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Statistical 
learning theory 
setup

1. Data points are generated i.i.d. from some unknown 
distribution 

2. Labels are generated from some unknown function 
    note: binary classification 

3. The learning algorithm chooses the hypothesis 
(classifier) with lowest training error rate from a 
specified hypothesis set, 

4. Goal: return a hypothesis (or classifier) with low true 
error rate (measure on test set)

𝒙(𝑛) ∼ 𝑝∗(𝒙)

𝑦(𝑛) = 𝑐∗(𝒙(𝑛)) ∈ {−1, +1}

ℋ

2



Types of Error 

●True error rate 
●Actual quantity of interest for learning 

●How well your hypothesis will perform on new samples 

●Training error rate 
●Used to choose  (e.g., fit model parameters) 

●May be a very optimistic estimate of true error
h ∈ ℋ
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●Test error rate 
●Used to evaluate hypothesis performance 

●Good estimate of true error (w/ enough test data) 

●Validation error rate 
●Used to help choose  (e.g., set hyperparameters) 

●Somewhat optimistic estimate of true error
ℋ



Error rate is also 
called risk 

●True error rate = (true) risk — unknown 

 

●Training error rate = empirical risk — we can measure this 

R(h) = 𝔼

R̂(h) = 𝔼
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Three classifiers

5

1. The true classifier, : best answer but may be 
unachievable 

2. The (true) risk minimizer (best achievable answer): 

                              

3. The empirical risk minimizer (the only one of the three 
that we can actually know) 

 

𝑐∗

h∗ = argmin
h ∈ ℋ

𝑅(h)

ĥ = argmin
h ∈ ℋ

𝑅̂(h)
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2. The (true) risk minimizer (best achievable answer): 
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ERM = the learning method that picks a hypothesis by minimizing empirical risk



Overfitting

●Recall: overfitting = difference between true error rate 
and training error rate =  

●Goal for today: predict and control overfitting for ERM 

●by finding (and proving) conditions that keep  
close to 

R̂(h)
R(h)
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Bound on 
overfitting

●PAC = Probably Approximately Correct criterion 

         

for some  (difference between true and empirical risk) 

and  (probability of “failure”) 

𝑃( 𝑅(h) − 𝑅̂(h) ≤ 𝜖) ≥ 1 − 𝛿 ∀ h ∈ ℋ

𝜖

𝛿

7

why the name?



Sample 
Complexity
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●We will do ERM on some with  training examples 

●We want to satisfy the PAC criterion with small  and 

●Chief levers: and  

●Sample complexity (of ERM on ) = the  we need in 

order to satisfy the PAC criterion for a given  and 

ℋ  M

ϵ δ

ℋ  M

ℋ M
𝜖 𝛿



Four cases
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●Realizable vs. Agnostic 

●Realizable

●Agnostic   might or might not be in 

●Finite vs. Infinite 

●Finite

●Infinite

→ 𝑐∗ ∈ ℋ

→ 𝑐∗ ℋ

→ ℋ < ∞

→ ℋ = ∞



Realizable vs. 
agnostic
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Finite vs. 
infinite |ℋ |

●Decision trees of bounded depth on discrete attributes 
vs. linear separators in 2D
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Poll Question 1: 
Which of the following 
are always true? 
 
A.  

B.  

C.  

D.  
E. None of the above 
F. TOXIC

𝑐∗ = h∗

𝑐∗ = ĥ
h∗ = ĥ
𝑐∗ = h∗ = ĥ

●The true classifier,  

●The risk minimizer,  

      

●The empirical risk minimizer,  

 

𝑐∗

h∗ = argmin
h ∈ ℋ

𝑅(h)

ĥ = argmin
h ∈ ℋ

𝑅̂(h)

12



Theorem 1:  
Finite, 
Realizable Case

13

For a finite hypothesis set  s.t.  and arbitrary 

distribution , if the number of labelled training data 
points satisfies 

 

then with probability at least , all  with 

 have 

ℋ 𝑐∗ ∈ ℋ

𝑝∗

𝑀 ≥ 1
𝜖 (ln( ℋ ) + ln( 1

𝛿 ))
1 − 𝛿 h ∈ ℋ

𝑅̂(h) = 0 𝑅(h) ≤ 𝜖

We will prove this over the next few slides
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distribution , if the number of labelled training data 
points satisfies 

 

then with probability at least , all  with 

 have 

ℋ 𝑐∗ ∈ ℋ

𝑝∗

𝑀 ≥ 1
𝜖 (ln( ℋ ) + ln( 1

𝛿 ))
1 − 𝛿 h ∈ ℋ

𝑅̂(h) = 0 𝑅(h) ≤ 𝜖
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linear in 1

ϵ

but only logarithmic 
in  and |ℋ | 1

δ

We will prove this over the next few slides



Union bound
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event C

Universe 𝒰

event A

event B

P(A or B or C) ≤ P(A) + P(B) + P(C)

P(some event happens) ≤ sum of probabilities



Bound on log

15

ln(1 + x) ≤ x



Notation for 
conclusion

●Theorem said: if

 

then with probability at least , all  with 

 have  

●Write  for event:  with ,  

●Theorem’s conclusion is 

𝑀 ≥ 1
𝜖 (ln( ℋ ) + ln( 1

𝛿 ))
1 − 𝛿 h ∈ ℋ

𝑅̂(h) = 0 𝑅(h) ≤ 𝜖

E ∃h ∈ ℋ R̂(h) = 0 R(h) > ϵ
P(E) < δ
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Bound for one 
hypothesis

●Consider some  with . What’s ?h R(h) > ϵ P(R̂(h) = 0)
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Bound for 
hypotheses

k

●Suppose there are  hypotheses with . What’s 
, i.e., ?

k R(h) > ϵ
P(E) P(R̂(h1) = 0 or R̂(h2) = 0 or …)

18

Theorem will be true if P(E) ≤ δ



Solve for M
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P(E) < |ℋ | (1 − ϵ)M

we have
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●Let  be the set of all conjunctions over  Boolean variables, 

; examples of conjunctions are 

●  

●  

●Assuming , if , , and , how many 
labelled examples do we need so that Theorem 1  PAC? 

ℋ 𝑀
𝒙 ∈ {0,1}𝑀

h(𝒙) = 𝑥1(1 − 𝑥2)𝑥4𝑥10

h(𝒙) = (1 − 𝑥3)(1 − 𝑥4)𝑥8

𝑐∗ ∈ ℋ 𝑀 = 10 𝜖 = 0.1 𝛿 = 0.01
⇒

Poll Question 2: 
 
Recall 
𝑀 ≥ 1

𝜖 (ln( ℋ ) + ln( 1
𝛿 )) A.   (TOXIC)

B.  
C.  
D.  
E.  

F.  
G.  
H.  
I.  

1
10(2ln10 + ln100) ≈ 92
10(3ln10 + ln100) ≈ 116
10(10ln2 + ln100) ≈ 116
10(10ln3 + ln100) ≈ 156

100(2ln10 + ln10) ≈ 691
100(3ln10 + ln10) ≈ 922
100(10ln2 + ln10) ≈ 924
100(10ln3 + ln10) ≈ 1329



Theorem 1: 
corollary
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●For a finite hypothesis set  s.t.  and arbitrary 

distribution , given a training data set  s.t. , 

all  with  have 

with probability at least . 

ℋ 𝑐∗ ∈ ℋ

𝑝∗ 𝑆 𝑆 = 𝑀

h ∈ ℋ 𝑅̂(h) = 0

𝑅(h) ≤ 1
𝑀 (ln( ℋ ) + ln( 1

𝛿 ))
1 − 𝛿

Recall Theorem 1 said 𝑀 ≥ 1
𝜖 (ln( ℋ ) + ln( 1

𝛿 ))



Theorem 2: 
finite, agnostic 
case

22

●For a finite hypothesis set  and arbitrary distribution , if 
the number of labelled training data points satisfies 

ℋ 𝑝∗

𝑀 ≥ 1
2𝜖2 (ln( ℋ ) + ln( 2

𝛿 ))
then with probability at least , all  satisfy  1 − 𝛿 h ∈ ℋ

𝑅(h) − 𝑅̂(h) ≤ 𝜖

●Bound is inversely quadratic in , e.g., halving  means we 
need four times as many labelled training data points

𝜖 𝜖



Theorem 2: 
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●For a finite hypothesis set  and arbitrary distribution , if 
the number of labelled training data points satisfies 

ℋ 𝑝∗

𝑀 ≥ 1
2𝜖2 (ln( ℋ ) + ln( 2

𝛿 ))
then with probability at least , all  satisfy  1 − 𝛿 h ∈ ℋ

𝑅(h) − 𝑅̂(h) ≤ 𝜖

●Bound is inversely quadratic in , e.g., halving  means we 
need four times as many labelled training data points

𝜖 𝜖

●Again, making the bound tight and solving for  gives…𝜖



Theorem 2: 
corollary
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●For a finite hypothesis set  and arbitrary distribution 

, given a training data set  s.t. , all  

have 

 

with probability at least . 

ℋ

𝑝∗ 𝑆 𝑆 = 𝑀 h ∈ ℋ

𝑅(h) ≤ 𝑅̂(h) + 1
2𝑀 (ln( ℋ ) + ln( 2

𝛿 ))
1 − 𝛿



Learning theory 
& model 
selection

24

Key point: we want to trade 
off low training error vs. 

keeping  simpleℋ

train error + regularizer 
R̂(h) + 1

M [ln |ℋ | + ln 1
δ ]

true error R(h)

train error R̂(h)
er

ro
r (

lo
w

er
 =

 b
et

te
r)

Ex:  = conjunctions on  binary attributes: 
Expert sorts attributes, most likely to be relevant first
We allow conjunctions on first  of them:

training error  as  increases
regularizer  as  increases
stop when PAC bound is smallest (best tradeoff)

ℋ d ln |ℋ | = d ln 3

d
↓ d

↑ d

actual tradeoff
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●Bounds: 

 

with probability at least . 

𝑅(h) ≤ 1
𝑀 (ln( ℋ ) + ln( 1

𝛿 ))
𝑅(h) ≤ 𝑅̂(h) + 1

2𝑀 (ln( ℋ ) + ln( 2
𝛿 ))

1 − 𝛿

What happens 
when 

?ℋ = ∞



Intuition

●For “nice” infinite hypothesis sets 
, many hypotheses in  will 

behave similarly 

●Relative to a given dataset, these 
two hypotheses are identical!

ℋ ℋ
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Intuition

●For “nice” infinite hypothesis sets 
, many hypotheses in  will 

behave similarly 

●Relative to this dataset, these two 
hypotheses are identical!

ℋ ℋ
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Idea: instead of using full size of , count how many actually distinct hypotheses there areℋ



How many 
distinct  
can there be?

h ∈ ℋ

●What’s the largest possible number of distinct 
hypotheses on  points?M

28

∘

M = 5

∘

∘∘

∘



What does our 
bound tell us if 

?|ℋ | = 2m

𝑅(h) ≤ 1
𝑀 (ln( ℋ ) + ln( 1

𝛿 ))
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What does our 
bound tell us if 

?|ℋ | = 2m

𝑅(h) ≤ 1
𝑀 (ln( ℋ ) + ln( 1

𝛿 ))

29

Vacuous! Need a tighter count of 

Not surprising since  is a kind of memorization learner

|ℋ |

|ℋ | = 2m



Counting h

●Fix  

●Consider datasets  of size  

●For each dataset, count how many actually distinct 
hypotheses  there are: 

ℋ
𝒟 M = 1, 2, …

h ∈ ℋ |ℋ(𝒟) |
30

ℋ = halfspaces

∘

M = 1

𝒟 =
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ℋ = halfspaces

∘

M = 2

∘𝒟 =
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ℋ = halfspaces

∘
∘

∘

M = 3
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Counting h

●Fix  

●Consider datasets  of size  

●For each dataset, count how many actually distinct 
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ℋ = halfspaces

∘
∘

∘∘

M = 4

𝒟 =



Growth 
function

●Def’n: the growth function  is the maximum 
number of distinct  for a dataset of size  

●for halfspaces in 2D,  

 

 

●for larger , it turns out 

Sℋ(M)
h ∈ ℋ M

M
Sℋ(M)

M Sℋ(M) = O(M3)

34

1 2 3 4 5 …

2 4 8 14 ≤ 26 …

not obvious!



Growth 
function  M

Sℋ(M)

35

1 2 3 4 5 …

2 4 8 14 ≤ 26 …

 shattered      not shattered ← →

Def ’n: shattering

 shatters a set of points if it can classify them all possible waysℋ



Two kinds of 
behavior

●For many hypothesis classes , similar behavior: 

 

●e.g., intervals (or rectangles or hyperrectangles) 

●e.g., bounded-depth decision trees 

●e.g., fixed-architecture neural networks 

●For many other classes , instead  for all  

●e.g., unbounded-depth decision trees 

●e.g., unbounded-size neural networks

ℋ

Sℋ(M) = { 2M M ≤ d
≪ 2M M > d

ℋ Sℋ(M) = 2M M

36

shattered
not shattered

can shatter a 
set of each size
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shattered
not shattered

can shatter a 
set of each size

Learnable (can’t memorize more than  points)d

Not learnable (can memorize at any )|𝒟 |



Sauer’s lemma

●Suppose  for , but  

➡ Then  

“Suppose we grow exponentially (i.e., shatter) only up to 
. Then for  we grow polynomially, with degree 

.”

Sℋ(M) = 2M M ≤ d Sℋ(d + 1) < 2d+1

Sℋ(M) = O(Md)

M = d M > d
d

37

related results derived multiple times: Sauer, Shelah, Perles, Vapnik/Chervonenkis
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related results derived multiple times: Sauer, Shelah, Perles, Vapnik/Chervonenkis

 is called the VC-dimension of d ℋ



What do our 
bounds tell us 
w/ Sauer’s 
lemma?

●Finite realizable case: 

  

●Infinite realizable case: 

𝑅(h) ≤ 1
𝑀 (ln( ℋ ) + ln( 1

𝛿 ))
R(h) ≤ 1

M (ln (Sℋ(M)) + ln ( 1
δ ))
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What do our 
bounds tell us 
w/ Sauer’s 
lemma?

●Finite agnostic case: 

  

●Infinite agnostic case: 

𝑅(h) ≤ 𝑅̂(h) + 1
2𝑀 (ln( ℋ ) + ln( 2

𝛿 ))

R(h) ≤ R̂(h) + 1
2M (ln (Sℋ(M)) + ln ( 2

δ ))
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●We defined VC-dimension of , , as the size of the 

largest set  that  can shatter 

●If can shatter arbitrarily large sets,   

●To prove that , need to show 

1.   some set of  data points that  can shatter and 

2.   a set of  data points that  can shatter 

ℋ 𝑉𝐶(ℋ)
𝑆 ℋ

ℋ  VC(ℋ) = ∞

𝑉𝐶(ℋ) = 𝑑

∃ 𝑑 ℋ

∄ 𝑑 + 1 ℋ

Finding the VC-
dimension 

40



VC-dimension 
example

●Before, we looked at this dataset of size 3

41

ℋ = halfspaces

∘

M = 3

∘

∘

𝒟 =



VC-dimension 
example

●But what if we had looked at this one?

42

ℋ = halfspaces

∘
∘∘

𝒟 =

M = 3



VC-dimension 
example

●Only 6 distinct hypotheses  

●Tempting to say  — but would be wrong

< 23

VC(ℋ) < 3

43

ℋ = halfspaces

∘
∘∘

𝒟 =

M = 3



VC-dimension 
example

●Similarly, looked at this dataset of size 4

44

ℋ = halfspaces

∘
∘

∘∘

𝒟 =

M = 4



VC-dimension 
example

●But really should have checked this one as well

45

ℋ = halfspaces

∘
∘

∘

∘

𝒟 =

M = 4



VC-dimension 
example

●And this one

46

ℋ = halfspaces

∘
∘

∘

∘

𝒟 =

M = 4



VC-dimension 
example

●And this one

46

ℋ = halfspaces

∘
∘

∘

∘

fortunately it turns out we’re OK: no matter how 
we set up the points, can’t shatter 4 of them

𝒟 =

M = 4



Halfspaces 
(linear 
separators)

●Just argued that halfspaces in 2D have VC = 3 

●In general, halfspaces in  dimensions: VC = d d + 1
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More VC-
dimension 
examples

●Try this at home: what is  for 

●  = half-lines where positive class is on right 

●  = real intervals, positive when  

●  = axis-parallel rectangles in 2D (+ on interior)

VC(ℋ)
ℋ
ℋ x ∈ (a, b)
ℋ
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Learning 
objectives

●You should be able to… 

●Identify properties of a learning setting, assumptions 
needed to ensure low generalization error 

●Distinguish true error, train error (and test, 
validation errors) 

●Define PAC: what is approximately correct and what 
occurs with high probability 

●Apply sample complexity bounds to real-world 
learning examples 

●Theoretically motivate regularization
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