10-301/601: Introduction
to Machine Learning
Lecture 13 —
Backpropagation |l

Geoff Gordon
with thanks to Henry Chai and Matt Gormley

xz sin(In(x))
In(x) N Xz

oGiven y = f(x,z) = e** +

dy dy
what are —and —at x =2,z = 37
0x 0z
R - eFirst define some intermediate quantities, draw the
€call. : computation graph and run the “forward” computation
Automatic _
: o a=xz X a d
Differentiation b =In(x) 5 B
¢ = sin(b)
(reverse mode) o - ; p y
: /
C
f= Bl C
a sin /

y=d+e+f

2/24/25 Example courtesy of Matt Gormley

xz sin(In(x))

oGiven y = f(x,z) = e** + +
In(x) Xz

dy
0 0 _ _
whatarea—yanda—yatx=2,z=3? gy_a_y_l
e Then compute partial derivatives, _ 9y _odyof (1
Recall: . . 8= %¢ aroc SN\7%
. starting from y and working back o dvae v o
Automatic Lg =y _oyoe oyoc
. o . . J ob de db oc ob
Differentiation . _%) + g.(cos(b))
2 |k { exp
(reverse mode) Oy _vor avoe v od
Z b ¢ Y ST 94 T 9f 0a " deda | od oa
—c 1
3 In / ‘ + = gf<?) + ge<;) + gd(e“)
S/ dy dy db dy da 1
¢l . / &= 9x ob ox " da ox gb(?) + 8(2)

dy 0y da)
= = = X
oz daoz °° ;

2/24/25 gz

Computation

graph
conventions

2/24/25

e The diagram represents an algorithm

eNodes are rectangles with one node per input, output,

or intermediate variable in the algorithm

eEach node is labeled with the function that it computes

(inside the box) and the variable name (outside the box)

eif argument order matters, it’s left-to-right for

where edges enter the box
eEdges are directed and do not have labels

e We can make a computation graph for a neural network

eEach weight, feature value, label and bias term

appears as a hode

eWe can include the loss function

Neural Network

Diagram
Conventions

2/24/25

eThe diagram represents a neural

network

eNodes are circles or squares with one

node per input, hidden, or output unit

eEach node may be labeled with the
variable corresponding to the hidden

unit and/or with its activation function

eEdges are directed and each edge can

be labeled with its weight

e The diagram typically does not include
any nodes related to the loss

computation

N4

X

often in papers,
network diagrams are
simplified: grouping
nodes, omitting
normalization, ...

e We can convert a neural network diagram into a computation graph

Conversion 1Ll

Neural net Computation graph

1

Logistic, sigmoid, or soft ste olr) =
0g g P () 1+e*
anh El
Hyperbolic tangent (tanh X) = ——
yp gent (tanh) (x) e
0 ifz<0
Rectified linear unit (ReLU)”! z ifzx>0

= max{0,z} = 21,9

LOtS Of Gaussian Error Linear Unit (GELU)™!

)

= a®(z)

activation

Softplus(® In(1 + ")

functions!

ale —1) ifz<0
T ifz >0
with parameter cx

Exponential linear unit (ELU)!

Leaky rectified linear unit (Leaky ReLU)!""! {Om” ifz <0

T ifz >0
{ ar ifz<0
Parametric rectified linear unit (PReLU)!"?) ¢ ifr>0

SHENERS]

with parameter cx

2/17/25 Source: https://en.wikipedia.org/wiki/Activation_function

https://en.wikipedia.org/wiki/Activation_function

2.00 -
1.75
1.50
1.25 1
1.00

Derivative of

RelU 0.75 -

0.50 -
0.25 -

0.00

e We'll use ReLU for our example, since it has a simple derivative

Forward pass

Compute
derivatives

(backward
pass)

10

Matrix form

e Assume network composed of layers
e Before and after activations: s, 0¥

o Weights, biases W, p®

e Dimensions

11

What did we

do?

1 3) _
3] b® =5

p» = [V
J o=
1] 2
IGEE
1. 0

|

What did we

do?

p» = [V
g

1_
1] 2
1| o@=]-2
1

0

1 3) _
3] b® =5

|

What did we

do?

1 3) _
3] b® =5

p» = [V
J o=
1] 2
IGEE
1. 0

|

What did we

do?

p— e
[

b — [

1 3) _
3] b® =5

2
-2
0

|

What did we

do?

1 3) _
3] b® =5

p» = [V
J o=
1] 2
IGEE
1. 0

|

What did we

do?

1 3) _
3] b® =5

p» = [V
J o=
-
1CE [
1

2
2
0

|

What did we

do?

1 3) _
3] b® =5

p» = [V
J o=
1] 2
IGEE
1. 0

|

Backprop

e Assume we’ve done a forward pass to compute loss

dloss
do@D)

o Initialize r « (evaluated at O(L))

eForl=LL-1,...,1

l .
o7 «— ao(j)s = roo'(0®) [componentwise]
A)
o : = =
output dloss dloss 7‘(0)

do=D (ONT
o <“«— =
r dloss (W) r

13

4.
5
2 m=n=1
Derivatives: d
Intuition 0- dy =y — f(%)
dx =x—%

e Function y = f(x)
rxeR" yeR", feR" > R™
e Derivative is a linear fn that locally approximates f near X

» dy = adx, where a € R is the derivative

14

4.
5
2 m=n=1
Derivatives: d
Intuition 0- dy =y — f(%)
dx =x—%

e Function y = f(x)
rxeR" yeR", feR" > R™

e Derivative is a linear fn that locally approximates f near X

\
» dy = adx, where a € R is the derivative

think of this as a
dy
synonym for —=a

14

Higher

dimensions

Functiony = f(x) dy =adx a& RX?

15

Higher

dimensions

Jx)

Functiony = f(x) dy =adx a € R*!

R"” - R™
m=3,n=1

16

input shape (with respect to)

- 3
E

-
@)
P2 Scalar Vector Matrix
©
>
. % Scalar ds=adt ds=u-dv ds = (M,dN)

Notation for | =
Iinear _CCE- Vector du =vds du = M "dv X
functions S Matrix dM = Nds < <

5

@)

e qa,s,t:scalars u,v:column vectors M, N: matrices

B et
dt’ '

i
i
‘E
|
!
} e note:ds = a dtis a synonym fora =
3 e X means no common notation; see torch.einsum

e derivative = coefficient of ds, dt, dv, dN on RHS

Geoff Gordon

’ input shape (with respect to)

!
81

Scalar Vector Matrix

Scalar ds = adt dgradient) ds = (M,dN)

Notation for
linear
functions

Vector (velocitys Jacobian) X

I
~

Matrix dM = N ds X X

output shape (derivative of)

e qa,s,t:scalars u,v:column vectors M, N: matrices

ds

tc.
dt,ec

)
i
i‘
_é‘
|
!
} e note:ds = a dtis a synonym fora =
3 e X means no common notation; see torch.einsum

e derivative = coefficient of ds, dt, dv, dN on RHS

Geoff Gordon

Conventions

e When derivative is a vector or matrix, our convention:

e denominator layout: first coordinate of the derivative
corresponds to the denominator

du
eeg, ucR" veR" $?€
Vv

e Taking derivative of a scalar, our convention:

e derivative is same shape as argument

du
eeg,uceR veR™” :}’?E
Vv

18

Denominator

layout examples

2/24/25

DTy pes .Of scalar vector
erivatives
@ — [@] a_y — [6’!!1 3y2 c'9y_N
ez Loz — Lox Ox ox
ox ox
- Oy 7 " Oy1 Oy Oyn]
ox1 o0x1 o0x1 ox1
Oy oy1 Oy2 Oyn
Oy |0z2 | Oy | 0z Oz O3
vector a_X — & — .
Oy Oy1 Oy2 Oyn
aa’,‘p _83313 Ba:p awp_

Table courtesy of Matt Gormley

19

Scalar derivative

examples

2/24/25

Types of

. lar
Derivatives scald
0 . .
scalar - [g—y] < matches previous slide!
Oz T
- 5y
8:131
Y
6y 0xa : :
vector ~— = | . | « matches previous slide!
0x :
Oy
| Oz p
- 9 d dy 7
aXu 3X12 3X1Q
. d d
matrix 3y . 0X21 0Xo9 0X20
oxX
Oy 9% .. _Oy
_3XP1 3Xp2 aXPQ .

Table courtesy of Matt Gormley

20

Autodiff version

® Use Tensor class for all arrays

» keeps the “paper trail” of who depends on whom
® For each example in minibatch

» run code that starts w/ (x,y) and ends w/ 1loss += ...
® Call loss.backward () to run autodiff

® Take an optimizer step (e.g., SGD) using accumulated
derivative

® Clear derivative storage (e.g., SGD optimizer has
zero grad () method, as do many others)

22

Now that we

have the
gradients

e Typical optimizer: minibatch SGD with momentum
e and something to adjust learning rates (RMSprop, Adam)

e and some kind of regularizer (weight decay, dropout, early
stopping)

e And possibly some modifications to the network to make
optimization easier

e some kind of normalization to guide s near “interesting part”
of activation function (layer norm, batch norm)

e tools to keep gradient sizes manageable (RelLU, residual
connections)

23

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Neural
Networks

2/24/25

24

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Neural
Networks

2/24/25

25

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Neural
Networks

2/24/25

26

Vanishing

gradients

e Now that we have autodiff, no problem differentiating a 50-layer network!

e Sigmoid activations,
initialize
w,, b; ~ N(0,0.1%)

e Forward pass:
Z50 = 05167

e Backward pass: —

0.251
—— db

o
N
o

gradient norm
o
=
()

o
o
a1

0.00+

o
[
o

— dw

0 10

20

layer

30

40

50

27

Problem!

e Effectively zero updates to parameters for layers before 45, and
truly zero updates for layers before 30

e 5o, we aren’t really using a deep model: only last few layers are
learnable

e worse: in forward pass, output of layer 30 is the same no matter
what input is

28

e Recursion for backprop:

ol .
oy «— ao(j)s = roc'(0®) [componentwise]
S

do—1 (ONT
o <«— =
r dloss (W) r

e Factors are << 1 in magnitude: exponential decay!

29

One fix:

residual
connection

e Change the arrangement of layers:

o0 = ol=D 4 V(Z)G(W(Z)O(l_l) + C(l)) + pD
e any nonlinearity (sigmoid, RelU, ...)
e two weight matrices and two bias vectors

e Learn layer [as an update to layer [— 1 instead
of a transformation

e Second linear layer allows 0D to be +ve or —ve
e Stack this block like any other layer

e appears in famous architectures like
ResNet, transformer

linear layer

®

linear layer

@

30

1.4 — dw
— dc
1.21 — dv
_ —— db
. 1.0
S
: = 0.8-
Fixes the 2
0.6
problem (why?)
0.4-
0.2-
0 10 20 30 40 50

layer index

50 stacked residual blocks, same init

Tracking
gradient
statistics

} « Instantaneous .
61 — Moving average ,, - “ge s tews .
{ PRI p =0.95
! S 4 |
g trades off noise
E= 5] vS. transient
H ()
] <
£ 5 0]
©
G Y
4
_4 .
0 50 100 150 200
! lteration

® Huge class of methods: track statistics of gradient
| estimates (like mean and variance), use them to
compensate for curvature in different directions

® Most common tracking: exponential moving average
my = pm,+ (1 —-p)g, pe@]l)

Geoff Gordon

g, Is gradient estimate at step ¢
® Recall momentum:

my = pm,+ (1 = p)g,

Track the

Lathaniant, POPSGES S

gradient Oppr = 0,— Yy,
mean.: { e Two parameters: moving average rate § € (0,1), learning
momentum ratey > 0

i e Memory for one array same size as 0,

. =

e Instead of using gradient directly, update @ in direction of
| average gradient

Geoff Gordon

® Adam (“ADAptive Moment estimation”):

} m,, | = ﬁmmt + (1 — :Bm)gt gradient estimate g,
Vig1r = ,vat + (1 — ﬁv)gtz (-)? is componentwise
Tl'aCk the i} mt+1 — Wmﬁl’ \’}H_l — 1_—ﬂtvt+1 transient correction
gradient o | |
. | 9¢+1 — @t — 7 — m, \/_ is componentwise
variance: | Vit €
e Four hyperparameters: moving average f,, f, € (0,1),
Adam learning rate y > 0, curvature regularizer ¢ > 0

e Memory for two arrays same size as 0,

gy

® Warning! Not proven to converge (and in fact does not
converge in some cases)

® there are other methods that try to use gradient variance
while guaranteeing better theoretical properties, but none
uniformly better than Adam in practice

Geoff Gordon

Adam
performance

e

PN i e e P oy

gy

training cost

MNIST Multilayer Neural Network + dropout

AdaGrad
RMSProp
SGDNesterov
AdaDelta
Adam

[figure credit: Kingma & Ba, 2015]

D D T T T o A T O e L L T LT -
CIFAR10O ConvNet
: : T AN — — AdaGrad
50 100 3 —— AdaGrad+dropout 3
iterations over entil — SGDNesterov
5 1 oy omiid A —— SGDNesterov+dropout
10 E- :, 5 e B e o 1
: : : — Adam
: Adam+dropout
10° e PSSR e e it e SR i -
] : : H -
o - - . -
- -~ = s 5
o : : : :
= 2 = = =
:§§]_()'1 T A i ST Sececnanees Pereeaannes Secceceeon
s X ety
02 st R T T T I L
o> kst amie T s T ITOURTLTET (TTITOTES IUURRY: PRUE
10 i i i i i i i i
o S 10 15 20 25 30 35 40 45

iterations over entire dataset

Geoff Gordon

e For non-convex surfaces, the gradient’s magnitude is
often not a good metric for proximity to a minimum

Terminating
Gradient

Descent

2/24/25 36

Terminating
Gradient

Descent
lIEa rlyll

2/24/25

eFor non-convex surfaces, the gradient’s magnitude is
often not a good metric for proximity to a minimum

e Combine multiple termination criteria: e.g., only stop if

enough iterations have passed and the improvement in
error is small

eAlternatively, terminate early by using a validation data
set: if the validation error starts to increase, just stop!

e¢Or go a bit past minimum and backtrack

eEarly stopping asks like regularization by limiting
how much of the hypothesis set is explored

37

Neural
Networks and

Regularization

2/24/25

e Minimize 22V (W, . W™, A.)
=Co(WW, W) LA QW wd)

e.g. L2 regularization

W,) = Y P F (wh)

38

Neural
Networks and
“Strange”

Regularization
(Srivastava et
al., 2014)

2/24/25

eDropout

eIn each iteration of gradient descent, randomly remove

some of the nodes in the network

Source: http://imlr.org/papers/volumel5/srivastaval4a/srivastavalda.pdf

39

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Neural
Networks and
“Strange”

Regularization
(Srivastava et
al., 2014)

2/24/25

eDropout

Source: http://imlr.org/papers/volumel5/srivastaval4a/srivastavalda.pdf

some of the nodes in the network

(b) After applying

d

eIn each iteration of gradient descent, randomly remove

ropout.

39

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Neural
Networks and
“Strange”

Regularization
(Srivastava et
al., 2014)

2/24/25

eDropout
eIn each iteration of gradient descent, randomly remove
some of the nodes in the network
e Compute the gradient using only the remaining nodes
e The weights on edges going into and out of “dropped

out” nodes are not updated

(b) After applying dropout.

Source: http://imlr.org/papers/volumel5/srivastaval4a/srivastavalda.pdf

39

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Normalize

e Typical layer: f(Wx + b): matrix W, vector x, b,
componentwise nonlinear activation f

® Many activations are most interesting near zero
» sigmoid’s non-constant region
» RelLU’s derivative discontinuity

> ...

® |dea: auto-shift and auto-scale inputs to be in this
neighborhood

» but let the network learn to move away if needed
® Hope: normalization helps generalization

» in practice: effects poorly understood, but can be
positive

40

Layer norm

e Givena = Wx € R4
> deflnea——z

i=1 di
_ 2
» define ¢ _Ezi=1 (a,—a)” +e

a—a

» define a’ = -

e New version of layer, with layer norm: f(g o a’ + b)

» new componentwise gain parameter g lets us pick
scale

» existing bias parameter b lets us shift away from zero

» but by default (if g = (1,1, ...)" and b = 0), inputs
to f have mean zero and variance 1 across layer for
each example

41

Backpropagation

Learning
Objectives

2/24/25

You should be able to...

e Differentiate between a neural network diagram and a computation graph
e Construct a computation graph for a function as specified by an algorithm
e Carry out backpropagation on an arbitrary computation graph

e Construct a computation graph for a neural network, identifying all the given
and intermediate quantities that are relevant

e Instantiate the backpropagation algorithm for a neural network

e Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when
the parameters of a model are comprised of several matrices corresponding
to different layers of a neural network

e Apply the empirical risk minimization framework to learn a neural network
e Use the finite difference method to evaluate the gradient of a function

e Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

42

