10-301/601: Introduction to Machine Learning Lecture 13 Differentiation

Henry Chai \& Matt Gormley \& Hoda Heidari
2/26/24

Recall: Neural

 Networks(Matrix Form)

10/6/23

Recall: Neural Networks
(Matrix Form)

$$
y=\sigma\left(\boldsymbol{\beta}^{\prime T}\left[\begin{array}{c}
1 \\
\boldsymbol{z}^{(2)}
\end{array}\right]\right)
$$

$$
\boldsymbol{\beta}^{\prime}=\left[\begin{array}{c}
\beta_{0} \\
\boldsymbol{\beta}
\end{array}\right] \in \mathbb{R}^{D_{2}+1}
$$

$$
\boldsymbol{\alpha}^{(2)^{\prime}}=\left[\begin{array}{c}
\boldsymbol{b}^{(2)^{T}} \\
\boldsymbol{\alpha}^{(2)}
\end{array}\right] \in \mathbb{R}^{\left(D_{1}+1\right) \times D_{2}}
$$

$$
\boldsymbol{z}^{(2)}=\sigma\left(\boldsymbol{\alpha}^{(2)^{\prime T}}\left[\begin{array}{c}
1 \\
\boldsymbol{z}^{(1)}
\end{array}\right]\right)
$$

$$
z^{(1)}=\sigma\left(\boldsymbol{\alpha}^{(1)^{\prime}}\left[\begin{array}{l}
1 \\
\boldsymbol{x}
\end{array}\right]\right)
$$

$$
\boldsymbol{\alpha}^{(1)^{\prime}}=\left[\begin{array}{c}
\boldsymbol{b}^{(1)^{T}} \\
\boldsymbol{\alpha}^{(1)}
\end{array}\right] \in \mathbb{R}^{(M+1) \times D_{1}}
$$

- Inputs: weights $\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}$ and a query data point \boldsymbol{x}^{\prime}
- Initialize $z^{(0)}=x^{\prime}$

Forward
Propagation for Making Predictions

- For $l=1, \ldots, L$

$$
\cdot \boldsymbol{a}^{(l)}=\boldsymbol{\alpha}^{(l)^{T}} \mathbf{z}^{(l-1)}
$$

$$
\cdot \mathbf{z}^{(l)}=\sigma\left(\boldsymbol{a}^{(l)}\right)
$$

- $\hat{y}=\sigma\left(\boldsymbol{\beta}^{T} \mathbf{z}^{(L)}\right)$
- Output: the prediction \hat{y}
- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}, \gamma$
- Initialize all weights $\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}$
- While TERMINATION CRITERION is not satisfied

Stochastic
 Gradient Descent for Learning

- For $i \in \operatorname{shuffle}(\{1, \ldots, N\})$
- Compute $g_{\boldsymbol{\beta}}=\nabla_{\boldsymbol{\beta}} J^{(i)}\left(\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}\right)$
- For $l=1, \ldots, L$
- Compute $g_{\boldsymbol{\alpha}^{(l)}}=\nabla_{\boldsymbol{\alpha}^{(l)}} J^{(i)}\left(\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}\right)$
- Update $\boldsymbol{\beta}=\boldsymbol{\beta}-\gamma g_{\boldsymbol{\beta}}$
- For $l=1, \ldots, L$
- Update $\boldsymbol{\alpha}^{(l)}=\boldsymbol{\alpha}^{(l)}-\gamma g_{\boldsymbol{\alpha}^{(l)}}$
- Output: $\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}$
- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}, \gamma$

Two questions:

- Initialize all weights $\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}$
- While TERMINATION CRITERION is not satisfied

1. What is this
loss function $J^{(i)}$?
2. How on earth do we take these gradients?

- For $i \in \operatorname{shuffle}(\{1, \ldots, N\})$
- Compute $g_{\boldsymbol{\beta}}=\nabla_{\boldsymbol{\beta}} J^{(i)}\left(\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}\right)$
- For $l=1, \ldots, L$

$$
\text { - Compute } g_{\boldsymbol{\alpha}^{(l)}}=\nabla_{\boldsymbol{\alpha}^{(l)}} J^{(i)}\left(\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}\right)
$$

- Update $\boldsymbol{\beta}=\boldsymbol{\beta}-\gamma g_{\boldsymbol{\beta}}$
- For $l=1, \ldots, L$

$$
\cdot \text { Update } \boldsymbol{\alpha}^{(l)}=\boldsymbol{\alpha}^{(l)}-\gamma g_{\boldsymbol{\alpha}^{(l)}}
$$

- Output: $\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}$
- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}, \gamma$

Two questions:

- Initialize all weights $\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}$
- While TERMINATION CRITERION is not satisfied

1. What is this
loss function $J^{(i)}$?
2. How on earth do we take these gradients?

- For $i \in \operatorname{shuffle}(\{1, \ldots, N\})$
- Compute $g_{\boldsymbol{\beta}}=\nabla_{\boldsymbol{\beta}} J^{(i)}\left(\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}\right)$
- For $l=1, \ldots, L$
- Compute $g_{\boldsymbol{\alpha}^{(l)}}=\nabla_{\boldsymbol{\alpha}^{(l)}} J^{(i)}\left(\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}\right)$
- Update $\boldsymbol{\beta}=\boldsymbol{\beta}-\gamma g_{\boldsymbol{\beta}}$
- For $l=1, \ldots, L$
- Update $\boldsymbol{\alpha}^{(l)}=\boldsymbol{\alpha}^{(l)}-\gamma g_{\boldsymbol{\alpha}^{(l)}}$
- Output: $\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}$
- Let $\boldsymbol{\Theta}=\left\{\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}\right\}$ be the parameters of our neural network
- Regression - squared error (same as linear regression!)

$$
J^{(i)}(\boldsymbol{\Theta})=\left(\hat{y}_{\boldsymbol{\Theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

Loss

Functions for Neural Networks

- Binary classification - cross-entropy loss (same as logistic regression!)
- Assume $Y \in\{0,1\}$ and $P(Y=1 \mid \boldsymbol{x}, \boldsymbol{\Theta})=\hat{y}_{\boldsymbol{\Theta}}(\boldsymbol{x})$

$$
J^{(i)}(\boldsymbol{\Theta})=-\log P\left(y^{(i)} \mid \boldsymbol{x}^{(i)}, \boldsymbol{\Theta}\right)
$$

- Let $\Theta=\left\{\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}\right\}$ be the parameters of our neural network
- Multi-class classification - cross-entropy loss again!
- Express the label as a one-hot or one-of- C vector e.g.,

Loss

Functions for Neural Networks

$$
\boldsymbol{y}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & \cdots & 0
\end{array}\right]
$$

- Assume the neural network output is also a vector of length $C, \widehat{\boldsymbol{y}}_{\boldsymbol{\Theta}}$

$$
P(\boldsymbol{y}[c]=1 \mid \boldsymbol{x}, \Theta)=\widehat{\boldsymbol{y}}_{\boldsymbol{\Theta}}\left(\boldsymbol{x}^{(i)}\right)[c]
$$

- Let $\boldsymbol{\Theta}=\left\{\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}\right\}$ be the parameters of our neural network

Okay but how do we get our network to output this vector?

- Multi-class classification - cross-entropy loss
- Express the label as a one-hot or one-of- C vector e.g.,

$$
y=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & \cdots & 0
\end{array}\right]
$$

- Assume the neural network output is also a vector of length $C, \widehat{\boldsymbol{y}}_{\boldsymbol{\Theta}}$

$$
P(y[c]=1 \mid x, \Theta)=\widehat{y}_{\Theta}\left(x^{(i)}\right)[c]
$$

- Then the cross-entropy loss is

$$
\begin{aligned}
J^{(i)}(\Theta) & =-\log P\left(y^{(i)} \mid \boldsymbol{x}^{(i)}, \Theta\right) \\
& =-\sum_{c=1}^{C} \boldsymbol{y}^{(i)}[c] \log \left(\widehat{\boldsymbol{y}}_{\boldsymbol{\Theta}}\left(\boldsymbol{x}^{(i)}\right)[c]\right)
\end{aligned}
$$

Softmax

- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}, \gamma$

Two questions:

- Initialize all weights $\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}$
- While TERMINATION CRITERION is not satisfied

1. What is this
loss function
$J^{(i)}$?
2. How on earth do we take these gradients?

- For $i \in \operatorname{shuffle}(\{1, \ldots, N\})$
- Compute $g_{\boldsymbol{\beta}}=\nabla_{\boldsymbol{\beta}} J^{(i)}\left(\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}\right)$
- For $l=1, \ldots, L$
- Compute $g_{\boldsymbol{\alpha}^{(l)}}=\nabla_{\boldsymbol{\alpha}^{(l)}} J^{(i)}\left(\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}\right)$
- Update $\boldsymbol{\beta}=\boldsymbol{\beta}-\gamma g_{\boldsymbol{\beta}}$
- For $l=1, \ldots, L$
- Update $\boldsymbol{\alpha}^{(l)}=\boldsymbol{\alpha}^{(l)}-\gamma g_{\boldsymbol{\alpha}^{(l)}}$
- Output: $\boldsymbol{\alpha}^{(1)}, \ldots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta}$

Matrix

 Calculus| Types of Derivatives | scalar | vector | matrix |
| :---: | :---: | :---: | :---: |
| scalar | $\frac{\partial y}{\partial x}$ | $\frac{\partial y}{\partial x}$ | $\frac{\partial \mathbf{Y}}{\partial x}$ |
| vector | $\frac{\partial y}{\partial \mathbf{x}}$ | $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ | $\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$ |
| matrix | $\frac{\partial y}{\partial \mathbf{X}}$ | $\frac{\partial \mathbf{y}}{\partial \mathbf{X}}$ | $\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$ |

Matrix Calculus: Denominator Layout

Types of Derivatives	scalar		
scalar	$\frac{\partial y}{\partial x}=\left[\frac{\partial y}{\partial x}\right]$		
vector	$\frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{c}\frac{\partial y}{\partial x_{1}} \\ \frac{\partial y}{\partial x_{2}} \\ \vdots \\ \frac{\partial y}{\partial x_{P}}\end{array}\right]$		
matrix	$\frac{\partial y}{\partial \mathbf{X}}=\left[\begin{array}{cccc}\frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1 Q}} \\ \frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2 Q}} \\ \vdots & & & \vdots \\ \frac{\partial y}{\partial X_{P 1}} & \frac{\partial y}{\partial X_{P 2}} & \cdots & \frac{\partial y}{\partial X_{P Q}}\end{array}\right]$		

Matrix
 Calculus:
 Denominator
 Layout

$\left.\begin{array}{c|c|cc|}\begin{array}{c}\text { Types of } \\ \text { Defiratives }\end{array} & \text { scalar } & \text { vector } \\ \text { scalar } & \frac{\partial y}{\partial x}=\left[\begin{array}{c}\frac{\partial y}{\partial x}\end{array}\right] & \frac{\partial \mathbf{y}}{\partial x}=\left[\begin{array}{llll}\frac{\partial y_{1}}{\partial x} & \frac{\partial y_{2}}{\partial x} & \cdots & \frac{\partial y_{N}}{\partial x}\end{array}\right] \\ \text { vector } & \frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{c}\frac{\partial y}{\partial x_{1}} \\ \frac{\partial y}{\partial x_{2}} \\ \vdots \\ \frac{\partial y}{\partial x_{P}}\end{array}\right]\end{array}\right] \frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{cccc}\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} & \cdots & \frac{\partial y_{N}}{\partial x_{1}} \\ \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{N}}{\partial x_{2}} \\ \vdots & & \\ \frac{\partial y_{1}}{\partial x_{P}} & \frac{\partial y_{2}}{\partial x_{P}} & \cdots & \frac{\partial y_{N}}{\partial x_{P}}\end{array}\right]$

- Given $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$, compute $\nabla_{x} f(\boldsymbol{x})={ }^{\partial f(x)} / \partial x$

1. Finite difference method

Three
Approaches to Differentiation
2. Symbolic differentiation
3. Automatic differentiation (reverse mode)

- Given $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$, compute $\nabla_{x} f(x)={ }^{\partial f(x)} / \partial x$

$$
\frac{\partial f(\boldsymbol{x})}{\partial x_{i}} \approx \frac{f\left(\boldsymbol{x}+\epsilon \boldsymbol{d}_{i}\right)-f\left(\boldsymbol{x}-\epsilon \boldsymbol{d}_{i}\right)}{2 \epsilon}
$$

where \boldsymbol{d}_{i} is a one-hot vector with a 1 in the $i^{\text {th }}$ position

Approach 1:
 Finite
 Difference Method

- We want ϵ to be small to get a good approximation but we run into floating point issues when ϵ is too small
- Getting the full gradient requires computing the above approximation for each dimension of the input
- Given

$$
\begin{aligned}
& y=f(x, z)=e^{x z}+\frac{x z}{\ln (x)}+\frac{\sin (\ln (x))}{x z} \\
& \text { what are }{ }^{\partial y} / \partial x \text { and }^{\partial y} / \partial z \text { at } x=2, z=3 \text { ? }
\end{aligned}
$$

Approach 1:
Finite
Difference
Method
Example

Three

Approaches to Differentiation

- Given $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$, compute $\nabla_{x} f(x)={ }^{\partial f(x)} / \partial x$

1. Finite difference method

- Requires the ability to call $f(\boldsymbol{x})$
- Great for checking accuracy of implementations of more complex differentiation methods
- Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
3. Automatic differentiation (reverse mode)

- Given

$$
\begin{gathered}
y=f(x, z)=e^{x z}+\frac{x z}{\ln (x)}+\frac{\sin (\ln (x))}{x z} \\
\text { what are }{ }^{\partial y} / \partial x \text { and }^{\partial y} / \partial z \text { at } x=2, z=3 \text { ? }
\end{gathered}
$$

Approach 2: Symbolic Differentiation

- If $y=f(z)$ and $z=g(x)$ then
the corresponding computation graph is
- If $y=f\left(z_{1}, z_{2}\right)$ and $z_{1}=g_{1}(x), z_{2}=g_{2}(x)$ then

The Chain Rule of Calculus

- If $y=f(z)$ and $z=g(x)$ then
- If $y=f(\mathbf{z}), \mathbf{z}=g(\boldsymbol{w})$ and $\boldsymbol{w}=h(x)$, does the equation

$$
\frac{\partial y}{\partial x}=\sum_{d=1}^{D} \frac{\partial y}{\partial z_{d}} \frac{\partial z_{d}}{\partial x}
$$

Poll Question $1 \quad$ still hold?
A. Yes
B. No
C. Only on Fridays (TOXIC)

- Given

$$
\begin{aligned}
& y=f(x, z)=e^{x z}+\frac{x z}{\ln (x)}+\frac{\sin (\ln (x))}{x z} \\
& \text { what are }{ }^{\partial y} / \partial x \text { and }^{\partial y} / \partial z \text { at } x=2, z=3 \text { ? }
\end{aligned}
$$

Approach 2: Symbolic Differentiation

- Given $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$, compute $\nabla_{x} f(\boldsymbol{x})={ }^{\partial f(x)} / \partial x$

1. Finite difference method

- Requires the ability to call $f(\boldsymbol{x})$
- Great for checking accuracy of implementations of more complex differentiation methods
- Computationally expensive for high-dimensional inputs

2. Symbolic differentiation

- Requires systematic knowledge of derivatives
- Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)

- Given

$$
y=f(x, z)=e^{x z}+\frac{x z}{\ln (x)}+\frac{\sin (\ln (x))}{x z}
$$

- First define some intermediate quantities, draw the computation graph and run the "forward" computation

Approach 3:
 Automatic Differentiation (reverse mode)

- Given

$$
y=f(x, z)=e^{x z}+\frac{x z}{\ln (x)}+\frac{\sin (\ln (x))}{x z}
$$

- Then compute partial derivatives, starting from y and working back

Approach 3: Automatic Differentiation (reverse mode)

- Given $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$, compute $\nabla_{x} f(x)=\partial f(x) / \partial x$

1. Finite difference method

- Requires the ability to call $f(\boldsymbol{x})$
- Great for checking accuracy of implementations of more complex differentiation methods
- Computationally expensive for high-dimensional inputs

2. Symbolic differentiation

- Requires systematic knowledge of derivatives
- Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)

- Requires systematic knowledge of derivatives and an algorithm for computing $f(\boldsymbol{x})$
- Computational cost of computing $\partial f(x) / \partial x$ is proportional to the cost of computing $f(x)$
- Given $f: \mathbb{R}^{D} \rightarrow \mathbb{R}^{C}$, compute $\nabla_{x} f(\boldsymbol{x})={ }^{\partial f(x)} / \partial x$

3. Automatic differentiation (reverse mode)

- Requires systematic knowledge of derivatives and an algorithm for computing $f(\boldsymbol{x})$
- Computational cost of computing $\nabla_{x} f(x)_{c}={ }^{\partial f(x)}{ }_{c} / \partial x$ is proportional to the cost of computing $f(\boldsymbol{x})$
- Great for high-dimensional inputs and low-dimensional outputs ($D>C$)

4. Automatic differentiation (forward mode)

- Requires systematic knowledge of derivatives and an algorithm for computing $f(\boldsymbol{x})$
- Computational cost of computing ${ }^{\partial f(x)} / \partial x_{d}$ is proportional to the cost of computing $f(\boldsymbol{x})$
- Great for low-dimensional inputs and high-dimensional outputs $(D \ll C)$
- The diagram represents an algorithm
- Nodes are rectangles with one node per intermediate variable in the algorithm
- Each node is labeled with the function that it computes (inside the box) and the variable name (outside the box)
- Edges are directed and do not have labels
- For neural networks:
- Each weight, feature value, label and bias term appears as a node
- We can include the loss function
- The diagram represents a neural network
- Nodes are circles with one node per hidden unit
- Each node is labeled with the variable corresponding to the hidden unit
- Edges are directed and each edge is labeled with its weight
- Following standard convention, the bias term is typically not shown as a node, but rather is assumed to be part of the activation function i.e., its weight does not appear in the picture anywhere.
- The diagram typically does not include any nodes related to the loss computation

You should be able to...

- Differentiate between a neural network diagram and a computation graph
- Construct a computation graph for a function as specified by an algorithm
- Carry out the backpropagation on an arbitrary computation graph
- Construct a computation graph for a neural network, identifying all the given and intermediate quantities that are relevant
- Instantiate the backpropagation algorithm for a neural network
- Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the parameters of a model are comprised of several matrices corresponding to different layers of a neural network
- Use the finite difference method to evaluate the gradient of a function
- Identify when the gradient of a function can be computed at all and when it can be computed efficiently
- Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

