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Reminders

* Homework 4: Logistic Regression
— Out: Fri, Sep 29
— Due: Mon, Oct 9 at 11:59pm

« Homework 5: Neural Networks

— Out: Mon, Oct 9
— Due: Fri, Oct 27 at 11:59pm

* Exam viewings




Peer Tutoring




BACKPROPAGATION FOR A SIMPLE
COMPUTATION GRAPH
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Updates for

Backpropagation-

2 Z

Backprop is
efficient b/c of
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BACKPROPAGATION FOR BINARY LOGISTIC
REGRESSION



Training Backpropagation

Case 1:
Logistic
Regression

Forward
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Training Backpropagation

Case 1:
Logistic
Regression
Forward Backward
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TRAINING /| FORWARD COMPUTATION |
BACKWARD COMPUTATION



Training

Output
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Forward-Computation

[ (E) Output (sigmoid)
1

Y= 1+exp(—b)

?

[ (D) Output (linear)

b=31"0 557
(C) Hidden (sigmoid)
% = Treway V)
(B) Hidden (linear)
aj = 3ilo i, V]

?

(A) Input
Givenz;, V1




Training

Output
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Training

Output

Weights

Hidden Layer

Forward-Computation
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Training SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algorithm 1 Stochastic Gradient Descent (SGD)

1: procedure SGD(Training data D, test data D;)
2 Initialize parameters «, 3

3 fore € {1,2,...,E} do

4: for (x,y) € Ddo
5:
6
7

Compute neural network layers:
o = object(x,a,b,z,y,J) = NNFORWARD(X,y, , 3)
Compute gradients via backprop:

8: Ba = Vol | _ NNBACKWARD(X, y, c, 3, 0)
gs = VpJ

9: Update parameters:

10: a— o — V8q

1 B <+ B—ga

12: Evaluate training mean cross-entropy Jp (o, 3)

13: Evaluate test mean cross-entropy Jp, (¢, 3)

14: return parameters I6;




Training

Case 2:
Neural
Network

Backpropagation

Forward
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Training

Case >

Loss

Sigmoid
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Sigmoid
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Training

Case >

Loss

Sigmoid
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Derivative of a Sigmoid

First suppose that
1
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To obtain the simplified form of the derivative of a sigmoid.
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Training

Case >

Loss
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Training Backpropagation

Cace ¢ Forward Backward
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Training SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algorithm 1 Stochastic Gradient Descent (SGD)

1: procedure SGD(Training data D, test data D;)
2 Initialize parameters «, 3

3 fore € {1,2,...,E} do

4: for (x,y) € Ddo
5:
6
7

Compute neural network layers:
o = object(x,a,b,z,y,J) = NNFORWARD(X,y, , 3)
Compute gradients via backprop:

8: Ba = Vol | _ NNBACKWARD(X, y, c, 3, 0)
gs = VpJ

9: Update parameters:

10: a— o — V8q

1 B <+ B—ga

12: Evaluate training mean cross-entropy Jp (o, 3)

13: Evaluate test mean cross-entropy Jp, (¢, 3)

14: return parameters I6;




In-Class Poll

Question:
What questions do you have?



TRAINING /| FORWARD COMPUTATION |
BACKWARD COMPUTATION



Training

Backpropagation

Recall: Our 2-Hidden Layer Neural Network
Question: How do we train this model?

B € RP-
2
By ER y = o((B)2” + o)
a(z) e RMXD; Z(z) _ G((a(z))TZ(l) + b(z))
b?) € RP
Z(l) — o((a(l))Tx + b(l))

b(l) e RP1
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Example: Neural Net Training (2-Hidden Layers)



Example: Backpropagation (2-Hidden Layers)



Example: Backpropagation (2-Hidden Layers)



BACKPROPAGATION OF ERRORS



Error Back-Propagation
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Error Back-Propagation
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Error Back-Propagation
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Error Back-Propagation
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Error Back-Propagation
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THE BACKPROPAGATION ALGORITHM



Training Backpropagation




Training Backpropagation

Automatic Differentiation — Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a
direcﬁgsj acyclic graph, where each variable is a node (i.e. the “computation
grap

2.  Visit each node in topological order.
For variable u; with inputs v,,..., vy
a. Compute u; = gi(v,,..., Vx)
b. Store the result at the node

Backward Computation (Version B)
1. Initialize all partial derivatives dy/du; to o0 and dy/dy = 1.
2.  Visit each node in reverse topological order.
For variable u; = gi(v,,..., Vx)
a. Wealready know dy/du;
b. Increment dy/dv; by (dy/du;)(du;/dv;) U1 ce V.
(Choice of algorithm ensures computing (du;/dv)) is easy) J

SN

N\
N

Return partial derivatives dy/du;for all variables



Training Backpropagation (Version B)

Simple Example: The goal is to compute J = cos(sin(z?) + 32?)
on the forward pass and the derivative fl—i on the backward pass.

Forward
J = cos(u)

U = U1 + ug

uy = sin(t)




Training

Simple Example:

Backpropagation (Version B)

on the forward pass and the derlvatlve

Forward
J = cos(u)

U = U1 + Ug

uy = sin(t)
Uy — 3t
t = 2

Backward
gy = —sin(u)
_ du
S = ol du1
du1
gt ¥= Gu, TR
d’LLQ
gt ™= Gus —5, dt
gz T= gtﬁ
dz’

du

1

du1

du1

—— — COS

duz
dt

dt

dx

dt

=3

= 2x

The goal is to compute J = cos(sin(x

%) + 3x?%)
on the backward pass.

Gu :Oagu1 :Oaguz :07915 :O,Q:c =0 <:

Initialize all the
adjoints to zero

du

Notice that we
increment the

partial derivative

d]
for— ”

in two places!




Training Backpropagation

Why is the backpropagation algorithm e;
1,
2.

icient?
Reuses computation from the forward pass in the backward pass

Reuses partial derivatives throughout the backward pass (but
only if the algorithm reuses shared computation in the forward

pass)

\—

(Key idea: partial derivatives in the backward pass should be
thought of as variables stored for reuse)
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MATRIX CALCULUS



Do | need to know matrix calculus to derive the
backprop algorithms used in this class?
Well, we’ve carefully constructed our assignments

so that you do not need to know matrix calculus.

That said, it’s pretty handy. So we added matrix
calculus to our learning objectives for backprop.



Matrix Calculus

Numerator
DTy_pes " J scalar vector matrix
erivatives
Lety, x € Rbescalars,
y € RM andx € R” Oy Oy @ 0Y
be vectors, and scalar — — S
Y e RM*XN gndX € Ox Ox ox
RP*XQ be matrices
Jy Ody | 0Y
vector — _Y
@)
£
o | OV | Oy | OY
0X 0X  0X




Matrix Calculus

Types o
y p .f scalar
Derivatives
oy
scalar — [g—y]
ox x
- 5y
8:1:1
Y
a ox
vector 9y _2
ox :
Oy
| Oxp |
- _Oy Oy Oy 7
3X11 8X12 8X1Q
. Oy Oy Oy
matrix oy 0X21  0Xag 0X2q
0X :
Oy Oy ... _Oy
| 0 X pq 0Xpo 0Xpq
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Matrix Calculus

Ty p e .O f scalar vector
Derivatives
: @ — [@] 6‘_y _ [3y1 Oy2 8'yN]
>catar Or Loz Or ox ox ox
| ;— ~ Oy1 Oy2 Oyn
évl 3:131 8:81 8331
0, B ; Oy1  Oyz Oyn
_y — L2 8}’ L 85132 8:132 8332
vector ox 8_X — :
;—y Oy1 Oy2 Oyn
- TP N 8wp aaﬁp 63313 N
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Matrix Calculus

Whenever you read about matrix calculus, you’ll be confronted with two
layout conventions:

Let y, z € R be scalars, y € R™ and x € R” be vectors.

1. In numerator layout: In this course, we
use denominator
oy . o layout.
I isal x P matrix, i.e. a row vector
oy . ' Why? This
5y 53N M x P matrix ensures that our
X gradients of the
@ objective
2. In denominator layout: function with
respect to some
oy subset of

isa P x 1 matrix, i.e. a column vector parameters are

0x

dy the same shape
—— isan P x M matrix as those

ox parameters.




Scalar Derivatives

Supposex € R

and f: R —> R
fl) 5P
bx b
xb b
x? 2T
ba? 2bx

Vector Derivatives

Vector Derivatives

Supposex € R™, b € R™,
B E Ran, Q E Rme
and Q is symmetric.

flx) 25 typeof f

b!'x b f:R™ =R
x''b b f:R™ >R
x!'B B f:R™ — R"
B'x BT  f:R™ S R"
x!'x 2x f:R™ =R
x'Qx 2Qx f:R™ =R




Scalar Derivatives

Suppose x € R™ and we have
constantsa € R, b € R

Of(x)

f(x) 5
(@) +h@) P+ %

g(x

ag(x) Cgﬁ

g(z)b Oz b

Vector Derivatives

Vector Derivatives

Suppose x € R™ and we have
constantsa € R, b € R"

Of (x)
/ (X) Ox
() + ) 24 250
g(x
e
g (X)b Ox b




Matrix Calculus

Question:
Suppose y = g(u) and u = h(x)

[]
|
HEEEE
T
[ [ ] ]
Which of the following is the
correct definition of the chain rule?

y
u |

h

|
X L

Recall: ’8871/
oy _ |
ox

9y
| Oz p _
Answer:

Oy

ox

"Oyr Oy2 .. Oun

Y1 Y2 L. Oyn
Oxo Oxo Oxo

Oy1  Oy2 .. Oyn
8.’BP 8mp 81'13 .

Jy

ox
0y Ou
ou 0x

5 0" 0u
" Ju Ox
oy ou’
ou 0x
5. 0" ouT
" Ou Ox
oy 0u;
ou 0x

F. None of the above

E.



DRAWING A NEURAL NETWORK



Ways of Drawing Neural Networks

Neural Network Diagram

The diagram represents a neural network
Nodes are circles

One node per hidden unit

Node is labeled with the variable
corresponding to the hidden unit

For a fully connected feed-forward neural
network, a hidden unit is a nonlinear
function of nodes in the previous layer

Edges are directed

Each edge is labeled with its weight (side
note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)
Other details:

— Following standard convention, the
intercept term is NOT shown as a node, but
rather is assumed to be part of the non-

linear function that yields a hidden unit. (i.e.

its weight does NOT appear in the picture
anywhere)

— The diagram does NOT include any nodes
related to the loss computation
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Ways of Drawing Neural Networks

ggme__gﬁeb Computation Graph
e The diagram represents an algorithm

QU-) K(;)
rﬂl : ' | L‘
qa

->(1-)

i,x(z)
20 -
y
[ TS <O
()

Nodes are rectangles

One node per intermediate variable in the
algorithm

Node is labeled with the function that it
computes (inside the box) and also the
variable name (outside the box)

Edges are directed

Edges do not have labels (since they don’t
need them)

For neural networks:

— Eachintercept term should appear as a node
(if it’s not folded in somewhere)
— Each parameter should appear as a node

— Each constant, e.g. a true label or a feature
vector should appear in the graph

— It’s perfectly fine to include the loss
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Ways of Drawing Neural Networks

(F) Loss Computation Graph
J=35(y—y*)? :

(E) Output (sigmoid) (E’) Label
. Given y* )
b= 370557

Y= Thexp(=n)
f .

?
[ (C) Hidden (sigmoid)

[ (D) Output (linear)

(C’) Parameters

TFexp(=a;)’ Given 3;,Vj

\

f

[ (B) Hidden (linear)

Given x;, V1

] (A’) Parameters
Given Qg V’L,]

The diagram represents an algorithm
Nodes are rectangles
One node per intermediate variable in the
algorithm
Node is labeled with the function that it
computes (inside the box) and also the
variable name (outside the box)
Edges are directed
(since they don’t

need them)
For neural networks:

— Each intercept term should appear as a node

(if it’s not folded in somewhere)
— Each parameter should appear as a node

— Each constant, e.g. a true label or a feature
vector should appear in the graph
— It’s perfectly fine to include the loss
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Ways of Drawing Neural Networks

Computation Graph

Neural Network Diagram

The diagram represents a neural network
Nodes are circles

One node per hidden unit

Node is labeled with the variable
corresponding to the hidden unit

For a fully connected feed-forward neural
network, a hidden unit is a nonlinear
function of nodes in the previous layer

Edges are directed

Each (side
note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

Other details:

— Following standard convention, the
intercept term is NOT shown as a node, but
rather is assumed to be part of the non-

linear function that yields a hidden unit. (i.e.

its weight does NOT appear in the picture
anywhere)

— The diagram does NOT include any nodes
related to the loss computation

The diagram represents an algorithm
Nodes are rectangles

One node per intermediate variable in the
algorithm

Node is labeled with the function that it
computes (inside the box) and also the
variable name (outside the box)

Edges are directed

(since they don’t
need them)

For neural networks:

— Each intercept term should appear as a node
(if it’s not folded in somewhere)

— Each parameter should appear as a node

— Each constant, e.g. a true label or a feature
vector should appear in the graph

— It’s perfectly fine to include the loss

Important!

Some of these conventions are
specific to 10-301/601. The literature
abounds with varations on these

conventions, but it’s helpful to have

some distinction nonetheless.




Summary

1. Neural Networks...
— provide a way of learning features
— are highly nonlinear prediction functions
— (can be) a highly parallel network of logistic regression classifiers
— discover useful hidden representations of the input

2. Backpropagation...
— provides an efficient way to compute gradients
— is a special case of reverse-mode automatic differentiation



Backprop Objectives

You should be able to...

Differentiate between a neural network diagram and a computation graph
Construct a computation graph for a function as specified by an algorithm
Carry out the backpropagation on an arbitrary computation graph

Construct a computation graph for a neural network, identifying all the given and
intermediate quantities that are relevant

Instantiate the backpropagation algorithm for a neural network

Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the
parameters of a model are comprised of several matrices corresponding to different
layers of a neural network

Apply the empirical risk minimization framework to learn a neural network
Use the finite difference method to evaluate the gradient of a function

|dentify when the gradient of a function can be computed at all and when it can be
computed efficiently

Employ basic matrix calculus to compute vector/matrix/tensor derivatives.



