infinite Case)



Front Matter

� Announcements

� HW5 released 10/9, due 10/27 (Friday) at 11:59 PM

� Exam 3 scheduled

� Tuesday, December 12th from 5:30 PM to 8:30 PM

� Sign up for peer tutoring! See Piazza for more details

210/23/23

https://piazza.com/class/l6xoswmdxo10m/post/985


Recall - 
Theorem 1: 
Finite, 
Realizable Case
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� For a finite hypothesis set ℋ such that "∗ ∈ ℋ 

(realizable) and arbitrary distribution $∗, if the number 

of labelled training data points satisfies 

% ≥
1

(
ln ℋ + ln

1

,

then with probability at least 1 − ,, all ℎ ∈ ℋ with 
/0 ℎ = 0 have 0 ℎ ≤ (
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� For a finite hypothesis set ℋ such that "∗ ∈ ℋ 

(realizable) and arbitrary distribution $∗, if the number 

of labelled training data points satisfies 

% =
1

(
ln ℋ + ln

1

,

then with probability at least 1 − ,, all ℎ ∈ ℋ with 
/0 ℎ = 0 have 0 ℎ ≤ (

� Making the bound tight and solving for ( gives…



Statistical 
Learning 
Theory 
Corollary
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� For a finite hypothesis set ℋ such that "∗ ∈ ℋ 

(realizable) and arbitrary distribution $∗, given a training 

dataset 4 where 4 = %, all ℎ ∈ ℋ with /0 ℎ = 0	have

0 ℎ ≤
1

%
ln ℋ + ln

1

,

with probability at least 1 − ,.



Recall - 
Theorem 2: 
Finite,  
Agnostic Case
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� For a finite hypothesis set ℋ and arbitrary distribution 

$∗, if the number of labelled training data points satisfies 

% ≥
1

2("
ln ℋ + ln

2

,

then with probability at least 1 − ,, all ℎ ∈ ℋ satisfy  

0 ℎ − /0 ℎ ≤ (

� Bound is inversely quadratic in (, e.g., halving ( means 

we need four times as many labelled training data points



Statistical 
Learning 
Theory 
Corollary
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� For a finite hypothesis set ℋ and arbitrary distribution 

$∗, given a training dataset 4 where 4 = %, all ℎ ∈ ℋ 

have

0 ℎ ≤ /0 ℎ +
1

2%
ln ℋ + ln

2

,

with probability at least 1 − ,.
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� For a finite hypothesis set ℋ and arbitrary distribution 

$∗, given a training data set 4 where 4 = %, all ℎ ∈ ℋ 

have

0 ℎ ≤ /0 ℎ +
1

2%
ln ℋ + ln

2

,

with probability at least 1 − ,.

What happens 
when ℋ = ∞?



Labellings

� Given some finite set of data points 4 = 7 # , … , 7 $  

and some hypothesis ℎ ∈ ℋ, applying ℎ to each point in 

4 results in a labelling 

� ℎ 7 # , … , ℎ 7 $  is a vector of % +1’s and -1’s 

(recall: our discussion of PAC learning assumes 

binary classification)

� Given 4 = 7 # , … , 7 $ , each hypothesis in ℋ 

induces a labelling but not necessarily a unique labelling

� The set of labellings induced by ℋon 4 is        

ℋ 4 = ℎ 7 # , … , ℎ 7 $ 	 ℎ ∈ ℋ

910/23/23



Example: Labellings

ℋ = {ℎ#, ℎ", ℎ%} 
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Example: Labellings
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ℋ = {ℎ#, ℎ", ℎ%}

ℋ 4

= +1,+1,−1,−1 , −1,+1,−1,+1

ℋ 4 = 2



Example: Labellings

ℋ = ℎ#, ℎ", ℎ%

ℋ 4

= +1,+1,−1,−1

ℋ 4 = 1
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�ℋ 4 	is the set of all labellings induced by ℋon 4

� If 4 = %, then ℋ 4 ≤ 2$

�ℋ shatters 4 if ℋ 4 = 2$

� The VC-dimension of ℋ, <= ℋ , is the size of the largest 

set 4 that can be shattered by ℋ. 

� If ℋ	can shatter arbitrarily large finite sets, then 

<= ℋ = ∞ 

� To prove that <= ℋ = ?, you need to show

1.  ∃ some set of ? data points that ℋ can shatter and

2.  ∄ a set of ? + 1 data points that ℋ can shatter 

VC-Dimension

1610/23/23



VC-Dimension: 
Example

� 7 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is <= ℋ ?
� Can ℋ shatter some set of 1 point?

� Can ℋ shatter some set of 2 points? 

� Can ℋ shatter some set of 3 points? 

17
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ℋ 4" = 8ℋ 4# = 6 
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VC-Dimension: 
Example

� 7 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� <= ℋ 	=	3

� Can ℋ shatter some set of 1 point?

� Can ℋ shatter some set of 2 points? 

� Can ℋ shatter some set of 3 points? 

� Can ℋ shatter some set of 4 points? 
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All points on the 
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At least one point 
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ℋ 4# = 14 ℋ 4" = 14
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VC-Dimension: 
Example

� 7 ∈ ℝ)	and	ℋ = all ?-dimensional linear separators 

� <= ℋ 	=	?	+	1

� Can ℋ shatter some set of 1 point?

� Can ℋ shatter some set of 2 points? 

� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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All points on the 
convex hull

One point inside 
the convex hull
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VC-Dimension: 
Example
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� G ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form	ℎ G; I = sign G − I

*
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� G ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form	ℎ G; I = sign G − I

*

+ "
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� G ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form	ℎ G; I = sign G − I

*
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� G ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form	ℎ G; I = sign G − I
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� G ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form	ℎ G; I = sign G − I
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VC-Dimension: 
Example
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� G ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form	ℎ G; I = sign G − I

� <= ℋ = 1

+ " + !

*
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� G ∈ ℝ and ℋ = all 1-dimensional positive intervals

VC-Dimension: 
Example

41

* ,
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� G ∈ ℝ and ℋ = all 1-dimensional positive intervals

Poll Question 1: 

What is $% ℋ ?

A. 0
B. 1
C. 1.5 (TOXIC)
D. 2
E. 3

42

* ,
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� G ∈ ℝ and ℋ = all 1-dimensional positive intervals

� <= ℋ = 2

VC-Dimension: 
Example

43

* ,

+ " + #+ !
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Theorem 3: 
Vapnik-
Chervonenkis 
(VC)-Bound
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� Infinite, realizable case: for any hypothesis set ℋ such 

that "∗ ∈ ℋ and arbitrary distribution $∗, if the number 

of labelled training data points satisfies 

M = N
1

(
<= ℋ log

1

(
+ log

1

,

then with probability at least 1 − ,, all ℎ ∈ ℋ with 
/0 ℎ = 0 have 0 ℎ ≤ (

10/23/23



Statistical 
Learning 
Theory 
Corollary 3
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� Infinite, realizable case: for any hypothesis set ℋ such 

that "∗ ∈ ℋ and arbitrary distribution $∗, given a training 

dataset 4 where 4 = %, all ℎ ∈ ℋ with /0 ℎ = 0	have

0 ℎ ≤ N
1

%
<= ℋ log

%

<= ℋ
+ log

1

,

with probability at least 1 − ,.
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Theorem 4: 
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46

� Infinite, agnostic case: for any hypothesis set ℋ and 

arbitrary distribution $∗, if the number of labelled 

training data points satisfies 

% = N
1

("
<= ℋ + log

1

,

then with probability at least 1 − ,, all ℎ ∈ ℋ have 

0 ℎ − /0 ℎ ≤ (
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Statistical 
Learning 
Theory 
Corollary 4
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� Infinite, agnostic case: for any hypothesis set ℋ and 

arbitrary distribution $∗, given a training dataset 4 

where 4 = %, all ℎ ∈ ℋ have 

0 ℎ ≤ /0 ℎ + N
1

%
<= ℋ + log

1

,

with probability at least 1 − ,.
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Agnostic case: for any hypothesis class ℋ and 

distribution P, given a training data set 4 4 = Q, all ℎ ∈

ℋ have 

0 ℎ ≤ /0 ℎ + N
1

%
<= ℋ + log

1

,

with probability at least 1 − ,.

48

Approximation 
Generalization 
Tradeoff

How well does ℎ 
approximate "∗?

How well does 
ℎ generalize?
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Agnostic case: for any hypothesis class ℋ and 

distribution P, given a training data set 4 4 = Q, all ℎ ∈

ℋ have 

0 ℎ ≤ /0 ℎ + N
1

%
<= ℋ + log

1

,

with probability at least 1 − ,.
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Approximation 
Generalization 
Tradeoff

Increases as 
<= ℋ  increases

Decreases as 
<= ℋ  increases
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Can we use 
this corollary to 
guide model 
selection? 
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� Infinite, agnostic case: for any hypothesis set ℋ and 

arbitrary distribution $∗, given a training dataset 4 

where 4 = %, all ℎ ∈ ℋ have 

0 ℎ ≤ /0 ℎ + N
1

%
<= ℋ + log

1

,

with probability at least 1 − ,.
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Learning 
Theory and 
Model 
Selection
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<= ℋ
er

ro
r

10/23/23

/0 ℎ  (training error)

N
1

%
<= ℋ + log

1

,

/0 ℎ + N
1

%
<= ℋ + log

1

,



Learning 
Theory and 
Model 
Selection
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<= ℋ
er

ro
r

/0 ℎ  (training error)

N
1

%
<= ℋ + log

1

,

0 ℎ  (true error)

/0 ℎ + N
1

%
<= ℋ + log

1

,

Best tradeoff

� How can we find this “best tradeoff” for linear separators?

� Use a regularizer! By (effectively) reducing the number of 

features our model considers, we reduce its VC-dimension. 
10/23/23



Learning 
Theory 
Learning 
Objectives

You should be able to…
� Identify the properties of a learning setting and 

assumptions required to ensure low generalization error
� Distinguish true error, train error, test error
� Define PAC and explain what it means to be 

approximately correct and what occurs with high 
probability

� Apply sample complexity bounds to real-world machine 
learning examples

� Theoretically motivate regularization

5310/23/23
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10-301/601: Introduction 
to Machine Learning
Lecture 15 – 
Societal Impacts of ML



ML in Societal Applications




