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Reminders

• Homework 4: Logistic Regression
– Out: Fri, Sep 29
– Due: Mon, Oct 9 at 11:59pm

• Homework 5: Neural Networks
– Out: Mon, Oct 9
– Due: Fri, Oct 27 at 11:59pm

• Exam viewings
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Peer Tutoring
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Tutor Tutee

better grades

deeper 
understanding

personal 
attention

better grades

mastery

Improved course for everyone



BACKPROPAGATION FOR A SIMPLE 
COMPUTATION GRAPH

Algorithm
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� Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒!" +
𝑥𝑧
ln 𝑥 +

sin ln 𝑥
𝑥𝑧

what are -#$
#! and -#$

#" at 𝑥 = 2, 𝑧 = 3?

� Then compute partial derivatives, 
starting from 𝑦 and working back
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Approach 3: 
Automatic 
Differentiation 
(reverse mode)
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Approach 3: 
Automatic 
Differentiation 
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Updates for 
Backpropagation:

gx =

∂y

∂x
=

K∑

k=1

∂y

∂uk

∂uk

∂x

=

K∑

k=1

guk

∂uk

∂x

Backprop is 
efficient b/c of 
reuse in the 
forward pass and 
the backward pass.



BACKPROPAGATION FOR BINARY LOGISTIC 
REGRESSION

Algorithm
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Backpropagation
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Training

…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic 
Regression

Forward Backward

J = y∗ log y + (1− y∗) log(1− y)
∂J

∂y
=

y∗

y
+

(1− y∗)

y − 1

y =
1

1 + exp(−a)

∂J

∂a
=

∂J

∂y

∂y

∂a
,
dy

da
=

exp(−a)

(exp(−a) + 1)2

a =
D∑

j=0

θjxj

∂J

∂θj
=

∂J

∂a

∂a

∂θj
,
da

dθj
= xj

∂J

∂xj

=
∂J

∂a

∂a

∂xj

,
da

dxj

= θj



Backpropagation
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Training

…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic 
Regression

Forward Backward

J = y∗ log y + (1− y∗) log(1− y) gy =
y∗

y
+

(1− y∗)

y − 1

y =
1

1 + exp(−a)
ga = gy

∂y

∂a
,
∂y

∂a
=

exp(−a)

(exp(−a) + 1)2

a =
D∑

j=0

θjxj gθj = ga
∂a

∂θj
,
∂a

∂θj
= xj

gxj
= ga

∂a

∂xj

,
∂a

∂xj

= θj



TRAINING / FORWARD COMPUTATION / 
BACKWARD COMPUTATION

A 1-Hidden Layer Neural Network
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Forward-Computation
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Training

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21
⍺22

⍺23

β1 β2Weights

Weights
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SGD with Backprop
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Training

Example: 1-Hidden Layer Neural Network



Backpropagation
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Training

Case 2:
Neural 
Network

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Forward Backward

J = y∗ log y + (1− y∗) log(1− y) gy =
y∗

y
+

(1− y∗)

y − 1

y =
1

1 + exp(−b)
gb = gy

∂y

∂b
,
∂y

∂b
=

exp(−b)

(exp(−b) + 1)2

b =
D∑

j=0

βjzj gβj
= gb

∂b

∂βj

,
∂b

∂βj

= zj

gzj = gb
∂b

∂zj
,
∂b

∂zj
= βj

zj =
1

1 + exp(−aj)
gaj

= gzj
∂zj

∂aj
,
∂zj

∂aj
=

exp(−aj)

(exp(−aj) + 1)2

aj =
M∑

i=0

αjixi gαji
= gaj

∂aj

∂αji

,
∂aj

∂αji

= xi

gxi
=

D∑

j=0

gaj

∂aj

∂xi

,
∂aj

∂xi

= αji



Case 2:
Neural 
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation
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Training
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Network

…

…

Linear

Sigmoid

Linear

Sigmoid
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Backpropagation

22

Training



Derivative of a Sigmoid
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Training

Forward Backward
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SGD with Backprop
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Training

Example: 1-Hidden Layer Neural Network



In-Class Poll
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Question:
What questions do you have?



TRAINING / FORWARD COMPUTATION / 
BACKWARD COMPUTATION

A 2-Hidden Layer Neural Network

28



Backpropagation

Recall: Our 2-Hidden Layer Neural Network
Question: How do we train this model?

29

Training

𝒛(") = 	σ((𝜶 " )$𝒙 + 𝒃("))

𝑥!

𝑧!
(!)

𝑥$ 𝑥%

𝑧$
(!)

𝜶(!)

𝑧!
($) 𝑧$

($)
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𝑦
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(!)

…

…

𝑧&"
($)…
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𝑦 = 	σ((𝜷)$𝒛(%) + 𝛽& )

𝜶 " 	 ∈ ℝ'×)'

𝒃(") ∈ ℝ)'

𝜶 % 	 ∈ ℝ'×)(
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𝜷 ∈ ℝ)(
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Example: Neural Net Training (2-Hidden Layers)
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Example: Backpropagation (2-Hidden Layers)
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Example: Backpropagation (2-Hidden Layers)
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BACKPROPAGATION OF ERRORS
Intuitions
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Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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y(i)

p(y|x(i))

z

ϴ

Slide from (Stoyanov & Eisner, 2012)



THE BACKPROPAGATION ALGORITHM
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Backpropagation
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order. 

Let u1,…, uM denote all the nodes with vj as an input 
Assuming that y = h(u) = h(u1,…, uM) 
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures 

computing (dui/dvj) is easy)
 

y

u1 · · · ui · · · uM

v1 · · · vj · · · vN

x



Backpropagation
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui 
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

y

u1 · · · ui · · · uM

v1 · · · vj · · · vN

x



Backpropagation (Version B)
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Training

Simple Example: The goal is to compute J = +Qb(bBM(x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.

Forward Backward
J = cos(u) gu = − sin(u)

u = u1 + u2 gu1
+= gu

du

du1

,
du

du1

= 1 gu2
+= gu

du

du2

,
du

du2

= 1

u1 = sin(t) gt += gu1

du1

dt
,

du1

dt
= cos(t)

u2 = 3t gt += gu2

du2

dt
,

du2

dt
= 3

t = x2 gx += gt
dt

dx
,

dt

dx
= 2x



Backpropagation (Version B)
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Training

Simple Example: The goal is to compute J = +Qb(bBM(x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.

Forward Backward
J = cos(u) gu = − sin(u)

u = u1 + u2 gu1
+= gu

du

du1

,
du

du1

= 1 gu2
+= gu

du

du2

,
du

du2

= 1

u1 = sin(t) gt += gu1

du1

dt
,

du1

dt
= cos(t)

u2 = 3t gt += gu2

du2

dt
,

du2

dt
= 3

t = x2 gx += gt
dt

dx
,

dt

dx
= 2x

gu = 0, gu1
= 0, gu2

= 0, gt = 0, gx = 0

Notice that we 
increment the 

partial derivative 
for 12

13
in two places! 

Initialize all the 
adjoints to zero



Backpropagation

Why is the backpropagation algorithm efficient?
1. Reuses computation from the forward pass in the backward pass
2. Reuses partial derivatives throughout the backward pass (but 

only if the algorithm reuses shared computation in the forward 
pass)

(Key idea: partial derivatives in the backward pass should be 
thought of as variables stored for reuse)

52

Training



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

53

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 
And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



MATRIX CALCULUS
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Q&A
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Q: Do I need to know matrix calculus to derive the 
backprop algorithms used in this class?

A: Well, we’ve carefully constructed our assignments 
so that you do not need to know matrix calculus.

That said, it’s pretty handy. So we added matrix 
calculus to our learning objectives for backprop. 



Matrix Calculus

56

Types of 
Derivatives scalar vector matrix

scalar

vector

matrix

Numerator

De
no

m
in

at
or



Types of 
Derivatives scalar

scalar

vector

matrix

Matrix Calculus
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Types of 
Derivatives scalar vector

scalar

vector

Matrix Calculus
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Matrix Calculus
Whenever you read about matrix calculus, you’ll be confronted with two 
layout conventions:

59

In this course, we 
use denominator 

layout. 

Why? This 
ensures that our 
gradients of the 

objective 
function with 

respect to some 
subset of 

parameters are 
the same shape 

as those 
parameters.



Vector Derivatives

Scalar Derivatives Vector Derivatives

60

f(x) ∂f(x)
∂x

bx b

xb b

x2 2x
bx2 2bx

f(x) ∂f(x)
∂x type of f

bT x b f : Rm
→ R

xT b b f : Rm
→ R

xT B B f : Rm
→ R

n

BT x BT f : Rm
→ R

n

xT x 2x f : Rm
→ R

xT Qx 2Qx f : Rm
→ R

Suppose x ∈ R

and f : R → R

Suppose x ∈ R
m, b ∈ R

m,
B ∈ R

m×n, Q ∈ R
m×m

and Q is symmetric.



Vector Derivatives

Scalar Derivatives Vector Derivatives

61

f(x) ∂f(x)
∂x

g(x) + h(x) ∂g(x)
∂x + ∂h(x)

∂x
ag(x) a

∂g(x)
∂x

g(x)b ∂g(x)
∂x bT

Suppose x ∈ R
m and we have

constants a ∈ R, b ∈ R

f(x) ∂f(x)
∂x

g(x) + h(x) ∂g(x)
∂x

+ ∂h(x)
∂x

ag(x) a
∂g(x)
∂x

g(x)b ∂g(x)
∂x

b

Suppose x ∈ R
m and we have

constants a ∈ R, b ∈ R
n



Question:

Answer:

Matrix Calculus

62

y

u

x

g

h

Suppose y = g(u) and u = h(x)

Which of the following is the 
correct definition of the chain rule?

Recall:



DRAWING A NEURAL NETWORK

63



Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable 

corresponding to the hidden unit
• For a fully connected feed-forward neural 

network, a hidden unit is a nonlinear 
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side 

note: we should be careful about ascribing 
how a matrix can be used to indicate the 
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the 

intercept term is NOT shown as a node, but 
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e. 
its weight does NOT appear in the picture 
anywhere)

– The diagram does NOT include any nodes 
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the 

algorithm
• Node is labeled with the function that it 

computes (inside the box) and also the 
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t 

need them)
• For neural networks:

– Each intercept term should appear as a node 
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature 

vector should appear in the graph
– It’s perfectly fine to include the loss

64

⍺11 ⍺12 ⍺13⍺21
⍺22

⍺23

β1 β2
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• For a fully connected feed-forward neural 

network, a hidden unit is a nonlinear 
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• Edges are directed
• Each edge is labeled with its weight (side 

note: we should be careful about ascribing 
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labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the 

intercept term is NOT shown as a node, but 
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e. 
its weight does NOT appear in the picture 
anywhere)

– The diagram does NOT include any nodes 
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the 

algorithm
• Node is labeled with the function that it 

computes (inside the box) and also the 
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t 

need them)
• For neural networks:

– Each intercept term should appear as a node 
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature 

vector should appear in the graph
– It’s perfectly fine to include the loss
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vector should appear in the graph
– It’s perfectly fine to include the loss

66

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

(C’) Parameters

Given βj , ∀j

(A’) Parameters

Given αij , ∀i, j

(E’) Label

Given y
∗



Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable 

corresponding to the hidden unit
• For a fully connected feed-forward neural 

network, a hidden unit is a nonlinear 
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side 

note: we should be careful about ascribing 
how a matrix can be used to indicate the 
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the 

intercept term is NOT shown as a node, but 
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e. 
its weight does NOT appear in the picture 
anywhere)

– The diagram does NOT include any nodes 
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the 

algorithm
• Node is labeled with the function that it 

computes (inside the box) and also the 
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t 

need them)
• For neural networks:

– Each intercept term should appear as a node 
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature 

vector should appear in the graph
– It’s perfectly fine to include the loss

67

Important!
Some of these conventions are 

specific to 10-301/601. The literature 
abounds with varations on these 

conventions, but it’s helpful to have 
some distinction nonetheless.



Summary

1. Neural Networks…
– provide a way of learning features
– are highly nonlinear prediction functions
– (can be) a highly parallel network of logistic regression classifiers
– discover useful hidden representations of the input

2. Backpropagation…
– provides an efficient way to compute gradients
– is a special case of reverse-mode automatic differentiation
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Backprop Objectives
You should be able to…
• Differentiate between a neural network diagram and a computation graph 
• Construct a computation graph for a function as specified by an algorithm
• Carry out the backpropagation on an arbitrary computation graph
• Construct a computation graph for a neural network, identifying all the given and 

intermediate quantities that are relevant
• Instantiate the backpropagation algorithm for a neural network
• Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the 

parameters of a model are comprised of several matrices corresponding to different 
layers of a neural network

• Apply the empirical risk minimization framework to learn a neural network
• Use the finite difference method to evaluate the gradient of a function
• Identify when the gradient of a function can be computed at all and when it can be 

computed efficiently
• Employ basic matrix calculus to compute vector/matrix/tensor derivatives.
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