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●Given   

what are  and  at ? 

●First define some intermediate quantities, draw the  
computation graph and run the “forward” computation 

𝑦 = 𝑓(𝑥, 𝑧) = 𝑒𝑥𝑧 + 𝑥𝑧
ln(𝑥) +

sin(ln(𝑥))
𝑥𝑧

𝜕𝑦
𝜕𝑥

𝜕𝑦
𝜕𝑧

𝑥 = 2,𝑧 = 3
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Recall: 
Automatic 
Differentiation 
(reverse mode) 
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Example courtesy of Matt Gormley

a = xz
b = ln(x)
c = sin(b)
d = ea

e = a
b

f = c
a

y = d + e + f



𝑔𝑧 = 𝜕𝑦
𝜕𝑧

= 𝜕𝑦
𝜕𝑎

𝜕𝑎
𝜕𝑧

= 𝑔𝑎(𝑥)

●Given   

what are  and  at ? 

●Then compute partial derivatives,  
starting from  and working back 

𝑦 = 𝑓(𝑥, 𝑧) = 𝑒𝑥𝑧 + 𝑥𝑧
ln(𝑥) +

sin(ln(𝑥))
𝑥𝑧

𝜕𝑦
𝜕𝑥

𝜕𝑦
𝜕𝑧

𝑥 = 2,𝑧 = 3

𝑦
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Recall: 
Automatic 
Differentiation 
(reverse mode) 

𝑔𝑦 = 𝜕𝑦
𝜕𝑦

= 1
𝑔𝑑 = 𝑔𝑒 = 𝑔𝑓 = 1

𝑔𝑐 = 𝜕𝑦
𝜕𝑐

= 𝜕𝑦
𝜕𝑓

𝜕𝑓
𝜕𝑐

= 𝑔𝑓( 1
𝑎 )

•

•

𝑔𝑏 = 𝜕𝑦
𝜕𝑏

= 𝜕𝑦
𝜕𝑒

𝜕𝑒
𝜕𝑏

+ 𝜕𝑦
𝜕𝑐

𝜕𝑐
𝜕𝑏

𝑔𝑏 = 𝑔𝑒(− 𝑎
𝑏2 ) + 𝑔𝑐(cos(𝑏))

•

•

𝑔𝑎 = 𝜕𝑦
𝜕𝑎

= 𝜕𝑦
𝜕𝑓
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𝑔𝑎 = 𝑔𝑓( −𝑐
𝑎2 ) + 𝑔𝑒( 1

𝑏 ) + 𝑔𝑑(𝑒𝑎)

𝑔𝑥 = 𝜕𝑦
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+ 𝜕𝑦
𝜕𝑎

𝜕𝑎
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= 𝑔𝑏( 1
𝑥 ) + 𝑔𝑎(𝑧)
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Computation 
graph 
conventions
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●The diagram represents an algorithm 

●Nodes are rectangles with one node per input, output, 
or intermediate variable in the algorithm  

●Each node is labeled with the function that it computes 
(inside the box) and the variable name (outside the box) 

●if argument order matters, it’s left-to-right for 
where edges enter the box  

●Edges are directed and do not have labels  

●We can make a computation graph for a neural network  

●Each weight, feature value, label and bias term 
appears as a node 

●We can include the loss function 



Neural Network 
Diagram 
Conventions
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●The diagram represents a neural 
network  

●Nodes are circles or squares with one 
node per input, hidden, or output unit  

●Each node may be labeled with the 
variable corresponding to the hidden 
unit and/or with its activation function 

●Edges are directed and each edge can 
be labeled with its weight  

●The diagram typically does not include 
any nodes related to the loss 
computation

σ σ

x

y

often in papers, 
network diagrams are 

simplified: grouping 
nodes, omitting 

normalization, …

σ σ σ



Conversion

●We can convert a neural network diagram into a computation graph
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Lots of 
activation 
functions!

2/17/25 7Source: https://en.wikipedia.org/wiki/Activation_function 



Derivative of 
ReLU

●We’ll use ReLU for our example, since it has a simple derivative
8



Forward pass
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W (1) = [ 3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0 ]

W (3) = [−1 1 1
3 ] b(3) = 5
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Compute 
derivatives 
(backward 
pass)
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Matrix form
●Assume network composed of layers 

●Before and after activations:  

●Weights, biases  

●Dimensions

s(l), o(l)

W (l), b(l)

11

σ

x

σ

y

σ

pdaxdy
-V -

dimension da 4 why ((H)
y(4)

Dr
Ob y(3) IR

ds 3

w1])
S13] -
o(z)

de 7
g(2) y(2)

w()
o(1)

di I
s() (3)

do layer
O
n(l)

- ,R ,



What did we 
do?
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W (1) = [ 3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0 ]

W (3) = [−1 1 1
3 ] b(3) = 5



What did we 
do?

12

s(l)

W (1) = [ 3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0 ]

W (3) = [−1 1 1
3 ] b(3) = 5

w(j(2)) Cos)
componentwish



What did we 
do?

12

b(l)

W (1) = [ 3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0 ]

W (3) = [−1 1 1
3 ] b(3) = 5
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What did we 
do?
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o(l)

W (1) = [ 3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0 ]

W (3) = [−1 1 1
3 ] b(3) = 5

↳



What did we 
do?

12

W (l)

W (1) = [ 3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0 ]

W (3) = [−1 1 1
3 ] b(3) = 5

=we
↑ =h

da
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di IR
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What did we 
do?

12

W (l)

W (1) = [ 3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0 ]

W (3) = [−1 1 1
3 ] b(3) = 5



What did we 
do?

12

W (1) = [ 3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0 ]

W (3) = [−1 1 1
3 ] b(3) = 5

o(l)



Backprop

●Assume we’ve done a forward pass to compute loss 

● Initialize  (evaluated at ) 

●For  

●          [componentwise] 

●output:                   

●

r ← ∂𝗅𝗈𝗌𝗌
∂o(L) o(L)

l = L, L − 1,…,1

r ← ∂𝗅𝗈𝗌𝗌
∂s(l) = r ∘ σ′ (o(l))

∂b(l)

∂𝗅𝗈𝗌𝗌 = r ∂W (l)

∂𝗅𝗈𝗌𝗌 = r(o(l−1))⊤

r ← ∂o(l−1)

∂𝗅𝗈𝗌𝗌 = (W (l))⊤r
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Derivatives: 
intuition
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Derivatives: 
intuition
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think of this as a 
synonym for dy

dx = a



Higher 
dimensions
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Higher 
dimensions
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Geoff Gordon

When  is not positive definite, the above identity fails: the slope approaches infinity as
we approach the boundary of the set of PSD matrices.

For completeness, here's a quick definition of the matrix determinant. For a lower or upper
triangular matrix ,  is the product of its diagonal elements, . For a general matrix

, the determinant is the product of the determinants of its factors, .
While it's not obvious, the determinant turns out to encode a lot of useful information about a
matrix, so it shows up regularly in formulas that we need to differentiate.

Shapes of derivatives

In the equation , the shape of  depends on the shapes of  and . Here's a
table of common shapes: write  for scalars,  for column vectors, and  for
matrices. Then

Scalar Vector Matrix

Scalar

Vector

Matrix

For example, the middle entry in the top row tells us that, if we have a scalar  that
depends on a vector , then  will be a row vector, written here as . In general, the
row label tells us the shape of the output, the column label tells us the shape of the
input, and the entry at that row and column tells us the shape of .

This table lets us map differentials to more traditional names:

In the table entry , the scalar  is the ordinary derivative.

In the table entry , the vector  is the gradient of a real-valued function.

In the table entry , the vector  is the tangent to a curve in .

In the table entry , the matrix  is the Jacobian of a function from one
vector space to another.

In the remaining entries, there's no traditional name other than "derivative."

Each of the entries of the table is called an identification theorem: it lets us identify an
expression involving differentials with an expression about ordinary derivatives. For
example, in a previous section we showed how to differentiate the log-determinant
function:

Given this equation, the top-right entry of the table lets us identify the derivative as

We can summarize all of the identification theorems into the single identity ,
where we identify  as the derivative.

This table also shows us something else interesting: in the entries marked , traditional
derivative notation becomes more difficult. While we could write the derivative as a third
or higher order tensor, often it's simpler to avoid doing so. An example of this is in the
section above on batch norm: while we could have forced our equations into the form

 so that we could pull out an expression for the tensor , it's easier if we
don't.

Second and higher differentials

Suppose we've followed the above rules to calculate a differential . This
equation represents a first-order Taylor expansion, showing how the change  depends
on the change . This expansion is accurate in some neighborhood of the point .

We could ask instead for a second-order Taylor approximation — this will typically be
accurate in a larger neighborhood of . We can write the second order Taylor expansion
as

where  and  are the first and second order differentials. (We'll show how to find 
below.) Just as the first differential  represents the linear part of the change in  as
a function of the change in , the second differential  represents the quadratic
part.

Here's an example of a second-order Taylor approximation (in purple) along with the
first-order approximation (in red):

The first-order expansion is a linear function of ; the second-order expansion will be a
quadratic function of .

In this figure,

and the differentials are

Notation for higher differentials

There are only two shapes where standard notation makes it easy to write the quadratic
part of a second order Taylor expansion:

If  is a scalar with , then  is the same shape as , and .

And if  is a scalar and  is a vector with , then we can write  as a
matrix, and .

More generally, for arbitrary shapes  and , we can write . (In fact,
we can consider this as a definition of .) This formula states that the second
differential is a linear function (represented by ) applied to the square of . The
symbol  represents the outer product: the vector that contains all possible pairwise
products of components of . However, this formula isn't that useful in practice: it's
often better not to try to pull out an explicit expression for .

We can go even higher, to third differentials, fourth differentials, and so on. For the third
differential we get a cubic equation that we can write  (a linear
function applied to the third power of ). The fourth differential yields a quartic
equation, and so on. But most of the time, it's enough to work with first and maybe
second order differentials; and as before, even if we do work with a third order
differential, we often don't want to pull out an explicit expression for .

Computing the second differential

Computing the second differential works exactly like computing the first differential. We
need just one extra rule: pre-existing copies of  behave like constants.

For example, start by finding the first differential of :

From the above, we can find the second differential:

The entire second term vanishes because it is constant; in the first term we use linearity
to pull out the constant .

Multiple variables

The same rule applies when we have multiple variables: we consider all previous
instances of differentials  to be constant. For example, if

then

by the product rule; so

The first two terms in  come from the first term of  by the product rule; the last two
terms of  come from the last term of  by the product rule.

F

T det T T∏i ii

A = LU det A = (det L)(det U)

dy = f (x)dx′ f ′ x y

a, s, t u, v M , N

ds = a dt ds = u dvT ds = tr(M dN)T

du = v ds du = M dv ×

dM = N ds × ×

s

v f (v)′ uT

f ′

ds = a dt a

ds = u dvT v

du = v ds v Rd

du = M dv M

d ln det F = tr(F dF )−1

ln det F =
dF

d
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dy = f (x)dx′

f (x) =′
dx
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×

dx = f (y)dy′ f (y)′

df = f (x)dx′

df

dx x

x

y ≈ f(x) + df(x) + d f(x)2

df d f2 d f2

df(x) f

x d f(x)2

dx

dx

f(t) = ⎝
⎛ 2 cos t

4 sin t

t ⎠
⎞

df(t) = f (t) dt =′ dt⎝
⎛ −2 sin t

4 cos t

1 ⎠
⎞

d f(t) =2 f (t) dt =′′ 2 dt⎝
⎛ −2 cos t

−4 sin t

0 ⎠
⎞

2

t s = f(t) f (t)′′ s d s =2 f (t) dt′′ 2

s u s = f(u) f (u)′′

d s =2 du f (u) duT ′′

x y d y =2 f (x) dx ⊗′′ dx

f (x)′′

f (x)′′ dx

⊗

dx

f (x)′′

d y =3 f (x) dx ⊗′′′ dx ⊗ dx

dx

f (x)′′′

dx

∥Ax −2
1 b∥2

∥Ax − b∥2

d ∥Ax − b∥2
1 2

=

=

=

=

(Ax − b) (Ax − b)T

d(x A Ax − 2b Ax + b b)2
1 T T T T

(dx A Ax + x A A dx − 2b A dx)2
1 T T T T T

x A A dx − 2b A dxT T T

d ∥Ax − b∥2
2
1 2 =

=

d(x A Adx − 2b Adx)T T T

dx A A dxT T

A A dxT

dx, dy, …

f(x, y) = (cos x)(sin y)

df = (− sin x dx) sin y + (cos x)(cos y dy)

d f =2 (− cos x dx ) sin y +2 (− sin x dx)(cos y dy)

+ (− sin x dx)(cos y dy) + (cos x)(− sin y dy )2

d f2 df

d f2 df

Notation for 
linear 
functions
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) input shape (with respect to)

● : scalars    : column vectors    : matrices

● note:  is a synonym for , etc.

●  means no common notation; see torch.einsum

● derivative = coefficient of  on RHS

a, s, t u, v M, N

ds = a dt a = ds
dt

×
ds, dt, dv, dN

ds = u ⋅ dv ds = ⟨M, dN⟩

du = M⊤dv



Geoff Gordon

When  is not positive definite, the above identity fails: the slope approaches infinity as
we approach the boundary of the set of PSD matrices.

For completeness, here's a quick definition of the matrix determinant. For a lower or upper
triangular matrix ,  is the product of its diagonal elements, . For a general matrix

, the determinant is the product of the determinants of its factors, .
While it's not obvious, the determinant turns out to encode a lot of useful information about a
matrix, so it shows up regularly in formulas that we need to differentiate.

Shapes of derivatives

In the equation , the shape of  depends on the shapes of  and . Here's a
table of common shapes: write  for scalars,  for column vectors, and  for
matrices. Then

Scalar Vector Matrix

Scalar

Vector

Matrix

For example, the middle entry in the top row tells us that, if we have a scalar  that
depends on a vector , then  will be a row vector, written here as . In general, the
row label tells us the shape of the output, the column label tells us the shape of the
input, and the entry at that row and column tells us the shape of .

This table lets us map differentials to more traditional names:

In the table entry , the scalar  is the ordinary derivative.

In the table entry , the vector  is the gradient of a real-valued function.

In the table entry , the vector  is the tangent to a curve in .

In the table entry , the matrix  is the Jacobian of a function from one
vector space to another.

In the remaining entries, there's no traditional name other than "derivative."

Each of the entries of the table is called an identification theorem: it lets us identify an
expression involving differentials with an expression about ordinary derivatives. For
example, in a previous section we showed how to differentiate the log-determinant
function:

Given this equation, the top-right entry of the table lets us identify the derivative as

We can summarize all of the identification theorems into the single identity ,
where we identify  as the derivative.

This table also shows us something else interesting: in the entries marked , traditional
derivative notation becomes more difficult. While we could write the derivative as a third
or higher order tensor, often it's simpler to avoid doing so. An example of this is in the
section above on batch norm: while we could have forced our equations into the form

 so that we could pull out an expression for the tensor , it's easier if we
don't.

Second and higher differentials

Suppose we've followed the above rules to calculate a differential . This
equation represents a first-order Taylor expansion, showing how the change  depends
on the change . This expansion is accurate in some neighborhood of the point .

We could ask instead for a second-order Taylor approximation — this will typically be
accurate in a larger neighborhood of . We can write the second order Taylor expansion
as

where  and  are the first and second order differentials. (We'll show how to find 
below.) Just as the first differential  represents the linear part of the change in  as
a function of the change in , the second differential  represents the quadratic
part.

Here's an example of a second-order Taylor approximation (in purple) along with the
first-order approximation (in red):

The first-order expansion is a linear function of ; the second-order expansion will be a
quadratic function of .

In this figure,

and the differentials are

Notation for higher differentials

There are only two shapes where standard notation makes it easy to write the quadratic
part of a second order Taylor expansion:

If  is a scalar with , then  is the same shape as , and .

And if  is a scalar and  is a vector with , then we can write  as a
matrix, and .

More generally, for arbitrary shapes  and , we can write . (In fact,
we can consider this as a definition of .) This formula states that the second
differential is a linear function (represented by ) applied to the square of . The
symbol  represents the outer product: the vector that contains all possible pairwise
products of components of . However, this formula isn't that useful in practice: it's
often better not to try to pull out an explicit expression for .

We can go even higher, to third differentials, fourth differentials, and so on. For the third
differential we get a cubic equation that we can write  (a linear
function applied to the third power of ). The fourth differential yields a quartic
equation, and so on. But most of the time, it's enough to work with first and maybe
second order differentials; and as before, even if we do work with a third order
differential, we often don't want to pull out an explicit expression for .

Computing the second differential

Computing the second differential works exactly like computing the first differential. We
need just one extra rule: pre-existing copies of  behave like constants.

For example, start by finding the first differential of :

From the above, we can find the second differential:

The entire second term vanishes because it is constant; in the first term we use linearity
to pull out the constant .

Multiple variables

The same rule applies when we have multiple variables: we consider all previous
instances of differentials  to be constant. For example, if

then

by the product rule; so

The first two terms in  come from the first term of  by the product rule; the last two
terms of  come from the last term of  by the product rule.
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f(x, y) = (cos x)(sin y)

df = (− sin x dx) sin y + (cos x)(cos y dy)
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Notation for 
linear 
functions
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● : scalars    : column vectors    : matrices

● note:  is a synonym for , etc.

●  means no common notation; see torch.einsum

● derivative = coefficient of  on RHS

a, s, t u, v M, N

ds = a dt a = ds
dt

×
ds, dt, dv, dN

ds = u ⋅ dv ds = ⟨M, dN⟩

du = M⊤dvvelocity

gradient

Jacobian

(X
,

Y) = XijYij

↑



Conventions

●When derivative is a vector or matrix, our convention: 

●denominator layout: first coordinate of the derivative 
corresponds to the denominator 

●e.g.,  

●Taking derivative of a scalar, our convention: 

●derivative is same shape as argument 

●e.g., 

u ∈ ℝm v ∈ ℝn ⇒ d ⃗u
d ⃗v

∈

u ∈ ℝ v ∈ ℝm×n ⇒ d ⃗u
d ⃗v

∈

18
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Denominator 
layout examples

Types of 
Derivatives scalar vector

scalar

vector

Table courtesy of Matt Gormley2/24/25 19



Scalar derivative 
examples

Types of 
Derivatives scalar

scalar

vector

matrix

Table courtesy of Matt Gormley2/24/25 20

 matches previous slide!←

 matches previous slide!←



Poll Question 1:

Answers:

Matrix Calculus

21
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g

h

Suppose y = g(u) and u = h(x)

Which of the following is the correct 
definition of the chain rule?

Recall:

(TOXIC)
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Autodiff version

●Use Tensor class for all arrays
▶︎ keeps the “paper trail” of who depends on whom

●For each example in minibatch
▶︎ run code that starts w/  and ends w/ loss += ... 

●Call loss.backward() to run autodiff
●Take an optimizer step (e.g., SGD) using accumulated 

derivative
●Clear derivative storage (e.g., SGD optimizer has 
zero_grad() method, as do many others)

(x, y)

22



Now that we 
have the 
gradients

●Typical optimizer: minibatch SGD with momentum 

●and something to adjust learning rates (RMSprop, Adam) 

●and some kind of regularizer (weight decay, dropout, early 
stopping) 

●And possibly some modifications to the network to make 
optimization easier 

●some kind of normalization to guide  near “interesting part” 
of activation function (layer norm, batch norm) 

● tools to keep gradient sizes manageable (ReLU, residual 
connections)

s(l)

23



2/24/25 24

Mini-batch 
Stochastic 
Gradient 
Descent with 
Momentum for 
Neural 
Networks
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Mini-batch 
Stochastic 
Gradient 
Descent with 
Momentum for 
Neural 
Networks



Vanishing 
gradients

●Sigmoid activations, 
initialize 

 

●Forward pass: 
 

●Backward pass: 

wi, bi ∼ N(0,0.12)

z50 = 0.5167
→

27

●Now that we have autodiff, no problem differentiating a 50-layer network! 



Problem!

●Effectively zero updates to parameters for layers before 45, and 
truly zero updates for layers before 30 

●so, we aren’t really using a deep model: only last few layers are 
learnable 

●worse: in forward pass, output of layer 30 is the same no matter 
what input is

28



Why?

●Recursion for backprop: 

●          [componentwise] 

●  

●Factors are  in magnitude: exponential decay!

r ← ∂𝗅𝗈𝗌𝗌
∂s(l) = r ∘ σ′ (o(l))

r ← ∂o(l−1)

∂𝗅𝗈𝗌𝗌 = (W (l))⊤r

≪ 1

29
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One fix: 
residual 
connection

●Change the arrangement of layers: 

●  

●any nonlinearity (sigmoid, ReLU, …) 

● two weight matrices and two bias vectors 

●Learn layer  as an update to layer  instead 
of a transformation 

●Second linear layer allows  to be +ve or –ve 

●Stack this block like any other layer 

●appears in famous architectures like 
ResNet, transformer

o(l) = o(l−1) + V (l)σ(W (l)o(l−1) + c(l)) + b(l)

l l − 1

o(l)

30



Fixes the 
problem (why?)

3150 stacked residual blocks, same init

layer index
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Geoff Gordon

Tracking 
gradient 
statistics

●Huge class of methods: track statistics of gradient 
estimates (like mean and variance), use them to 
compensate for curvature in different directions

●Most common tracking: exponential moving average
mt+1 = βmt + (1 − β)gt β ∈ (0,1)

β = 0.95
trades off noise 

vs. transient



Geoff Gordon

Track the 
gradient 
mean: 
momentum

●Recall momentum:

●Two parameters: moving average rate , learning 
rate 

●Memory for one array same size as 
● Instead of using gradient directly, update  in direction of 

average gradient

mt+1 = βmt + (1 − β)gt
θt+1 = θt − γmt+1

β ∈ (0,1)
γ > 0

θt
θ

 is gradient estimate at step gt t



Geoff Gordon

Track the 
gradient 
variance: 
Adam

●Adam (“ADAptive Moment estimation”):

●Four hyperparameters: moving average , 
learning rate , curvature regularizer 

●Memory for two arrays same size as 
●Warning! Not proven to converge (and in fact does not 

converge in some cases)
● there are other methods that try to use gradient variance 

while guaranteeing better theoretical properties, but none 
uniformly better than Adam in practice

mt+1 = βmmt + (1 − βm)gt

vt+1 = βvvt + (1 − βv)g2
t

m̂t+1 = 1
1 − βtm

mt+1, ̂vt+1 = 1
1 − βtv

vt+1

θt+1 = θt − γ 1
̂vt+1 + ϵ

m̂t+1
βm, βv ∈ (0,1)

γ > 0 ϵ > 0
θt

gradient estimate gt

 is componentwise( ⋅ )2

transient correction

 is componentwise⋅



Geoff Gordon

Adam 
performance

[figure credit: Kingma & Ba, 2015]



Terminating 
Gradient 
Descent 

●For non-convex surfaces, the gradient’s magnitude is 
often not a good metric for proximity to a minimum 

2/24/25 36



Terminating 
Gradient 
Descent 
“Early”

2/24/25 37

●For non-convex surfaces, the gradient’s magnitude is 
often not a good metric for proximity to a minimum 

●Combine multiple termination criteria: e.g., only stop if 
enough iterations have passed and the improvement in 
error is small 

●Alternatively, terminate early by using a validation data 
set: if the validation error starts to increase, just stop! 
●Or go a bit past minimum and backtrack 
●Early stopping asks like regularization by limiting 

how much of the hypothesis set is explored 



Neural 
Networks and  
 
Regularization 
 

●Minimize  

e.g. L2 regularization 

ℓ𝐴𝑈𝐺
𝒟 (𝑊 (1), …, 𝑊 (𝐿), 𝜆𝐶)

2/24/25 38

= ℓ𝒟(𝑊 (1), …, 𝑊 (𝐿)) + 𝜆𝐶Ω(𝑊 (1), …, 𝑊 (𝐿))

Ω(𝑊 (1), …, 𝑊 (𝐿)) =
𝐿

∑
𝑙=1

𝑑(𝑙−1)

∑
𝑖=0

𝑑(𝑙)

∑
𝑗=1

(𝑤(𝑙)
𝑗,𝑖)

2
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Neural 
Networks and 
“Strange” 
Regularization 
(Srivastava et 
al., 2014)

Source: http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf 

●Dropout

●In each iteration of gradient descent, randomly remove 
some of the nodes in the network
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Neural 
Networks and 
“Strange” 
Regularization 
(Srivastava et 
al., 2014)

Source: http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf 

●Dropout

●In each iteration of gradient descent, randomly remove 
some of the nodes in the network

●Compute the gradient using only the remaining nodes

●The weights on edges going into and out of “dropped 
out” nodes are not updated 



Normalize

●Typical layer: : matrix , vector , 
componentwise nonlinear activation 

●Many activations are most interesting near zero
▶︎ sigmoid’s non-constant region
▶︎ ReLU’s derivative discontinuity
▶︎ …

● Idea: auto-shift and auto-scale inputs to be in this 
neighborhood

▶︎ but let the network learn to move away if needed
●Hope: normalization helps generalization

▶︎ in practice: effects poorly understood, but can be 
positive

f(Wx + b) W x, b
f

40



Layer norm

●Given 

▶︎ define 

▶︎ define 

▶︎ define 

●New version of layer, with layer norm:   
▶︎ new componentwise gain parameter  lets us pick 

scale
▶︎ existing bias parameter  lets us shift away from zero

▶︎ but by default (if  and ), inputs 
to  have mean zero and variance 1 across layer for 
each example

a = Wx ∈ ℝd

ā = 1
d ∑d

i=1 ai

σ2 = 1
d ∑d

i=1 (ai − ā)2 + ϵ
a′ = a − ā

σ
f(g ∘ a′ + b)
g

b
g = (1, 1, …)⊤ b = 0

f

41

tiny number, to prevent 
divide-by-zero



Backpropagation 
Learning 
Objectives

You should be able to… 

● Differentiate between a neural network diagram and a computation graph 

● Construct a computation graph for a function as specified by an algorithm 

● Carry out backpropagation on an arbitrary computation graph 

● Construct a computation graph for a neural network, identifying all the given 
and intermediate quantities that are relevant 

● Instantiate the backpropagation algorithm for a neural network 

● Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when 
the parameters of a model are comprised of several matrices corresponding 
to different layers of a neural network 

● Apply the empirical risk minimization framework to learn a neural network 

● Use the finite difference method to evaluate the gradient of a function 

● Employ basic matrix calculus to compute vector/matrix/tensor derivatives.
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