
Geoff Gordon

with thanks to Henry Chai and Matt Gormley

10-301/601: Introduction
to Machine Learning
Lecture 13 –
Backpropagation II

●Given

what are and at ?

●First define some intermediate quantities, draw the
computation graph and run the “forward” computation

𝑦 = 𝑓(𝑥, 𝑧) = 𝑒𝑥𝑧 + 𝑥𝑧
ln(𝑥) +

sin(ln(𝑥))
𝑥𝑧

𝜕𝑦
𝜕𝑥

𝜕𝑦
𝜕𝑧

𝑥 = 2,𝑧 = 3

2/24/25 2

Recall:
Automatic
Differentiation
(reverse mode)

 2
𝑥

𝑧
 3

 ∗

 𝑙𝑛

𝑎

𝑏

 𝑠𝑖𝑛𝑐

 𝑒𝑥𝑝

 + /

 /

𝑦

𝑑

𝑒

𝑓

Example courtesy of Matt Gormley

a = xz
b = ln(x)
c = sin(b)
d = ea

e = a
b

f = c
a

y = d + e + f

𝑔𝑧 = 𝜕𝑦
𝜕𝑧

= 𝜕𝑦
𝜕𝑎

𝜕𝑎
𝜕𝑧

= 𝑔𝑎(𝑥)

●Given

what are and at ?

●Then compute partial derivatives,
starting from and working back

𝑦 = 𝑓(𝑥, 𝑧) = 𝑒𝑥𝑧 + 𝑥𝑧
ln(𝑥) +

sin(ln(𝑥))
𝑥𝑧

𝜕𝑦
𝜕𝑥

𝜕𝑦
𝜕𝑧

𝑥 = 2,𝑧 = 3

𝑦

2/24/25 3

Recall:
Automatic
Differentiation
(reverse mode)

𝑔𝑦 = 𝜕𝑦
𝜕𝑦

= 1
𝑔𝑑 = 𝑔𝑒 = 𝑔𝑓 = 1

𝑔𝑐 = 𝜕𝑦
𝜕𝑐

= 𝜕𝑦
𝜕𝑓

𝜕𝑓
𝜕𝑐

= 𝑔𝑓(1
𝑎)

•

•

𝑔𝑏 = 𝜕𝑦
𝜕𝑏

= 𝜕𝑦
𝜕𝑒

𝜕𝑒
𝜕𝑏

+ 𝜕𝑦
𝜕𝑐

𝜕𝑐
𝜕𝑏

𝑔𝑏 = 𝑔𝑒(− 𝑎
𝑏2) + 𝑔𝑐(cos(𝑏))

•

•

𝑔𝑎 = 𝜕𝑦
𝜕𝑎

= 𝜕𝑦
𝜕𝑓

𝜕𝑓
𝜕𝑎

+ 𝜕𝑦
𝜕𝑒

𝜕𝑒
𝜕𝑎

+ 𝜕𝑦
𝜕𝑑

𝜕𝑑
𝜕𝑎

𝑔𝑎 = 𝑔𝑓(−𝑐
𝑎2) + 𝑔𝑒(1

𝑏) + 𝑔𝑑(𝑒𝑎)

𝑔𝑥 = 𝜕𝑦
𝜕𝑥

= 𝜕𝑦
𝜕𝑏

𝜕𝑏
𝜕𝑥

+ 𝜕𝑦
𝜕𝑎

𝜕𝑎
𝜕𝑥

= 𝑔𝑏(1
𝑥) + 𝑔𝑎(𝑧)

 2
𝑥

𝑧
 3

 ∗

 𝑙𝑛

𝑎

𝑏

 𝑠𝑖𝑛𝑐

 𝑒𝑥𝑝

 + /

 /

𝑦

𝑑

𝑒

𝑓

Computation
graph
conventions

2/24/25 4

●The diagram represents an algorithm

●Nodes are rectangles with one node per input, output,
or intermediate variable in the algorithm

●Each node is labeled with the function that it computes
(inside the box) and the variable name (outside the box)

●if argument order matters, it’s left-to-right for
where edges enter the box

●Edges are directed and do not have labels

●We can make a computation graph for a neural network

●Each weight, feature value, label and bias term
appears as a node

●We can include the loss function

Neural Network
Diagram
Conventions

2/24/25 5

●The diagram represents a neural
network

●Nodes are circles or squares with one
node per input, hidden, or output unit

●Each node may be labeled with the
variable corresponding to the hidden
unit and/or with its activation function

●Edges are directed and each edge can
be labeled with its weight

●The diagram typically does not include
any nodes related to the loss
computation

σ σ

x

y

often in papers,
network diagrams are

simplified: grouping
nodes, omitting

normalization, …

σ σ σ

Conversion

●We can convert a neural network diagram into a computation graph

6

Neural net Computation graph

x

y

σ σ σ

σ σ

Ft Ta if
& & 2 M

Deit A ISTA
T Awi

wit I IJS Is

Et D
d M

be/]2
willte -DaD~

Lots of
activation
functions!

2/17/25 7Source: https://en.wikipedia.org/wiki/Activation_function

Derivative of
ReLU

●We’ll use ReLU for our example, since it has a simple derivative
8

Forward pass

9

W (1) = [3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0]

W (3) = [−1 1 1
3] b(3) = 5

σ = 𝖱𝖾𝖫𝖴

𝗅𝗈𝗌𝗌 = 1
2 (y − 1)2

5

-
I 1

-7

2 E
2

-9 ⑧
a

8 O O

· O-72

I

9 O

9 - 3

& 9
-3 P

2 -

3

Compute
derivatives
(backward
pass)

10

1 . -1)
7

F
Loss(3)

7 7 7

O O 63
-7

7 43

17
O E

Matrix form
●Assume network composed of layers

●Before and after activations:

●Weights, biases

●Dimensions

s(l), o(l)

W (l), b(l)

11

σ

x

σ

y

σ

pdaxdy
-V -

dimension da 4 why ((H)
y(4)

Dr
Ob y(3) IR

ds 3

w1])
S13] -
o(z)

de 7
g(2) y(2)

w()
o(1)

di I
s() (3)

do layer
O
n(l)

- ,R ,

What did we
do?

12

W (1) = [3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0]

W (3) = [−1 1 1
3] b(3) = 5

What did we
do?

12

s(l)

W (1) = [3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0]

W (3) = [−1 1 1
3] b(3) = 5

w(j(2)) Cos)
componentwish

What did we
do?

12

b(l)

W (1) = [3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0]

W (3) = [−1 1 1
3] b(3) = 5

Floss

zos)=)

What did we
do?

12

o(l)

W (1) = [3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0]

W (3) = [−1 1 1
3] b(3) = 5

↳

What did we
do?

12

W (l)

W (1) = [3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0]

W (3) = [−1 1 1
3] b(3) = 5

=we
↑ =h

da

Tixs IR
di IR

I dyx &2
= IR

What did we
do?

12

W (l)

W (1) = [3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0]

W (3) = [−1 1 1
3] b(3) = 5

What did we
do?

12

W (1) = [3
−1] b(1) = [0

0]
W (2) = [

−1 1
0 1
1 1] b(2) = [

2
−2
0]

W (3) = [−1 1 1
3] b(3) = 5

o(l)

Backprop

●Assume we’ve done a forward pass to compute loss

● Initialize (evaluated at)

●For

● [componentwise]

●output:

●

r ← ∂𝗅𝗈𝗌𝗌
∂o(L) o(L)

l = L, L − 1,…,1

r ← ∂𝗅𝗈𝗌𝗌
∂s(l) = r ∘ σ′ (o(l))

∂b(l)

∂𝗅𝗈𝗌𝗌 = r ∂W (l)

∂𝗅𝗈𝗌𝗌 = r(o(l−1))⊤

r ← ∂o(l−1)

∂𝗅𝗈𝗌𝗌 = (W (l))⊤r

13

Glossis j O Go
O
zo-)

Derivatives:
intuition

14

· (4.f(x)) Jay

dX
-

I

Y

Derivatives:
intuition

14

think of this as a
synonym for dy

dx = a

Higher
dimensions

15

Higher
dimensions

16

-
f(x+1)

- f(x)

&

f(x-1)

Geoff Gordon

When is not positive definite, the above identity fails: the slope approaches infinity as
we approach the boundary of the set of PSD matrices.

For completeness, here's a quick definition of the matrix determinant. For a lower or upper
triangular matrix , is the product of its diagonal elements, . For a general matrix

, the determinant is the product of the determinants of its factors, .
While it's not obvious, the determinant turns out to encode a lot of useful information about a
matrix, so it shows up regularly in formulas that we need to differentiate.

Shapes of derivatives

In the equation , the shape of depends on the shapes of and . Here's a
table of common shapes: write for scalars, for column vectors, and for
matrices. Then

Scalar Vector Matrix

Scalar

Vector

Matrix

For example, the middle entry in the top row tells us that, if we have a scalar that
depends on a vector , then will be a row vector, written here as . In general, the
row label tells us the shape of the output, the column label tells us the shape of the
input, and the entry at that row and column tells us the shape of .

This table lets us map differentials to more traditional names:

In the table entry , the scalar is the ordinary derivative.

In the table entry , the vector is the gradient of a real-valued function.

In the table entry , the vector is the tangent to a curve in .

In the table entry , the matrix is the Jacobian of a function from one
vector space to another.

In the remaining entries, there's no traditional name other than "derivative."

Each of the entries of the table is called an identification theorem: it lets us identify an
expression involving differentials with an expression about ordinary derivatives. For
example, in a previous section we showed how to differentiate the log-determinant
function:

Given this equation, the top-right entry of the table lets us identify the derivative as

We can summarize all of the identification theorems into the single identity ,
where we identify as the derivative.

This table also shows us something else interesting: in the entries marked , traditional
derivative notation becomes more difficult. While we could write the derivative as a third
or higher order tensor, often it's simpler to avoid doing so. An example of this is in the
section above on batch norm: while we could have forced our equations into the form

 so that we could pull out an expression for the tensor , it's easier if we
don't.

Second and higher differentials

Suppose we've followed the above rules to calculate a differential . This
equation represents a first-order Taylor expansion, showing how the change depends
on the change . This expansion is accurate in some neighborhood of the point .

We could ask instead for a second-order Taylor approximation — this will typically be
accurate in a larger neighborhood of . We can write the second order Taylor expansion
as

where and are the first and second order differentials. (We'll show how to find
below.) Just as the first differential represents the linear part of the change in as
a function of the change in , the second differential represents the quadratic
part.

Here's an example of a second-order Taylor approximation (in purple) along with the
first-order approximation (in red):

The first-order expansion is a linear function of ; the second-order expansion will be a
quadratic function of .

In this figure,

and the differentials are

Notation for higher differentials

There are only two shapes where standard notation makes it easy to write the quadratic
part of a second order Taylor expansion:

If is a scalar with , then is the same shape as , and .

And if is a scalar and is a vector with , then we can write as a
matrix, and .

More generally, for arbitrary shapes and , we can write . (In fact,
we can consider this as a definition of .) This formula states that the second
differential is a linear function (represented by) applied to the square of . The
symbol represents the outer product: the vector that contains all possible pairwise
products of components of . However, this formula isn't that useful in practice: it's
often better not to try to pull out an explicit expression for .

We can go even higher, to third differentials, fourth differentials, and so on. For the third
differential we get a cubic equation that we can write (a linear
function applied to the third power of). The fourth differential yields a quartic
equation, and so on. But most of the time, it's enough to work with first and maybe
second order differentials; and as before, even if we do work with a third order
differential, we often don't want to pull out an explicit expression for .

Computing the second differential

Computing the second differential works exactly like computing the first differential. We
need just one extra rule: pre-existing copies of behave like constants.

For example, start by finding the first differential of :

From the above, we can find the second differential:

The entire second term vanishes because it is constant; in the first term we use linearity
to pull out the constant .

Multiple variables

The same rule applies when we have multiple variables: we consider all previous
instances of differentials to be constant. For example, if

then

by the product rule; so

The first two terms in come from the first term of by the product rule; the last two
terms of come from the last term of by the product rule.

F

T det T T∏i ii

A = LU det A = (det L)(det U)

dy = f (x)dx′ f ′ x y

a, s, t u, v M , N

ds = a dt ds = u dvT ds = tr(M dN)T

du = v ds du = M dv ×

dM = N ds × ×

s

v f (v)′ uT

f ′

ds = a dt a

ds = u dvT v

du = v ds v Rd

du = M dv M

d ln det F = tr(F dF)−1

ln det F =
dF

d
F −T

dy = f (x)dx′

f (x) =′
dx
dy

×

dx = f (y)dy′ f (y)′

df = f (x)dx′

df

dx x

x

y ≈ f(x) + df(x) + d f(x)2

df d f2 d f2

df(x) f

x d f(x)2

dx

dx

f(t) = ⎝
⎛ 2 cos t

4 sin t

t ⎠
⎞

df(t) = f (t) dt =′ dt⎝
⎛ −2 sin t

4 cos t

1 ⎠
⎞

d f(t) =2 f (t) dt =′′ 2 dt⎝
⎛ −2 cos t

−4 sin t

0 ⎠
⎞

2

t s = f(t) f (t)′′ s d s =2 f (t) dt′′ 2

s u s = f(u) f (u)′′

d s =2 du f (u) duT ′′

x y d y =2 f (x) dx ⊗′′ dx

f (x)′′

f (x)′′ dx

⊗

dx

f (x)′′

d y =3 f (x) dx ⊗′′′ dx ⊗ dx

dx

f (x)′′′

dx

∥Ax −2
1 b∥2

∥Ax − b∥2

d ∥Ax − b∥2
1 2

=

=

=

=

(Ax − b) (Ax − b)T

d(x A Ax − 2b Ax + b b)2
1 T T T T

(dx A Ax + x A A dx − 2b A dx)2
1 T T T T T

x A A dx − 2b A dxT T T

d ∥Ax − b∥2
2
1 2 =

=

d(x A Adx − 2b Adx)T T T

dx A A dxT T

A A dxT

dx, dy, …

f(x, y) = (cos x)(sin y)

df = (− sin x dx) sin y + (cos x)(cos y dy)

d f =2 (− cos x dx) sin y +2 (− sin x dx)(cos y dy)

+ (− sin x dx)(cos y dy) + (cos x)(− sin y dy)2

d f2 df

d f2 df

Notation for
linear
functions

ou
tp

ut
 s

ha
pe

 (d
er

iv
at

iv
e

of
) input shape (with respect to)

● : scalars : column vectors : matrices

● note: is a synonym for , etc.

● means no common notation; see torch.einsum

● derivative = coefficient of on RHS

a, s, t u, v M, N

ds = a dt a = ds
dt

×
ds, dt, dv, dN

ds = u ⋅ dv ds = ⟨M, dN⟩

du = M⊤dv

Geoff Gordon

When is not positive definite, the above identity fails: the slope approaches infinity as
we approach the boundary of the set of PSD matrices.

For completeness, here's a quick definition of the matrix determinant. For a lower or upper
triangular matrix , is the product of its diagonal elements, . For a general matrix

, the determinant is the product of the determinants of its factors, .
While it's not obvious, the determinant turns out to encode a lot of useful information about a
matrix, so it shows up regularly in formulas that we need to differentiate.

Shapes of derivatives

In the equation , the shape of depends on the shapes of and . Here's a
table of common shapes: write for scalars, for column vectors, and for
matrices. Then

Scalar Vector Matrix

Scalar

Vector

Matrix

For example, the middle entry in the top row tells us that, if we have a scalar that
depends on a vector , then will be a row vector, written here as . In general, the
row label tells us the shape of the output, the column label tells us the shape of the
input, and the entry at that row and column tells us the shape of .

This table lets us map differentials to more traditional names:

In the table entry , the scalar is the ordinary derivative.

In the table entry , the vector is the gradient of a real-valued function.

In the table entry , the vector is the tangent to a curve in .

In the table entry , the matrix is the Jacobian of a function from one
vector space to another.

In the remaining entries, there's no traditional name other than "derivative."

Each of the entries of the table is called an identification theorem: it lets us identify an
expression involving differentials with an expression about ordinary derivatives. For
example, in a previous section we showed how to differentiate the log-determinant
function:

Given this equation, the top-right entry of the table lets us identify the derivative as

We can summarize all of the identification theorems into the single identity ,
where we identify as the derivative.

This table also shows us something else interesting: in the entries marked , traditional
derivative notation becomes more difficult. While we could write the derivative as a third
or higher order tensor, often it's simpler to avoid doing so. An example of this is in the
section above on batch norm: while we could have forced our equations into the form

 so that we could pull out an expression for the tensor , it's easier if we
don't.

Second and higher differentials

Suppose we've followed the above rules to calculate a differential . This
equation represents a first-order Taylor expansion, showing how the change depends
on the change . This expansion is accurate in some neighborhood of the point .

We could ask instead for a second-order Taylor approximation — this will typically be
accurate in a larger neighborhood of . We can write the second order Taylor expansion
as

where and are the first and second order differentials. (We'll show how to find
below.) Just as the first differential represents the linear part of the change in as
a function of the change in , the second differential represents the quadratic
part.

Here's an example of a second-order Taylor approximation (in purple) along with the
first-order approximation (in red):

The first-order expansion is a linear function of ; the second-order expansion will be a
quadratic function of .

In this figure,

and the differentials are

Notation for higher differentials

There are only two shapes where standard notation makes it easy to write the quadratic
part of a second order Taylor expansion:

If is a scalar with , then is the same shape as , and .

And if is a scalar and is a vector with , then we can write as a
matrix, and .

More generally, for arbitrary shapes and , we can write . (In fact,
we can consider this as a definition of .) This formula states that the second
differential is a linear function (represented by) applied to the square of . The
symbol represents the outer product: the vector that contains all possible pairwise
products of components of . However, this formula isn't that useful in practice: it's
often better not to try to pull out an explicit expression for .

We can go even higher, to third differentials, fourth differentials, and so on. For the third
differential we get a cubic equation that we can write (a linear
function applied to the third power of). The fourth differential yields a quartic
equation, and so on. But most of the time, it's enough to work with first and maybe
second order differentials; and as before, even if we do work with a third order
differential, we often don't want to pull out an explicit expression for .

Computing the second differential

Computing the second differential works exactly like computing the first differential. We
need just one extra rule: pre-existing copies of behave like constants.

For example, start by finding the first differential of :

From the above, we can find the second differential:

The entire second term vanishes because it is constant; in the first term we use linearity
to pull out the constant .

Multiple variables

The same rule applies when we have multiple variables: we consider all previous
instances of differentials to be constant. For example, if

then

by the product rule; so

The first two terms in come from the first term of by the product rule; the last two
terms of come from the last term of by the product rule.

F

T det T T∏i ii

A = LU det A = (det L)(det U)

dy = f (x)dx′ f ′ x y

a, s, t u, v M , N

ds = a dt ds = u dvT ds = tr(M dN)T

du = v ds du = M dv ×

dM = N ds × ×

s

v f (v)′ uT

f ′

ds = a dt a

ds = u dvT v

du = v ds v Rd

du = M dv M

d ln det F = tr(F dF)−1

ln det F =
dF

d
F −T

dy = f (x)dx′

f (x) =′
dx
dy

×

dx = f (y)dy′ f (y)′

df = f (x)dx′

df

dx x

x

y ≈ f(x) + df(x) + d f(x)2

df d f2 d f2

df(x) f

x d f(x)2

dx

dx

f(t) = ⎝
⎛ 2 cos t

4 sin t

t ⎠
⎞

df(t) = f (t) dt =′ dt⎝
⎛ −2 sin t

4 cos t

1 ⎠
⎞

d f(t) =2 f (t) dt =′′ 2 dt⎝
⎛ −2 cos t

−4 sin t

0 ⎠
⎞

2

t s = f(t) f (t)′′ s d s =2 f (t) dt′′ 2

s u s = f(u) f (u)′′

d s =2 du f (u) duT ′′

x y d y =2 f (x) dx ⊗′′ dx

f (x)′′

f (x)′′ dx

⊗

dx

f (x)′′

d y =3 f (x) dx ⊗′′′ dx ⊗ dx

dx

f (x)′′′

dx

∥Ax −2
1 b∥2

∥Ax − b∥2

d ∥Ax − b∥2
1 2

=

=

=

=

(Ax − b) (Ax − b)T

d(x A Ax − 2b Ax + b b)2
1 T T T T

(dx A Ax + x A A dx − 2b A dx)2
1 T T T T T

x A A dx − 2b A dxT T T

d ∥Ax − b∥2
2
1 2 =

=

d(x A Adx − 2b Adx)T T T

dx A A dxT T

A A dxT

dx, dy, …

f(x, y) = (cos x)(sin y)

df = (− sin x dx) sin y + (cos x)(cos y dy)

d f =2 (− cos x dx) sin y +2 (− sin x dx)(cos y dy)

+ (− sin x dx)(cos y dy) + (cos x)(− sin y dy)2

d f2 df

d f2 df

Notation for
linear
functions

ou
tp

ut
 s

ha
pe

 (d
er

iv
at

iv
e

of
) input shape (with respect to)

● : scalars : column vectors : matrices

● note: is a synonym for , etc.

● means no common notation; see torch.einsum

● derivative = coefficient of on RHS

a, s, t u, v M, N

ds = a dt a = ds
dt

×
ds, dt, dv, dN

ds = u ⋅ dv ds = ⟨M, dN⟩

du = M⊤dvvelocity

gradient

Jacobian

(X
,

Y) = XijYij

↑

Conventions

●When derivative is a vector or matrix, our convention:

●denominator layout: first coordinate of the derivative
corresponds to the denominator

●e.g.,

●Taking derivative of a scalar, our convention:

●derivative is same shape as argument

●e.g.,

u ∈ ℝm v ∈ ℝn ⇒ d ⃗u
d ⃗v

∈

u ∈ ℝ v ∈ ℝm×n ⇒ d ⃗u
d ⃗v

∈

18

pixe

v **

Denominator
layout examples

Types of
Derivatives scalar vector

scalar

vector

Table courtesy of Matt Gormley2/24/25 19

Scalar derivative
examples

Types of
Derivatives scalar

scalar

vector

matrix

Table courtesy of Matt Gormley2/24/25 20

 matches previous slide!←

 matches previous slide!←

Poll Question 1:

Answers:

Matrix Calculus

21

y

u

x

g

h

Suppose y = g(u) and u = h(x)

Which of the following is the correct
definition of the chain rule?

Recall:

(TOXIC)

2/24/25

Poll Question 1:

Answers:

Matrix Calculus

21

y

u

x

g

h

Suppose y = g(u) and u = h(x)

Which of the following is the correct
definition of the chain rule?

Recall:

(TOXIC)

2/24/25

2-1R8Y Y
6x1

zu EIR
i

6xS 2

R 1R6
2x au

Autodiff version

●Use Tensor class for all arrays
▶︎ keeps the “paper trail” of who depends on whom

●For each example in minibatch
▶︎ run code that starts w/ and ends w/ loss += ...

●Call loss.backward() to run autodiff
●Take an optimizer step (e.g., SGD) using accumulated

derivative
●Clear derivative storage (e.g., SGD optimizer has
zero_grad() method, as do many others)

(x, y)

22

Now that we
have the
gradients

●Typical optimizer: minibatch SGD with momentum

●and something to adjust learning rates (RMSprop, Adam)

●and some kind of regularizer (weight decay, dropout, early
stopping)

●And possibly some modifications to the network to make
optimization easier

●some kind of normalization to guide near “interesting part”
of activation function (layer norm, batch norm)

● tools to keep gradient sizes manageable (ReLU, residual
connections)

s(l)

23

2/24/25 24

Mini-batch
Stochastic
Gradient
Descent with
Momentum for
Neural
Networks

2/24/25 25

Mini-batch
Stochastic
Gradient
Descent with
Momentum for
Neural
Networks

2/24/25 26

Mini-batch
Stochastic
Gradient
Descent with
Momentum for
Neural
Networks

Vanishing
gradients

●Sigmoid activations,
initialize

●Forward pass:

●Backward pass:

wi, bi ∼ N(0,0.12)

z50 = 0.5167
→

27

●Now that we have autodiff, no problem differentiating a 50-layer network!

Problem!

●Effectively zero updates to parameters for layers before 45, and
truly zero updates for layers before 30

●so, we aren’t really using a deep model: only last few layers are
learnable

●worse: in forward pass, output of layer 30 is the same no matter
what input is

28

Why?

●Recursion for backprop:

● [componentwise]

●

●Factors are in magnitude: exponential decay!

r ← ∂𝗅𝗈𝗌𝗌
∂s(l) = r ∘ σ′ (o(l))

r ← ∂o(l−1)

∂𝗅𝗈𝗌𝗌 = (W (l))⊤r

≪ 1

29

↳"
-

~ small

One fix:
residual
connection

●Change the arrangement of layers:

●

●any nonlinearity (sigmoid, ReLU, …)

● two weight matrices and two bias vectors

●Learn layer as an update to layer instead
of a transformation

●Second linear layer allows to be +ve or –ve

●Stack this block like any other layer

●appears in famous architectures like
ResNet, transformer

o(l) = o(l−1) + V (l)σ(W (l)o(l−1) + c(l)) + b(l)

l l − 1

o(l)

30

Fixes the
problem (why?)

3150 stacked residual blocks, same init

layer index

gr
ad

ien
t n

or
m

Geoff Gordon

Tracking
gradient
statistics

●Huge class of methods: track statistics of gradient
estimates (like mean and variance), use them to
compensate for curvature in different directions

●Most common tracking: exponential moving average
mt+1 = βmt + (1 − β)gt β ∈ (0,1)

β = 0.95
trades off noise

vs. transient

Geoff Gordon

Track the
gradient
mean:
momentum

●Recall momentum:

●Two parameters: moving average rate , learning
rate

●Memory for one array same size as
● Instead of using gradient directly, update in direction of

average gradient

mt+1 = βmt + (1 − β)gt
θt+1 = θt − γmt+1

β ∈ (0,1)
γ > 0

θt
θ

 is gradient estimate at step gt t

Geoff Gordon

Track the
gradient
variance:
Adam

●Adam (“ADAptive Moment estimation”):

●Four hyperparameters: moving average ,
learning rate , curvature regularizer

●Memory for two arrays same size as
●Warning! Not proven to converge (and in fact does not

converge in some cases)
● there are other methods that try to use gradient variance

while guaranteeing better theoretical properties, but none
uniformly better than Adam in practice

mt+1 = βmmt + (1 − βm)gt

vt+1 = βvvt + (1 − βv)g2
t

m̂t+1 = 1
1 − βtm

mt+1, ̂vt+1 = 1
1 − βtv

vt+1

θt+1 = θt − γ 1
̂vt+1 + ϵ

m̂t+1
βm, βv ∈ (0,1)

γ > 0 ϵ > 0
θt

gradient estimate gt

 is componentwise(⋅)2

transient correction

 is componentwise⋅

Geoff Gordon

Adam
performance

[figure credit: Kingma & Ba, 2015]

Terminating
Gradient
Descent

●For non-convex surfaces, the gradient’s magnitude is
often not a good metric for proximity to a minimum

2/24/25 36

Terminating
Gradient
Descent
“Early”

2/24/25 37

●For non-convex surfaces, the gradient’s magnitude is
often not a good metric for proximity to a minimum

●Combine multiple termination criteria: e.g., only stop if
enough iterations have passed and the improvement in
error is small

●Alternatively, terminate early by using a validation data
set: if the validation error starts to increase, just stop!
●Or go a bit past minimum and backtrack
●Early stopping asks like regularization by limiting

how much of the hypothesis set is explored

Neural
Networks and

Regularization

●Minimize

e.g. L2 regularization

ℓ𝐴𝑈𝐺
𝒟 (𝑊 (1), …, 𝑊 (𝐿), 𝜆𝐶)

2/24/25 38

= ℓ𝒟(𝑊 (1), …, 𝑊 (𝐿)) + 𝜆𝐶Ω(𝑊 (1), …, 𝑊 (𝐿))

Ω(𝑊 (1), …, 𝑊 (𝐿)) =
𝐿

∑
𝑙=1

𝑑(𝑙−1)

∑
𝑖=0

𝑑(𝑙)

∑
𝑗=1

(𝑤(𝑙)
𝑗,𝑖)

2

2/24/25 39

Neural
Networks and
“Strange”
Regularization
(Srivastava et
al., 2014)

Source: http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

●Dropout

●In each iteration of gradient descent, randomly remove
some of the nodes in the network

2/24/25 39

Neural
Networks and
“Strange”
Regularization
(Srivastava et
al., 2014)

Source: http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

●Dropout

●In each iteration of gradient descent, randomly remove
some of the nodes in the network

2/24/25 39

Neural
Networks and
“Strange”
Regularization
(Srivastava et
al., 2014)

Source: http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

●Dropout

●In each iteration of gradient descent, randomly remove
some of the nodes in the network

●Compute the gradient using only the remaining nodes

●The weights on edges going into and out of “dropped
out” nodes are not updated

Normalize

●Typical layer: : matrix , vector ,
componentwise nonlinear activation

●Many activations are most interesting near zero
▶︎ sigmoid’s non-constant region
▶︎ ReLU’s derivative discontinuity
▶︎ …

● Idea: auto-shift and auto-scale inputs to be in this
neighborhood

▶︎ but let the network learn to move away if needed
●Hope: normalization helps generalization

▶︎ in practice: effects poorly understood, but can be
positive

f(Wx + b) W x, b
f

40

Layer norm

●Given

▶︎ define

▶︎ define

▶︎ define

●New version of layer, with layer norm:
▶︎ new componentwise gain parameter lets us pick

scale
▶︎ existing bias parameter lets us shift away from zero

▶︎ but by default (if and), inputs
to have mean zero and variance 1 across layer for
each example

a = Wx ∈ ℝd

ā = 1
d ∑d

i=1 ai

σ2 = 1
d ∑d

i=1 (ai − ā)2 + ϵ
a′ = a − ā

σ
f(g ∘ a′ + b)
g

b
g = (1, 1, …)⊤ b = 0

f

41

tiny number, to prevent
divide-by-zero

Backpropagation
Learning
Objectives

You should be able to…

● Differentiate between a neural network diagram and a computation graph

● Construct a computation graph for a function as specified by an algorithm

● Carry out backpropagation on an arbitrary computation graph

● Construct a computation graph for a neural network, identifying all the given
and intermediate quantities that are relevant

● Instantiate the backpropagation algorithm for a neural network

● Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when
the parameters of a model are comprised of several matrices corresponding
to different layers of a neural network

● Apply the empirical risk minimization framework to learn a neural network

● Use the finite difference method to evaluate the gradient of a function

● Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

2/24/25 42

