Backpropagation

Hoda Heidari, Henry Chai, Matt Gormley
Lecture 13
Feb. 28, 2024

Reminders

- Homework 4: Logistic Regression
- Out: Fri, Sep 29
- Due: Mon, Oct 9 at 11:59pm
- Homework 5: Neural Networks
- Out: Mon, Oct 9
- Due: Fri, Oct 27 at 11:59pm
- Exam viewings

Peer Tutoring

Algorithm

BACKPROPAGATION FOR A SIMPLE COMPUTATION GRAPH

- Given

$$
y=f(x, z)=e^{x z}+\frac{x z}{\ln (x)}+\frac{\sin (\ln (x))}{x z}
$$

what are $\partial y / \partial x$ and $\frac{\partial y / \partial z}{}$ at $x=2, z=3$?

$$
\cdot g_{y}=\frac{\partial y}{\partial y}=1
$$

$$
g_{d}=g_{e}=g_{f}=1
$$

Approach 3:
Automatic Differentiation (reverse mode)

- Then compute partial derivatives, starting from y and working back x
2 - $g_{x}=\frac{\partial y}{\partial x}=\frac{\partial y}{\partial b} \frac{\partial b}{\partial x}+\frac{\partial y}{\partial a} \frac{\partial a}{\partial x}=g_{b}\left(\frac{1}{x}\right)+g_{a}(z)$

$$
\cdot g_{z}=\frac{\partial y}{\partial z}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial z}=g_{a}(x)
$$

Updates for

Backpropagation:

$$
\begin{aligned}
g_{x}=\frac{\partial y}{\partial x} & =\sum_{k=1}^{K} \frac{\partial y}{\partial u_{k}} \frac{\partial u_{k}}{\partial x} \\
& =\sum_{k=1}^{K} g_{u_{k}} \frac{\partial u_{k}}{\partial x}
\end{aligned}
$$

$$
y=f(x, z)=e^{x z}+\frac{x z}{\ln (x)}+\frac{\sin (\ln (x))}{x z}
$$

$$
\text { are }^{\partial y} / \partial x \text { and } \frac{\partial y / \partial z}{} \text { at } x=2, z=3 \text { ? }
$$

$$
\cdot g_{y}=\frac{\partial y}{\partial y}=1
$$

$$
\cdot g_{d}=g_{e}=g_{f}=1
$$

$$
\begin{aligned}
& \text { en compute partial derivatives, } \\
& \text { rting from } y \text { and working back }
\end{aligned} \quad g_{c}=\frac{\partial y}{\partial c}=\frac{\partial y}{\partial f} \frac{\partial f}{\partial c}=g_{f}\left(\frac{1}{a}\right)
$$

Backprop is efficient b/c of reuse in the forward pass and the backward pass.

$$
g_{x}=\frac{\partial y}{\partial x}=\frac{\partial y}{\partial b} \frac{\partial b}{\partial x}+\frac{\partial y}{\partial a} \frac{\partial a}{\partial x}=g_{b}\left(\frac{1}{x}\right)+g_{a}(z)
$$

$$
g_{z}=\frac{\partial y}{\partial z}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial z}=g_{a}(x)
$$

Algorithm

BACKPROPAGATION FOR BINARY LOGISTIC REGRESSION

Training

Backpropagation
Output

Case 1: Logistic Regression

Input

$$
\begin{aligned}
& \text { Forward } \\
& J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y) \\
& y=\frac{1}{1+\exp (-a)} \\
& a=\sum_{j=0}^{D} \theta_{j} x_{j}
\end{aligned}
$$

Backpropagation

Case 1: Logistic Regression

Input

$$
\begin{array}{l|l}
\hline \text { Forward } & \text { Backward } \\
J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y) & g_{y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1} \\
\hline y=\frac{1}{1+\exp (-a)} & g_{a}=g_{y} \frac{\partial y}{\partial a}, \frac{\partial y}{\partial a}=\frac{\exp (-a)}{(\exp (-a)+1)^{2}} \\
a=\sum_{j=0}^{D} \theta_{j} x_{j} & g_{\theta_{j}}=g_{a} \frac{\partial a}{\partial \theta_{j}}, \frac{\partial a}{\partial \theta_{j}}=x_{j} \\
& g_{x_{j}}=g_{a} \frac{\partial a}{\partial x_{j}}, \frac{\partial a}{\partial x_{j}}=\theta_{j} \\
\hline
\end{array}
$$

A 1-Hidden Layer Neural Network

TRAINING / FORWARD COMPUTATION / BACKWARD COMPUTATION

Example: 1-Hidden Layer Neural Network

```
Algorithm 1 Stochastic Gradient Descent (SGD)
    procedure \(\operatorname{SGD}\) (Training data \(\mathcal{D}\), test data \(\mathcal{D}_{t}\) )
        Initialize parameters \(\boldsymbol{\alpha}, \boldsymbol{\beta}\)
        for \(e \in\{1,2, \ldots, E\}\) do
            for \((\mathbf{x}, \mathbf{y}) \in \mathcal{D}\) do
                Compute neural network layers:
                    \(\mathbf{o}=\operatorname{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J)=\operatorname{NNFORWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta})\)
                    Compute gradients via backprop:
                    \(\left.\begin{array}{l}\mathbf{g}_{\boldsymbol{\alpha}}=\nabla_{\boldsymbol{\alpha}} J \\ \mathbf{g}_{\boldsymbol{\beta}}=\nabla_{\boldsymbol{\beta}} J\end{array}\right\}=\operatorname{NNBACKWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{o})\)
                Update parameters:
                    \(\boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha}-\gamma \mathbf{g}_{\boldsymbol{\alpha}}\)
                \(\boldsymbol{\beta} \leftarrow \boldsymbol{\beta}-\gamma \mathbf{g}_{\boldsymbol{\beta}}\)
            Evaluate training mean cross-entropy \(J_{\mathcal{D}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
            Evaluate test mean cross-entropy \(J_{\mathcal{D}_{t}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
        return parameters \(\boldsymbol{\alpha}, \boldsymbol{\beta}\)
```


Backpropagation

Case 2:
Neural
Network

$$
\begin{array}{l|l}
\text { Forward } \\
J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y) & \begin{array}{l}
\text { Backward } \\
g_{y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1} \\
y=\frac{1}{1+\exp (-b)}
\end{array} \\
\begin{array}{l}
g_{b}=g_{y} \frac{\partial y}{\partial b}, \frac{\partial y}{\partial b}=\frac{\exp (-b)}{(\exp (-b)+1)^{2}} \\
b=\sum_{j=0}^{D} \beta_{j} z_{j}
\end{array} & g_{\beta_{j}}=g_{b} \frac{\partial b}{\partial \beta_{j}}, \frac{\partial b}{\partial \beta_{j}}=z_{j} \\
z_{j}=\frac{1}{1+\exp \left(-a_{j}\right)} & g_{z_{j}}=g_{b} \frac{\partial b}{\partial z_{j}}, \frac{\partial b}{\partial z_{j}}=\beta_{j} \\
a_{j}=\sum_{i=0}^{M} \alpha_{j i} x_{i} & g_{a_{j}}=g_{z_{j}} \frac{\partial z_{j}}{\partial a_{j}}, \frac{\partial z_{j}}{\partial a_{j}}=\frac{\exp \left(-a_{j}\right)}{\left(\exp \left(-a_{j}\right)+1\right)^{2}} \\
g_{\alpha_{j i}}=g_{a_{j}} \frac{\partial a_{j}}{\partial \alpha_{j i}}, \frac{\partial a_{j}}{\partial \alpha_{j i}}=x_{i} \\
& g_{x_{i}}=\sum_{j=0}^{D} g_{a_{j}} \frac{\partial a_{j}}{\partial x_{i}}, \frac{\partial a_{j}}{\partial x_{i}}=\alpha_{j i}
\end{array}
$$

Backpropagation

Case 2:	Forward	Backward
Loss	$J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y)$	$g_{y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1}$
Sigmoid	$y=\frac{1}{1+\exp (-b)}$	$g_{b}=g_{y} \frac{\partial y}{\partial b}, \frac{\partial y}{\partial b}=\frac{\exp (-b)}{(\exp (-b)+1)^{2}}$
Linear	$b=\sum_{j=0}^{D} \beta_{j} z_{j}$	$g_{\beta_{j}}=g_{b} \frac{\partial b}{\partial \beta_{j}}, \frac{\partial b}{\partial \beta_{j}}=z_{j}$
Sigmoid	$z_{j}=\frac{1}{1+\exp \left(-a_{j}\right)}$	$g_{z_{j}}=g_{b} \frac{\partial b}{\partial z_{j}}, \frac{\partial b}{\partial z_{j}}=\beta_{j}$
$a_{z_{j}} \frac{\partial z_{j}}{\partial a_{j}}, \frac{\partial z_{j}}{\partial a_{j}}=\frac{\exp \left(-a_{j}\right)}{\left(\exp \left(-a_{j}\right)+1\right)^{2}}$		
Linear	$\sum_{i=0}^{M} \alpha_{\alpha_{j i}} x_{i}$	$g_{a_{j}} \frac{\partial a_{j}}{\partial \alpha_{j i}}, \frac{\partial a_{j}}{\partial \alpha_{j i}}=x_{i}$
		$g_{x_{i}}=\sum_{j=0}^{D} g_{a_{j}} \frac{\partial a_{j}}{\partial x_{i}}, \frac{\partial a_{j}}{\partial x_{i}}=\alpha_{j i}$

Backpropagation

Case 2:	Forward	Backward
Loss	$J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y)$	$\frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1}$
Sigmoid	$y=\frac{1}{1+\exp (-b)}$	$\frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b}, \frac{d y}{d b}=\frac{\exp (-b)}{(\exp (-b)+1)^{2}}$
Linear	$b=\sum_{j=0}^{D} \beta_{j} z_{j}$	$\frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j}$
Sigmoid	$z_{j}=\frac{d J}{1+\exp \left(-a_{j}\right)}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j}$	
	$a_{j}=\sum_{i=0}^{M} \alpha_{j i} x_{i}$	$\frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}}, \frac{d z_{j}}{d a_{j}}=\frac{\exp \left(-a_{j}\right)}{\left(\exp \left(-a_{j}\right)+1\right)^{2}}$
Linear	$\frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i}$	
	$\frac{d J}{d x_{i}}=\sum_{j=0}^{D} \frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\alpha_{j i}$	

Derivative of a Sigmoid

First suppose that

$$
\begin{equation*}
s=\frac{1}{1+\exp (-b)} \tag{1}
\end{equation*}
$$

To obtain the simplified form of the derivative of a sigmoid.

$$
\begin{align*}
\frac{d s}{d b} & =\frac{\exp (-b)}{(\exp (-b)+1)^{2}} \tag{2}\\
& =\frac{\exp (-b)+1-1}{(\exp (-b)+1+1-1)^{2}} \\
& =\frac{\exp (-b)+1-1}{(\exp (-b)+1)^{2}} \\
& =\frac{\exp (-b)+1}{(\exp (-b)+1)^{2}}-\frac{1}{(\exp (-b)+1)^{2}} \\
& =\frac{1}{(\exp (-b)+1)}-\frac{1}{(\exp (-b)+1)^{2}} \\
& =\frac{1}{(\exp (-b)+1)}-\left(\frac{1}{(\exp (-b)+1)} \frac{1}{(\exp (-b)+1)}\right) \\
& =\frac{1}{(\exp (-b)+1)}\left(1-\frac{1}{(\exp (-b)+1)}\right) \\
& =s(1-s)
\end{align*}
$$

Backpropagation

Case 2:	Forward	Backward
Loss	$J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y)$	$g_{y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1}$
Sigmoid	$y=\frac{1}{1+\exp (-b)}$	$g_{b}=g_{y} \frac{\partial y}{\partial b}, \frac{\partial y}{\partial b}=\frac{\exp (-b)}{(\exp (-b)+1)^{2}}$
Linear	$b=\sum_{j=0}^{D} \beta_{j} z_{j}$	$\begin{aligned} g_{\beta_{j}} & =g_{b} \frac{\partial i}{\partial \beta_{j}}, \frac{\partial v}{\partial \beta_{j}}=z_{j} \\ g_{z_{j}} & =g_{b} \frac{\partial b}{\partial z_{j}}, \frac{\partial b}{\partial \tau}=\beta_{j} \end{aligned}$
Sigmoid	$z_{j}=\frac{1}{1+\exp \left(-a_{j}\right)}$	$g_{a_{j}}=g_{z_{j}} \frac{\partial z_{j}}{\partial a_{j}}, \frac{\partial z_{j}}{\partial a_{j}}=\frac{\exp \left(-a_{j}\right)}{\left(\exp \left(-a_{j}\right)+1\right)^{2}}$
Linear	$a_{j}=\sum_{i=0}^{M} \alpha_{j i} x_{i}$	$\begin{aligned} g_{\alpha_{j i}} & =g_{a_{j}} \frac{\partial a_{j}}{\partial \alpha_{j i}}, \frac{\hat{v} u_{j}}{\partial \alpha_{j i}}=x_{i} \\ g_{x_{i}} & =\sum_{j=0}^{D} g_{a_{j}} \frac{\partial a_{j}}{\partial x_{i}}, \frac{\partial a_{j}}{\partial x_{i}}=\alpha_{j i} \end{aligned}$

Backpropagation

Example: 1-Hidden Layer Neural Network

```
Algorithm 1 Stochastic Gradient Descent (SGD)
    procedure \(\operatorname{SGD}\) (Training data \(\mathcal{D}\), test data \(\mathcal{D}_{t}\) )
        Initialize parameters \(\boldsymbol{\alpha}, \boldsymbol{\beta}\)
        for \(e \in\{1,2, \ldots, E\}\) do
            for \((\mathbf{x}, \mathbf{y}) \in \mathcal{D}\) do
                Compute neural network layers:
                    \(\mathbf{o}=\operatorname{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J)=\operatorname{NNFORWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta})\)
                    Compute gradients via backprop:
                    \(\left.\begin{array}{l}\mathbf{g}_{\boldsymbol{\alpha}}=\nabla_{\boldsymbol{\alpha}} J \\ \mathbf{g}_{\boldsymbol{\beta}}=\nabla_{\boldsymbol{\beta}} J\end{array}\right\}=\operatorname{NNBACKWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{o})\)
                Update parameters:
                    \(\boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha}-\gamma \mathbf{g}_{\boldsymbol{\alpha}}\)
                \(\boldsymbol{\beta} \leftarrow \boldsymbol{\beta}-\gamma \mathbf{g}_{\boldsymbol{\beta}}\)
            Evaluate training mean cross-entropy \(J_{\mathcal{D}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
            Evaluate test mean cross-entropy \(J_{\mathcal{D}_{t}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
        return parameters \(\boldsymbol{\alpha}, \boldsymbol{\beta}\)
```


In-Class Poll

Question:
 What questions do you have?

A 2-Hidden Layer Neural Network

TRAINING / FORWARD COMPUTATION / BACKWARD COMPUTATION

Backpropagation

Recall: Our 2-Hidden Layer Neural Network
Question: How do we train this model?

$$
\begin{array}{rlrl}
\boldsymbol{\beta} \in \mathbb{R}^{D_{2}} & \\
\beta_{0} \in \mathbb{R} & y & =\sigma\left((\boldsymbol{\beta})^{T} \mathbf{z}^{(2)}+\beta_{0}\right) \\
\boldsymbol{\alpha}^{(2)} \in \mathbb{R}^{M \times D_{2}} & z^{(2)}=\sigma\left(\left(\boldsymbol{\alpha}^{(2)}\right)^{T} \mathbf{z}^{(1)}+\boldsymbol{b}^{(2)}\right) \\
\boldsymbol{b}^{(2)} \in \mathbb{R}^{D_{2}} & \mathbf{z}^{(1)}=\sigma\left(\left(\boldsymbol{\alpha}^{(1)}\right)^{T} \boldsymbol{x}+\boldsymbol{b}^{(1)}\right) \\
\boldsymbol{\alpha}^{(1)} \in \mathbb{R}^{M \times D_{1}} & \\
\boldsymbol{b}^{(1)} \in \mathbb{R}^{D_{1}} &
\end{array}
$$

Example: Neural Net Training (2-Hidden Layers)

Example: Backpropagation (2-Hidden Layers)

Example: Backpropagation (2-Hidden Layers)

Intuitions

BACKPROPAGATION OF ERRORS

Error Back-Propagation

THE BACKPROPAGATION ALGORITHM

Backpropagation

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function $y=f(\mathbf{x})$. The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
2. Visit each node in topological order.

For variable u_{i} with inputs v_{1}, \ldots, v_{N}
a. Compute $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
b. Store the result at the node

Backward Computation (Version A)

1. Initialize dy/dy = 1 .
2. Visit each node v_{i} in reverse topological order. Let $\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{M}}$ denote all the nodes with v_{i} as an input
Assuming that $\mathrm{y}=\mathrm{h}(\mathbf{u})=\mathrm{h}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{M}}\right)$
and $\mathbf{u}=g(v)$ or equivalently $u_{i}=g_{i}\left(v_{1}, \ldots, v_{j}, \ldots, v_{N}\right)$ for all i
a. We already know dy/du ${ }_{i}$ for all i
b. Compute $\mathrm{dy} / \mathrm{dv}_{\mathrm{j}}$ as below (Choice of algorithm ensures
computing $\left(\mathrm{du}_{\mathrm{i}} / \mathrm{dv} \mathrm{v}_{\mathrm{j}}\right)$ is easy)

$$
\frac{d y}{d v_{j}}=\sum_{i=1}^{M} \frac{d y}{d u_{i}} \frac{d u_{i}}{d v_{j}}
$$

Return partial derivatives $\mathrm{dy} / \mathrm{du}_{\mathrm{i}}$ for all variables

Backpropagation

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function $y=f(x)$. The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
2. Visit each node in topological order.

For variable u_{i} with inputs v_{1}, \ldots, v_{N}
a. Compute $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
b. Store the result at the node

Backward Computation (Version B)

1. Initialize all partial derivatives $\mathrm{dy} / \mathrm{du}_{\mathrm{j}}$ to 0 and $\mathrm{dy} / \mathrm{dy}=1$.
2. Visit each node in reverse topological order.

For variable $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
a. We already know dy/dui
b. Increment dy/dvij by $\left(d y / d u_{i}\right)\left(d u_{i} / d v_{j}\right)$
(Choice of algorithm ensures computing $\left(\mathrm{du}_{\mathrm{i}} / \mathrm{d} v_{j}\right)$ is easy $)$

Backpropagation (Version B)

Simple Example: The goal is to compute $J=\cos \left(\sin \left(x^{2}\right)+3 x^{2}\right)$ on the forward pass and the derivative $\frac{d J}{d x}$ on the backward pass.
Forward
$J=\cos (u)$
$u=u_{1}+u_{2}$
$u_{1}=\sin (t)$
$u_{2}=3 t$
$t=x^{2}$

Backpropagation (Version B)

Simple Example: The goal is to compute $J=\cos \left(\sin \left(x^{2}\right)+3 x^{2}\right)$ on the forward pass and the derivative $\frac{d J}{d x}$ on the backward pass.

Forward	$g_{u}=0, g_{u_{1}}=0, g_{u_{2}}=0, g_{t}=0, g_{x}=0$ Backward	Initialize all the adjoints to zero
$J=\cos (u)$	$g_{u}=-\sin (u)$	
$u=u_{1}+u_{2}$	$g_{u_{1}}+=g_{u} \frac{d u}{d u_{1}}, \quad \frac{d u}{d u_{1}}=1 \quad g_{u_{2}}+=g_{u} \frac{d u}{d u_{2}}$,	$\frac{d u}{d u_{2}}=1$
$u_{1}=\sin (t)$	$g_{t}+=g_{u_{1}} \frac{d u_{1}}{d t}, \quad \frac{d u_{1}}{d t}=\cos (t) \quad$	Notice that we increment the partial derivative for $\frac{d J}{d t}$ in two places!
$u_{2}=3 t$	$g_{t}+=g_{u_{2}} \frac{d u_{2}}{d t}, \quad \frac{d u_{2}}{d t}=3$	
$t=x^{2}$	$g_{x}+=g_{t} \frac{d t}{d x}, \quad \frac{d t}{d x}=2 x$	

Backpropagation

Why is the backpropagation algorithm efficient?

1. Reuses computation from the forward pass in the backward pass
2. Reuses partial derivatives throughout the backward pass (but only if the algorithm reuses shared computation in the forward pass)
(Key idea: partial derivatives in the backward pass should be thought of as variables stored for reuse)

Background

Gradients

1. Given training dat Backpropagation can compute this

And it's a special case of a more general algorithm called reverse-
2. Choose each of t mode automatic differentiation that

- Decision functio can compute the gradient of any $\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)$ differentiable function efficiently!

MATRIX CALCULUS

Q\&A

Q: Do I need to know matrix calculus to derive the backprop algorithms used in this class?

A: Well, we've carefully constructed our assignments so that you do not need to know matrix calculus.

That said, it's pretty handy. So we added matrix calculus to our learning objectives for backprop.

Matrix Calculus

Let $y, x \in \mathbb{R}$ be scalars, $\mathbf{y} \in \mathbb{R}^{M}$ and $\mathbf{x} \in \mathbb{R}^{P}$ be vectors, and $\mathbf{Y} \in \mathbb{R}^{M \times N}$ and $\mathbf{X} \in$ $\mathbb{R}^{P \times Q}$ be matrices

	Types of Derivatives	scalar	vector	matrix
	scalar	$\frac{\partial y}{\partial x}$		$\frac{\partial \mathbf{Y}}{\partial x}$
	vector	$\frac{\partial y}{\partial \mathbf{x}}$		$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$
$\begin{aligned} & \text { E } \\ & \hline 0 \\ & \hline \text { ¿ } \end{aligned}$	matrix	$\frac{\partial y}{\partial \mathbf{X}}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{X}}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$

Matrix Calculus

Types of Derivatives	scalar	
scalar	$\frac{\partial y}{\partial x}=\left[\frac{\partial y}{\partial x}\right]$	
vector	$\frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{c}\frac{\partial y}{\partial x_{1}} \\ \frac{\partial y}{\partial x_{2}} \\ \vdots \\ \frac{\partial y}{\partial x_{P}}\end{array}\right]$	
matrix	$\frac{\partial y}{\partial \mathbf{X}}=\left[\begin{array}{cccc\|}\hline \frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1 Q}} \\ \hline \frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2 Q}} \\ \vdots & & \vdots \\ \frac{\partial y}{\partial X_{P 1}} & \frac{\partial y}{\partial X_{P 2}} & \cdots & \frac{\partial y}{\partial X_{P Q}}\end{array}\right]$	

Matrix Calculus

	scalar	vector
scalar	$\frac{\partial y}{\partial x}=\left[\frac{\partial y}{\partial x}\right]$	$\frac{\partial \mathrm{y}}{\partial x}=\left[\begin{array}{llll}\frac{\partial y_{1}}{\partial x} & \frac{\partial y_{y}}{\partial x} & \cdots & \frac{\partial y s}{\partial x}\end{array}\right]$
vector	$\frac{\partial y}{\partial \mathrm{x}}=\left[\begin{array}{c}\frac{\partial y}{\partial_{1}} \\ \frac{\partial \nu_{1}}{\partial \partial_{2}} \\ \vdots \\ \frac{\partial y}{\partial y_{y}} \\ \frac{\partial x_{p}}{}\end{array}\right]$	

Matrix Calculus

Whenever you read about matrix calculus, you'll be confronted with two layout conventions:

Let $y, x \in \mathbb{R}$ be scalars, $\mathbf{y} \in \mathbb{R}^{M}$ and $\mathbf{x} \in \mathbb{R}^{P}$ be vectors.

1. In numerator layout:

$$
\begin{aligned}
& \frac{\partial y}{\partial \mathbf{x}} \text { is a } 1 \times P \text { matrix, i.e. a row vector } \\
& \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \text { is an } M \times P \text { matrix }
\end{aligned}
$$

2. In denominator layout:
$\frac{\partial y}{\partial \mathbf{x}}$ is a $P \times 1$ matrix, i.e. a column vector
$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ is an $P \times M$ matrix

In this course, we use denominator layout.

Why? This ensures that our gradients of the objective function with respect to some subset of parameters are the same shape as those parameters.

Vector Derivatives

Scalar Derivatives

Suppose $x \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$

$f(x)$	$\frac{\partial f(x)}{\partial x}$
$b x$	b
$x b$	b
x^{2}	$2 x$
$b x^{2}$	$2 b x$

Vector Derivatives

Suppose $\mathbf{x} \in \mathbb{R}^{m}, \mathbf{b} \in \mathbb{R}^{m}$, $\mathbf{B} \in \mathbb{R}^{m \times n}, \mathbf{Q} \in \mathbb{R}^{m \times m}$ and \mathbf{Q} is symmetric.

$f(\mathbf{x})$	$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}$	type of f
$\mathbf{b}^{T} \mathbf{x}$	\mathbf{b}	$f: \mathbb{R}^{m} \rightarrow \mathbb{R}$
$\mathbf{x}^{T} \mathbf{b}$	\mathbf{b}	$f: \mathbb{R}^{m} \rightarrow \mathbb{R}$
$\mathbf{x}^{T} \mathbf{B}$	\mathbf{B}	$f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$
$\mathbf{B}^{T} \mathbf{x}$	\mathbf{B}^{T}	$f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$
$\mathbf{x}^{T} \mathbf{x}$	$2 \mathbf{x}$	$f: \mathbb{R}^{m} \rightarrow \mathbb{R}$
$\mathbf{x}^{T} \mathbf{Q x}$	$2 \mathbf{Q x}$	$f: \mathbb{R}^{m} \rightarrow \mathbb{R}$

Vector Derivatives

Scalar Derivatives

Suppose $\mathrm{x} \in \mathbb{R}^{m}$ and we have constants $a \in \mathbb{R}, b \in \mathbb{R}$

$f(x)$	$\frac{\partial f(x)}{\partial x}$
$g(x)+h(x)$	$\frac{\partial g(x)}{\partial x}+\frac{\partial h(x)}{\partial x}$
$a g(x)$	$a \frac{\partial g(x)}{\partial x}$
$g(x) b$	$\frac{\partial g(x)}{\partial x} b$

Vector Derivatives

Suppose $\mathrm{x} \in \mathbb{R}^{m}$ and we have constants $a \in \mathbb{R}, \mathbf{b} \in \mathbb{R}^{n}$

$f(\mathbf{x})$	$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}$
$g(\mathbf{x})+h(\mathbf{x})$	$\frac{\partial g(\mathbf{x})}{\partial \mathbf{x}}+\frac{\partial h(\mathbf{x})}{\partial(\mathbf{x}}$
$a g(\mathbf{x})$	$a \frac{\partial g(\mathbf{x})}{\partial \mathbf{x}}$
$g(\mathbf{x}) \mathbf{b}$	$\frac{\partial g(\mathbf{x}}{\partial \mathbf{x}} \mathbf{b}^{T}$

Matrix Calculus

Question:

Suppose $y=g(\mathbf{u})$ and $\mathbf{u}=\mathrm{h}(\mathbf{x})$
y

u

Which of the following is the correct definition of the chain rule?

Recall:
 $$
\frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{c} \frac{\partial y}{\partial x_{1}} \\ \frac{\partial y}{\partial x_{2}} \\ \vdots \\ \frac{\partial y}{\partial x_{P}} \end{array}\right] \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{cccc} \frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} & \cdots & \frac{\partial y_{N}}{\partial x_{1}} \\ \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{N}}{\partial x_{2}} \\ \vdots & & & \\ \frac{\partial y_{1}}{\partial x_{P}} & \frac{\partial y_{2}}{\partial x_{P}} & \cdots & \frac{\partial y_{N}}{\partial x_{P}} \end{array}\right]
$$

Answer:

A. $\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$
B. $\frac{\partial y^{T}}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$
C. $\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}^{T}}{\partial \mathbf{x}}$
D. $\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}^{T}}{\partial \mathbf{x}}$
E. $\left(\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)^{T}$
F. None of the above

DRAWING A NEURAL NETWORK

Ways of Drawing Neural Networks

Neural Network Diagram

- The diagram represents a neural network
- Nodes are circles
- One node per hidden unit
- Node is labeled with the variable corresponding to the hidden unit
- For a fully connected feed-forward neural network, a hidden unit is a nonlinear function of nodes in the previous layer
- Edges are directed
- Each edge is labeled with its weight (side note: we should be careful about ascribing how a matrix can be used to indicate the labels of the edges and pitfalls there)
- Other details:
- Following standard convention, the intercept term is NOT shown as a node, but rather is assumed to be part of the nonlinear function that yields a hidden unit. (i.e. its weight does NOT appear in the picture anywhere)
- The diagram does NOT include any nodes related to the loss computation

Ways of Drawing Neural Networks

Computation Graph

- The diagram represents an algorithm
- Nodes are rectangles
- One node per intermediate variable in the algorithm
- Node is labeled with the function that it computes (inside the box) and also the variable name (outside the box)
- Edges are directed
- Edges do not have labels (since they don't need them)
- For neural networks:
- Each intercept term should appear as a node (if it's not folded in somewhere)
- Each parameter should appear as a node
- Each constant, e.g. a true label or a feature vector should appear in the graph
- It's perfectly fine to include the loss

Ways of Drawing Neural Networks

Ways of Drawing Neural Networks

Neural Network Diagram

- The diagram represents a neural network
- Nodes are circles
- One node per hidden unit
- Node is labeled with the variable corresponding to the hidden unit
- For a fully connected feed-forward neural network, a hidden unit is a nonlinear function of nodes in the previous layer
- Edges are directed
- Each edge is labeled with its weight (side note: we should be careful about ascribing how a matrix can be used to indicate the labels of the edges and pitfalls there)
- Other details:
- Following standard convention, the intercept term is NOT shown as a node, but rather is assumed to be part of the nonlinear function that yields a hidden unit. (i.e. its weight does NOT appear in the picture anywhere)
- The diagram does NOT include any nodes related to the loss computation

Computation Graph

- The diagram represents an algorithm
- Nodes are rectangles
- One node per intermediate variable in the algorithm
- Node is labeled with the function that it computes (inside the box) and also the variable name (outside the box)
- Edges are directed
- Edges do not have labels (since they don't need them)
- For neural networks:
- Each intercept term should appear as a node (if it's not folded in somewhere)
- Each parameter should appear as a node
- Each constant, e.g. a true label or a feature vector should appear in the graph
- It's perfectly fine to include the loss

Important!

Some of these conventions are specific to 10-301/601. The literature abounds with varations on these conventions, but it's helpful to have some distinction nonetheless.

Summary

1. Neural Networks...

- provide a way of learning features
- are highly nonlinear prediction functions
- (can be) a highly parallel network of logistic regression classifiers
- discover useful hidden representations of the input

2. Backpropagation...

- provides an efficient way to compute gradients
- is a special case of reverse-mode automatic differentiation

Backprop Objectives

You should be able to...

- Differentiate between a neural network diagram and a computation graph
- Construct a computation graph for a function as specified by an algorithm
- Carry out the backpropagation on an arbitrary computation graph
- Construct a computation graph for a neural network, identifying all the given and intermediate quantities that are relevant
- Instantiate the backpropagation algorithm for a neural network
- Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the parameters of a model are comprised of several matrices corresponding to different layers of a neural network
- Apply the empirical risk minimization framework to learn a neural network
- Use the finite difference method to evaluate the gradient of a function
- Identify when the gradient of a function can be computed at all and when it can be computed efficiently
- Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

