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Statistical

learning theory
setup

Data points are generated i.i.d. from some unknown
distribution

x" ~ p*(x)
Labels are generated from some unknown function

P = c*(x(”)) € {—1,+1} note: binary classification

The learning algorithm chooses the hypothesis
(classifier) with lowest training error rate from a

specified hypothesis set, #Z

Goal: return a hypothesis (or classifier) with low true
error rate (measure on test set)



e True error rate
eActual quantity of interest for learning
eHow well your hypothesis will perform on new samples

e Training error rate

eUsed to choose h € # (e.g., fit model parameters)
eMay be a very optimistic estimate of true error
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Types of Error

e True error rate
eActual quantity of interest for learning
eHow well your hypothesis will perform on new samples

e Training error rate

eUsed to choose h € # (e.g., fit model parameters)
eMay be a very optimistic estimate of true error

e lest error rate
eUsed to evaluate hypothesis performance
e Good estimate of true error (w/ enough test data)

e Validation error rate

eUsed to help choose # (e.g., set hyperparameters)
eSomewhat optimistic estimate of true error



eTrue error rate = (true) risk — unknown

R(h) =

Error rate is also

called risk

e Training error rate = empirical risk — we can measure this

R(h) =




1. The true classifier, c*: best answer but may be

unachievable

2. The (true) risk minimizer (best achievable answer):

Three classifiers h* = argminR (h)
he

3. The empirical risk minimizer (the only one of the three

that we can actually know)

N\ N
h = argminR(h)
he#




1. The true classifier, c*: best answer but may be

unachievable

2. The (true) risk minimizer (best achievable answer):

Three classifiers h* = argminR (h)
he

3. The empirical risk minimizer (the only one of the three

that we can actually know)

N\ N
h = argminR(h)
he#

ERM = the learning method that picks a hypothesis by minimizing empirical risk
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eRecall: overfitting = difference between true error rate
and training error rate =

Overfitting

e Goal for today: predict and control overfitting for ERM

e by finding (and proving) conditions that keep IAQ(h)
close to R(h)




o PAC = Probably Approximately Correct criterion

Bound on P<‘R(h)—f{(h)‘$€)21—5‘v’he7/

overfitting

for some ¢ (difference between true and empirical risk)

and 6 (probability of “failure”)

why the name?



Sample

Complexity

eWe will do ERM on some # with M training examples
e\We want to satisfy the PAC criterion with small € and &
eChief levers: #Z and M

eSample complexity (of ERM on #°) = the M we need in

order to satisfy the PAC criterion for a given € and o



eRealizable vs. Agnostic

eRealizable - ¢c* € #

eAgnostic — ¢* might or might not be in #

Four cases

e Finite vs. Infinite
oFinite — \%\ < 0

olNnfinite — ‘%‘ = 00




Realizable vs.

agnostic
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Realizable vs.

agnostic
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Finite vs.

infinite | Z |

eDecision trees of bounded depth on discrete attributes
vs. linear separators in 2D
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Theorem 1:

Finite,
Realizable Case

For a finite hypothesis set # s.t. ¢* € # and arbitrary

distribution p*, if the number of labelled training data

points satisfies

MZ%(In(‘%‘>+ln<%>>

then with probability at least 1 — 6, all h € Z with

R(h) =0have R(R) <

We will prove this over the next few slides
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Union bound

Universe %

event B

P(AorBorC) < P(A)+ P(B)+ P(C)

P(some event happens) < sum of probabilities
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Bound on log
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Notation for

conclusion

e Theorem said: if

MZ%(IH(‘%‘)+ln<%>>

then with probability at least 1 — 6, all h € #Z with

R(h) =0have R(h) < e

e Write E for event: dh € # with I%(h) =0,R(h) > ¢

eTheorem’s conclusion is P(E) < o
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Bound for one

hypothesis

eConsider some & with R(h) > €. What'’s P(ﬁ(h) = 0)?
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Bound for k

hypotheses

eSuppose there are k hypotheses with R(%) > €. What'’s
P(E),i.e., P(R(h)) = 0orR(h,) = Oor ...)?

Theorem will be true if P(E) < 0
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Solve for M

we have

PEEY< |Z|( -e
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Theorem 1:

corollary

eFor a finite hypothesis set # s.t. ¢* € # and arbitrary
distribution p*, given a training data set .S s.t. ‘ S‘ = M,

all h € & with ]/!\{(h) = 0 have

(o) <3¢ (n(11) +10(3))

with probability at least 1 — 6.

1 1
Recall Theorem | said M > — <ln< ‘ %‘ ) -+ ln<—
€

;)
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Theorem 2:

finite, agnostic
case

eFor a finite hypothesis set #Z and arbitrary distribution p*, if

the number of labelled training data points satisfies

> (| 7]) +1(2))

then with probability at least 1 — 6, all h € # satisfy

eBound is inversely quadratic in ¢, e.g., halving e means we

need four times as many labelled training data points

22



Theorem 2:

finite, agnostic
case

eFor a finite hypothesis set #Z and arbitrary distribution p*, if

the number of labelled training data points satisfies

> (| 7]) +1(2))

then with probability at least 1 — 6, all h € # satisfy

eBound is inversely quadratic in ¢, e.g., halving e means we

need four times as many labelled training data points

eAgain, making the bound tight and solving for ¢ gives...
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Theorem 2:

corollary

eFor a finite hypothesis set # and arbitrary distribution
p”*, given a training data set .S s.t. ‘S‘ =M,allhe #

have

<0 i) )

with probability at least 1 — ¢.
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Learning theory
& model

selection

Key point: we want to trade
off low training error vs.
keeping Z simple

train error + regularizer

R(h) + 1n|%|+ln%]

// true error R(h)

train error R(h)
>

A actual tradeoff

error (lower = better)

best tradeoff
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eBounds:

R(h) s%<ln<\%‘)+ln<%>>

What happens

when R(h) < fz(h) +\/ﬁ<ln<‘%‘>+ln<%>>

P
with probability at least 1 — o.




Intuition

For “nice” infinite hypothesis sets

# , many hypotheses in #Z will
behave similarly
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Intuition

For “nice” infinite hypothesis sets

# , many hypotheses in Z will
behave similarly

Relative to this dataset, these two
hypotheses are identical!

|dea: instead of using full size of #’, count how many actually distinct hypotheses there are



How many
distincth € #

can there be?

eWhat's the largest possible number of distinct
hypotheses on M points?
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What does our
bound tell us if

?




What does our
bound tell us if

?

Vacuous! Need a tighter count of | 7|

Not surprising since | # | = 2™ is a kind of memorization learner
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J = halfspaces

oFix #
eConsider datasets Y of sizeM = 1,2, ...

eFor each dataset, count how many actually distinct
hypotheses h € # there are: | #Z (D) |
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J = halfspaces

oFix #
eConsider datasets Y of sizeM = 1,2, ...

e For each dataset, count how many actually distinct
hypotheses h € # there are: | #Z (D) |
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Growth

function

eDef’n: the growth function S.,(M) is the maximum
number of distinct h € # for a dataset of size M

efor halfspaces in 2D,

M | 2 3 4 5
Sop(M) 2 4 8 E <26

efor larger M, it turns out Sop(M) = O(M?)

not obvious!
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Growth

function

Def'n: shattering

« shattered ¢ not shattered —

Z shatters a set of points if it can classify them all possible ways
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Two kinds of

behavior

e For many hypothesis classes #, similar behavior:

S%(M) _ { 2Z M < d shattered
<2 M > 4 not shattered

ee.g., intervals (or rectangles or hyperrectangles)
ee.g., bounded-depth decision trees

ee.g., fixed-architecture neural networks

oFor many other classes #, instead So,(M) = 2¥ for all M

.. can shatter a
ee.g., unbounded-depth decision trees <ot of each size

ee.g., unbounded-size neural networks
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Two kinds of

behavior

Learnable (can't memorize more than d points)

~

roFor many hypothesis classes #, similar behavior:

S%(M) _ { 2Z M < d shattered
<2 M > 4 not shattered

ee.g., intervals (or rectangles or hyperrectangles)

ee.g., bounded-depth decision trees

ee.g., fixed-architecture neural networks

oFor many other classes #, instead So,(M) = 2¥ for all M

.. can shatter a
ee.g., unbounded-depth decision trees <ot of each size
\ ee.g., unbounded-size neural networks J

Not learnable (can memorize at any | |)
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eSuppose S, (M) = XM tor M < d, but S (d+1) < yd+1
= Then So,(M) = O(M?)

“Suppose we grow exponentially (i.e., shatter) only up to
M = d. Then for M > d we grow polynomially, with degree

d .H

Sauer’s lemma

related results derived multiple times: Sauer, Shelah, Perles,Vapnik/Chervonenkis
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Sauer’s lemma

d is called the VC-dimension of 7

/

eSuppose S, (M) = XM tor M < d, but S (d+1) < yd+1
= Then So,(M) = O(M?)

“Suppose we grow exponentially (i.e., shatter) only up to
M = d. Then for M > d we grow polynomially, with degree

d .H

related results derived multiple times: Sauer, Shelah, Perles,Vapnik/Chervonenkis
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What do our
bounds tell us

w/ Sauer’s
lemma?

eFinite realizable case:

’(n) <5 (m( 1)) +1(5) )

elInfinite realizable case:

R(h <i(1 Sey(M)) +1 <l>>
()_M 0 (Sgu n{ -
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What do our
bounds tell us

w/ Sauer’s
lemma?

e Finite agnostic case:

o< o0 i) )

eInfinite agnostic case:

R(h) < R(h) + L(1 (Se(M)) +1 <3>>
(h) < R(h) 57 \ 10 (S n|
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Finding the VC-

dimension

e We defined VC-dimension of 7, VC(%), as the size of the

largest set .S that # can shatter

olf 7 can shatter arbitrarily large sets, VC(#') = oo

o To prove that VC(%') = d, need to show

1. dsome set of d data points that # can shatter and

2. Aasetofd+ 1data points that # can shatter
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J = halfspaces

VC-dimension
example

eBefore, we looked at this dataset of size 3
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J = halfspaces

VC-dimension
example

eBut what if we had looked at this one?
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J = halfspaces

VC-dimension
example

eOnly 6 distinct hypotheses < 23
e Tempting to say VC(#) < 3 — but would be wrong
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J = halfspaces

VC-dimension
example

eSimilarly, looked at this dataset of size 4
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J = halfspaces

VC-dimension
example

eBut really should have checked this one as well
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J = halfspaces

VC-dimension
example

eAnd this one
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J = halfspaces

VC-dimension
example

eAnd this one

fortunately it turns out we're OK: no matter how
we set up the points, can't shatter 4 of them
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Halfspaces

(linear
separators)

eJust argued that halfspaces in 2D have VC =3

eln general, halfspaces in d dimensions: VC=d + 1
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More VC-

dimension
examples

o Try this at home: what is VC(#') for
o/ = half-lines where positive class is on right
e/ =real intervals, positive when x € (a, b)

e/ = axis-parallel rectangles in 2D (+ on interior)

48



Learning

objectives

e You should be able to...

eldentify properties of a learning setting, assumptions
needed to ensure low generalization error

e Distinguish true error, train error (and test,
validation errors)

eDefine PAC: what is approximately correct and what
occurs with high probability

eApply sample complexity bounds to real-world
learning examples

e Theoretically motivate regularization
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