10-301/601: Introduction
to Machine Learning
Lecture 13 —
Differentiation

Henry Chai & Matt Gormley & Hoda Heidari
2/26/24



y=o((BT2? +By)

Z(Z) _ 0((a(2))Tz(1) + b(Z))

Recall: Neural

Networks
(Matrix Form) 2D = s(@@yTx + bO)

10/6/23



= oo )
g = [ﬁﬁo ] ——

TT 1
Recall: Neural ) z? = o(a(z) [Z(l)])
Networks : a@' = [122)] e ROHHDXD;
(Matrix Form) 9 = o 1]
p"

a®' = l ] e RIM+1)xD;

ey

10/6/23



Forward
Propagation

for Making
Predictions

10/6/23

* Inputs: weights a(l), . a(L), P and a query data point x’
- Initialize z(® = x’

*Forl=1,..,L

cq® = O -1

.20 = 5(a®)

P = G(ﬁTZ(L))

* Qutput: the prediction y



Stochastic
Gradient

Descent
for Learning

10/6/23

. = (@D ONY
Input: D = {(x®,yW)} _ vy
 Initialize all weights a™®, ..., a™, B

* While TERMINATION CRITERION is not satisfied

* For i € shuffle({1, ..., N})
» Compute gg = VgV (a®, ..., a, B)
*Forl=1,...,L
* Compute g, a) = Va(z)](i)(a(l), ., a(L),ﬁ)
*Update B = B —v9g
‘Forl=1,..,L

- Update al = g — Y9 ,m

. Output:a(l), o) a(L),ﬂ



Two questions:

1. What is this

loss function
P

2. How on earth
do we take
these gradients?

10/6/23

. = (@D ONY
Input: D = {(x®,yW)} _ vy
 Initialize all weights a¥, ..., a™, B

* While TERMINATION CRITERION is not satisfied

* For i € shuffle({1,...,N})
+ Compute gg = VgV (a®, ..., a, B)
*Forl=1,...,L
* Compute g, a) = Va(z)](i)(a(l), ., a(L),ﬁ)
*Update B = B —v9g
*Forl=1,...,L

- Update al = g — Y9 ,m

. Output:a(l), o) a(L),ﬂ



Two questions:

1. What is this

loss function
P

2. How on earth
do we take
these gradients?

10/6/23

. = (@D ONY
Input: D = {(x®,yW)} _ vy
 Initialize all weights a¥, ..., a™, B

* While TERMINATION CRITERION is not satisfied

* For i € shuffle({1,...,N})
+ Compute gg = VgV (a®, ..., a, B)
*Forl=1,...,L
* Compute g, a) = Va(z)](i)(a(l), ., a(L),ﬁ)
*Update B = B —v9g
*Forl=1,...,L

- Update al = g — Y9 ,m

. Output:a(l), o) a(L),ﬂ



Loss
Functions

for Neural
Networks

10/6/23

*Let®@ = {a(l), . a(’“), ﬁ} be the parameters of our neural network

* Regression - squared error (same as linear regression!)

JO(©) = (96(xV) ~y )’

* Binary classification - cross-entropy loss (same as logistic regression!)

*Assume Y € {0,1}and P(Y = 1]x,0) = yo(x)
JP(8) = —log P(yV|xV), ©)



Loss
Functions

for Neural
Networks

10/6/23

* Let ®@ = {a(l), . a(L), B} be the parameters of our neural network

* Multi-class classification - cross-entropy loss again!

* Express the label as a one-hot or one-of-C vector e.g.,
y=[0 0 1 0 - 0]

- Assume the neural network output is also a vector of length C, ygq

P(y[c] = 1]x,0) = g(x®)[c]



Okay but
how do
we get
our

network

to output
this
vector?

10/6/23

* Let ®@ = {a(l), . a(L), B} be the parameters of our neural network

* Multi-class classification - cross-entropy loss

* Express the label as a one-hot or one-of-C vector e.g.,
y=[0 0 1 0 -- 0]
- Assume the neural network output is also a vector of length C, ygq
P(ylc] = 1|x,0) = yo(x?)lc]
* Then the cross-entropy loss is

JP(@) = —logP(yV|x, @)

C
- Z y®lc]log(e(x?)lcl)
c=1

10



Softmax




Two questions:

1. What is this

loss function
JO?

2. How on earth
do we take
these gradients?

10/6/23

. = (@D ONY
Input: D = {(x®,yW)} _ vy
 Initialize all weights a¥, ..., a™, B

* While TERMINATION CRITERION is not satisfied

* For i € shuffle({1,...,N})
+ Compute gg = VgV (a®, ..., a, B)
*Forl=1,...,L
* Compute g, a) = Va(z)](i)(a(l), ., a(L),ﬁ)
*Update B = B —v9g
*Forl=1,...,L

- Update al = g — Y9 ,m

. Output:a(l), o) a(L),ﬂ

12



Matrix
Calculus

10/6/23

Denominator

Numerator

Types of
Derivatives

scalar vector

matrix

oY

e ox ox ozx
o 9y Oy 0Y
ox Ox 0x

matrix 8y 8y 8Y

0X

Table courtesy of Matt Gormley

13



Matrix
Calculus:

Denominator
Layout

10/6/23

* Derivatives of a
scalar always
have the same
shape as the
entity that the
derivative is

being taken

with respect to.

Types o
Y p .f scalar
Derivatives
dy
scalar A [g—y]
ox T
- By -
8:171
Yy
0 p)
vector 9% _ ‘_”2
0x :
Oy
_Bxp_
- Oy Oy 0y 7
3X11 8X12 8X1Q
; Oy Oy Oy
matrix Oy | 9Xa1  9Xa 0X20
oxX c .
Oy Oy Oy
| 90X p, OXpo 90X pq -

Table courtesy of Matt Gormley

14



Matrix
Calculus:

Denominator
Layout

10/6/23

B p € .O f scalar vector
Derivatives
9y _ 9] Jy _ ou o Sy
scalar = 13 = - B B
ox “ ox
- Oy ] ~ Oy Oy2 Oyn ~
8331 8331 3:171 3%1
Oy Oy1 Oy2 Oyn
8y 8:62 8}’ 8ZE2 8:82 8.’32
vector 8_X — & — .
Oy Oy1 Oy2 Oyn
_BZEP_ _aSBP 8.’BP aiEp_

Table courtesy of Matt Gormley

15



Three

Approaches to
Differentiation

10/6/23

- Given f: RP - R, compute V, f(x) = af(x)/ax

1. Finite difference method

2. Symbolic differentiation

3. Automatic differentiation (reverse mode)

16



Approach 1:
Finite
Difference
Method

10/6/23

- Given f: RP > R, compute V,.f(x) = af(x)/ax

of (x) f(x+ed)—f(x—ed;)
dx; - 2€

where d; is a one-hot vector with a 1 in the ith position

0 /\/

- We want € to be small to get a good approximation but we

run into floating point issues when € is too small

* Getting the full gradient requires computing the above

approximation for each dimension of the input

17



* Given

XZ N sin(In(x))

y=flrnz)=e™+ In(x) XZ

whatare %/, _and 9/, atx =2,z = 3?

Approach 1:
Finite
Difference
Method
Example

10/6/23 Example courtesy of Matt Gormley



Three

Approaches to
Differentiation

10/6/23

- Given f: RP - R, compute V, f(x) = af(x)/ax

1. Finite difference method
* Requires the ability to call f(x)

* Great for checking accuracy of implementations of
more complex differentiation methods

- Computationally expensive for high-dimensional inputs

2. Symbolic differentiation

3. Automatic differentiation (reverse mode)

19



Approach 2:
Symbolic
Differentiation

10/6/23

* Given

XZ sin(In(x))

y=fxz) =e"+ +

In(x) XZ

whatare %/, _and 9/, atx =2,z = 3?

Example courtesy of Matt Gormley

20



The Chain Rule

of Calculus

10/6/23

“Ify = f(z) and z = g(x) then

the corresponding computation graph is

“Ify = f(z1,23) and z; = g,(x),z; = g,(x) then

“Ify = f(z) and z = g(x) then

21



Poll Question 1

10/6/23

“Ify = f(z),z= g(w)andw = h(x), does the equation

D
dy dy 0z4

dx rr] 0z; 0x

still hold?

A. Yes
B. No
C. Only on Fridays (TOXIC)

22



* Given

XZ N sin(In(x))

y=flxz)=er+ In(x) XZ

what are %7/, _and 97/, atx = 2,z = 3?

Approach 2:
Symbolic
Differentiation

10/6/23



- Given f: RP - R, compute V, f(x) = af(x)/ax

1. Finite difference method
* Requires the ability to call f(x)
* Great for checking accuracy of implementations of
more complex differentiation methods

- Computationally expensive for high-dimensional inputs

Three

2. Symbolic differentiation
* Requires systematic knowledge of derivatives

* Can be computationally expensive if poorly implemented

Approaches to
Differentiation

3. Automatic differentiation (reverse mode)

10/6/23

24



Approach 3:
Automatic
Differentiation
(reverse mode)

10/6/23

* Given

y=f(xz) =e”+

XZ
In(x)

_|_

whatare %/, _and 9/, atx =2,z = 3?

sin(In(x))

XZ

* First define some intermediate quantities, draw the

computation graph and run the “forward” computation

a = Xz

X
b = In(x) )

¢ = sin(b) .
d =e?
e=9%, 5
f= C/a

y=d+e+f

Example courtesy of Matt Gormley

a

X

b

In

d

lexp

Sin

~ [T |~ | ®

25



* Given

XZ sin(In(x))
In(x) * XZ

y=f(xz) =e”+

whatare %/, _and 9/, atx =2,z = 3?

* Then compute partial derivatives,
starting from y and working back

Approach 3: X a d
Automatic 2 * Klexp
Differentiation z b y
(reverse mode) 3 In +

~ |Th |~ | ®

Cc |sin

10/6/23

Example courtesy of Matt Gormley



- Given f: RP - R, compute V, f(x) = af(x)/ax

1. Finite difference method
* Requires the ability to call f(x)
* Great for checking accuracy of implementations of
more complex differentiation methods

- Computationally expensive for high-dimensional inputs
Three P yexp 5 P

2. Symbolic differentiation
* Requires systematic knowledge of derivatives

* Can be computationally expensive if poorly implemented

Approaches to
Differentiation

3. Automatic differentiation (reverse mode)
* Requires systematic knowledge of derivatives and an
algorithm for computing f (x)

* Computational cost of computing af(x)/ax is proportional
to the cost of computing f(x)

10/6/23



- Given f: RP - RE, compute V,.f(x) = ™/

3. Automatic differentiation (reverse mode)

* Requires systematic knowledge of derivatives and an
algorithm for computing f (x)

 Computational cost of computing V,.f(x), = 0f (X)c Ox

is proportional to the cost of computing f(x)

Automatic * Great for high-dimensional inputs and low-dimensional
outputs (D > C)

Differentiation

4. Automatic differentiation (forward mode)
* Requires systematic knowledge of derivatives and an
algorithm for computing f(x)

* Computational cost of computing af(x)/axd
is proportional to the cost of computing f (x)

* Great for low-dimensional inputs and high-dimensional
torer outputs (D «< ()

29



Computation
Graph:

10-301/601
Conventions

10/6/23

- The diagram represents an algorithm

* Nodes are rectangles with one node per intermediate

variable in the algorithm

* Each node is labeled with the function that it computes

(inside the box) and the variable name (outside the box)

° Edges are directed and do not have labels

* For neural networks:

- Each weight, feature value, label and bias term

appears as a hode

* We can include the loss function

30



Neural
Network

Diagram
Conventions

10/6/23

* The diagram represents a neural network
* Nodes are circles with one node per hidden unit

- Each node is labeled with the variable corresponding to

the hidden unit

- Edges are directed and each edge is labeled with its weight

* Following standard convention, the bias term is typically

not shown as a node, but rather is assumed to be part of
the activation function i.e., its weight does not appear in

the picture anywhere.

* The diagram typically does not include any nodes related

to the loss computation

31



Backprop

Learning
Objectives

10/6/23

You should be able to...

Differentiate between a neural network diagram and a computation graph
Construct a computation graph for a function as specified by an algorithm
Carry out the backpropagation on an arbitrary computation graph

Construct a computation graph for a neural network, identifying all the
given and intermediate quantities that are relevant

Instantiate the backpropagation algorithm for a neural network

Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2)
when the parameters of a model are comprised of several matrices
corresponding to different layers of a neural network

Use the finite difference method to evaluate the gradient of a function

Identify when the gradient of a function can be computed at all and when
it can be computed efficiently

Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

32



