10-301/601: Introduction
to Machine Learning
Lecture 13 —
Differentiation

Henry Chai & Matt Gormley & Hoda Heidari
2/26/24

y=o((BT2? +By)

Z(Z) _ 0((a(2))Tz(1) + b(Z))

Recall: Neural

Networks
(Matrix Form) \ 2D = s(@@YTx + b®)

—_—

10/6/23

= oo)
g = [ﬁﬁo] ——

2) _ T 1
Recall: Neural o z" = o(a(z) [Z(l)])
' |b
Networks @ =[(2)] e ROVDXD;
a
(Matrix Form) - Gga(l)’T o)
_ 7T L
a®' = Jl—(—li)] e RIM+1)xDy
= |q

L— D

10/6/23

Forward
Propagation

for Making
Predictions

10/6/23

* Inputs: weights a(l), . a(L), P and a query data point x’
. N
- Initialize z(® = x’

‘Forl=1,..,L

0 — (z)T (1-1)
‘a a YA

29 = o(a®)

y =o(BTz\")

* Qutput: the prediction y

Stochastic
Gradient

Descent
for Learning

10/6/23

nput: D = {(x® yONY S =y T
Input: D = {(xV, y)}i=1’y J
 Initialize all weights a¥, ..., a™, B

* While TERMINATION CRITERION is not satisfied
* For i € shuffle({1,...,N})

+ Compute gg = VgV (a®, ..., a, B)

o
S‘;{W “Forl=1,..,L
* Compute g, = Va(z)](i) (a(l), e a(L),ﬁ)
AGC‘% *Update B =B —vgp
(&
*Forl=1,...,L

- Update al = g — Y9 ,m

. Output:a(l), o) a(L),ﬂ

Two questions:

1. What is this

loss function
P

2. How on earth
do we take
these gradients?

10/6/23

. = (@D ONY
Input: D = {(x®,yW)} _ vy
 Initialize all weights a¥, ..., a™, B

* While TERMINATION CRITERION is not satisfied

* For i € shuffle({1,...,N})
+ Compute gg = VgV (a®, ..., a, B)
*Forl=1,...,L
* Compute g, a) = Va(z)](i)(a(l), ., a(L),ﬁ)
*Update B = B —v9g
*Forl=1,...,L

- Update al = g — Y9 ,m

. Output:a(l), o) a(L),ﬂ

Two questions:

1. What is this

loss function
P

2. How on earth
do we take
these gradients?

10/6/23

. = (@D ONY
Input: D = {(x®,yW)} _ vy
 Initialize all weights a¥, ..., a™, B

* While TERMINATION CRITERION is not satisfied

* For i € shuffle({1,...,N})
+ Compute gg = VgV (a®, ..., a, B)
*Forl=1,...,L
* Compute g, a) = Va(z)](i)(a(l), ., a(L),ﬁ)
*Update B = B —v9g
*Forl=1,...,L

- Update al = g — Y9 ,m

. Output:a(l), o) a(L),ﬂ

Loss
Functions

for Neural
Networks

10/6/23

*Let®@ = {a(l), . a(’“), ﬁ} be the parameters of our neural network
|

S

* Regression - squared error (same as linear regression!)

J9(0) = ($o(x?) - y©)?

6)
- " . 10'\/\ aﬁ . WMe Gn ‘)(
* Binary classification - cross-entro&/kfos‘bs 6’('s%éﬁ(ne as Iogll:[:\t\ic regression!)
Assume Y € {0,1} and P(E : :slx, 0) =\Ve\(x)
. N . A)
JO@) = —logP(yDxD,0) - (® y=x —> Yo*) =
~ v_/ ~ S— N [(\
@ I:' 94iz0 —> ‘“36(% ><"‘
A W\ : ﬁ\,
~ sﬂ%(56(1 > (' Ye (2 \>>
A ~ o
- <3‘ &03 39[1() + O._g‘b ‘Qo\j(\\ﬁé(q)))
- __/ g™ 3

Loss
Functions

for Neural
Networks

10/6/23

:lj-f%"l/'"/C} (X>3) ﬁ("w\-_" Orr--‘/‘)}B

C

* Let ®@ = {a(l), . a(L), B} be the parameters of our neural network

* Multi-class classification - cross-entropy loss again!

* Express the label as a one-hot or one-of-C vector e.g.,
y=[0 0 1 0 - 0]

- Assume the neural network output is also a vector of length C, ygq

P(y[c] = 1]x,0) = g(x®)[c]

* Let ®@ = {a(l), . a(L), B} be the parameters of our neural network

Okay but - Multi-class classification - cross-entropy loss
how do * Express the label as a one-hot or one-of-C vector e.g.,

we get y=[0 0 1 0 - 0]

our - Assume the neural network output is also a vector of length C, ygq
P(ylc] = 1|x,0) = yo(x?)lc]

* Then the cross-entropy loss is

JP(@) = —logP(yV|x, @)

2 \ v
) 40 I XED)
c=1 ~—
L

network

to output
this
vector?

>
)

10/6/23

Softmax

Two questions:

1. What is this

loss function
JO?

2. How on earth
do we take
these gradients?

10/6/23

. = (@D ONY
Input: D = {(x®,yW)} _ vy
 Initialize all weights a¥, ..., a™, B

* While TERMINATION CRITERION is not satisfied

* For i € shuffle({1,...,N})
+ Compute gg = Vp/ W (a®, ..., a®, B)
N v
*Forl=1,...,L
° Compute ga(z) = Va(z)‘]d(i) (a(l), e, a(L),ﬁ)
\V

*Update B =B —vgp
*Forl=1,...,L

- Update al = g — Y9 ,m

. Output:a(l), o) a(L),ﬂ

12

Matrix
Calculus

10/6/23

Denominator

Numerator

Types of
Derivatives

scalar vector

matrix

gy

scalar 83’;
vector @ @ @

OR. Ox Ox
matrix @

Table courtesy of Matt Gormley

13

Matrix
Calculus:

Denominator
Layout

10/6/23

Ay
AN
* Derivatives of a
scalar always
have the same
shape as the
entity that the
derivative is

being taken

with respect to.

Types o
Y p .f scalar
Derivatives
0
scalar 99 [g_y]
ox T
-ﬂ- (11 =
8:131
9y S T2
0 3 -
vector oY | o K=l ¢
0x .
Oy 2t
axP o P J
v Xk
xeR
- Oy oy Oy T
3X11 8X12 8X1Q
; Oy Oy Oy
matrix oy 0Xz1 0Xaz 0X20
0X : :
Oy Oy Oy
| 9Xp, O0Xpa 9Xprq

Table courtesy of Matt Gormley

14

Matrix
Calculus:

Denominator
Layout

10/6/23

Types of

Derivatives scalar vector
V=0 —/3N) YV
scalar @ — [%] @: [%ﬂ % 8gN]
ox x Ox T T T
N
_ _ £ _ _
oy 17 RP 9y1 Oy2 OyN
awl XE ‘P 8:1:1 833'1 aml
Oy Oy1 Oy2 OyN
8y Ox2 8}’ Oxo Oxo Oxo
vector 8_X — & —
’ P«N .
9y | € R dy1 Oya Oyn
BZEP _awp 8£BP 8:1713_

Table courtesy of Matt Gormley

15

Three

Approaches to
Differentiation

10/6/23

- Given f: RP - R, compute V, f(x) = af(x)/ax

1. Finite difference method

2. Symbolic differentiation

s, 5. Automatic differentiation (reverse mode)

16

Approach 1:
Finite
Difference
Method

10/6/23

- Given f: R? = R, compute V,.f (x) = af(x)/ax :
of (x) N f@+ ed;) — f(x —ed;) (o065, 1°)

@ 2€

where d; is a one-hot vector with a 1 in the ith position
f)]

Rt e) —
fon-9)

- We want € to be small to get a good approximation but we

run into floating point issues when € is too small

* Getting the full gradient requires computing the above

approximation for each dimension of the input

17

Approach 1:
Finite
Difference

Method
Example

10/6/23

* Given

XZ sin(In(x))

_ _ o XZ

what are %/, and %/, atx = 2,z = 3?

SN —E(K& 2, Z) - S?(%*QLQ___ 'S?(‘L-{-‘E,/‘Z')
o 26 R(w-t17)

(\ :

Example courtesy of Matt Gormley

by, Sz =X

2%

Z ~€)

18

Three

Approaches to
Differentiation

10/6/23

- Given f: RP - R, compute V, f(x) = af(x)/ax

1. Finite difference method
* Requires the ability to call f(x)

* Great for checking accuracy of implementations of
more complex differentiation methods

- Computationally expensive for high-dimensional inputs

2. Symbolic differentiation

3. Automatic differentiation (reverse mode)

19

Approach 2:
Symbolic
Differentiation

10/6/23

* Given

XZ sin(In(x))

y=fxz) =e"+ +

In(x) XZ

whatare %/, _and 9/, atx =2,z = 3?

Example courtesy of Matt Gormley

20

The Chain Rule

of Calculus

10/6/23

“Ify = f(z) and z = g(x) then

the corresponding computation graph is
ponding computation grapf

ZC : 0y L
CL
@_}@% ox 2z %
fy = f(Z1»Zz) and z; = g1(x),z; = g2(x) then
09 07,
0z, 0%

@\)D ;an :3‘5 Ez\ -
G\-/ 0% 0z, Im

“Ify = f(z) and z = g(x) then ZE RD

D ?
/ BM B Zk&i’;asu

\@{’/

21

(2
e

“Ify = f(z),z= g(w)andw = h(x), does the equation

!'__/f D
0 dy |0z
__; _y= Y d
0x azd\ax

- IR Z'bzok oV

Poll Question 1 still hold?
C=t DWc 0 %

ﬁ(\Only on Fridays (TOXIC)

10/6/23

* Given

Xz_ sin(In(x))

A Y R

whatare %/, _and 9/, atx =2,z = 3?

QS

t'\L" w
oY xz () (°9(Q3"'-3 —sen Loy
Approach 2: L A Qosx Gzaj) 2 Lz
Symbolic 3@_6 - 3 L S (4o z,)‘ . _sin (lajz)
: . . = ___ -—u—" o S
Differentiation D2 (Loge) 2 —
o = 9.66-\» Z - - giv\ OQU‘E(L» _

10/6/23

23

- Given f: RP - R, compute V, f(x) = af(x)/ax

1. Finite difference method
* Requires the ability to call f(x)
* Great for checking accuracy of implementations of
more complex differentiation methods

- Computationally expensive for high-dimensional inputs

Three

2. Symbolic differentiation
* Requires systematic knowledge of derivatives

* Can be computationally expensive if poorly implemented

Approaches to
Differentiation

3. Automatic differentiation (reverse mode)

10/6/23

24

* Given

Approach 3: v a= o x
Automatic —b =I5
Differentiation [kl ;i”;gb)
(reverse mode) : o _a P
— f=%q
y=d+e+f ‘

10/6/23 Example courtesy of Matt Gormley

a

X

b

In

¢

y=f(x,z) = e@+ @ +sin@

“n(x)S XZ

whatare %/, _and 9/, atx =2,z = 3?

* First define some intermediate quantities, draw the
computation graph and run the “forward” computation

Sin

d
lexp
e y
Vg K
f
/

25

Approach 3:
Automatic
Differentiation
(reverse mode)

10/6/23

* Given

y=f(xz) =e”+

|

XZ sin(In(x))

In(x) XZ

whatare %/, _and 9/, atx =2,z = 3?

Yy
. . o b = —2D =\
Then. compute partial deijlvatlves, g ﬂ, -
starting from y and working back —
24) oY .98
X a d %)\a -‘3?1 — e Y
2 * nexp _— —
- 28
Z b e ﬂc:ﬂ,:gg—d ‘16?(,;\)
D Qe
3 In /) dc I
b
f
¢ |sint”\| / 2PN -
“~—

Example courtesy of Matt Gormley

26

- Given f: RP - R, compute V, f(x) = af(x)/ax

1. Finite difference method
* Requires the ability to call f(x)
* Great for checking accuracy of implementations of
more complex differentiation methods

- Computationally expensive for high-dimensional inputs
Three P yexp 5 P

2. Symbolic differentiation
* Requires systematic knowledge of derivatives

* Can be computationally expensive if poorly implemented

Approaches to
Differentiation

3. Automatic differentiation (reverse mode)
* Requires systematic knowledge of derivatives and an
algorithm for computing f (x)

* Computational cost of computing af(x)/ax is proportional
to the cost of computing f(x)

10/6/23

- Given f: RP - RE, compute V,.f(x) = ™/

3. Automatic differentiation (reverse mode)

* Requires systematic knowledge of derivatives and an
algorithm for computing f (x)

 Computational cost of computing V,.f(x), = 0f (X)c Ox

is proportional to the cost of computing f(x)

Automatic * Great for high-dimensional inputs and low-dimensional
outputs (D > C)

Differentiation

4. Automatic differentiation (forward mode)
* Requires systematic knowledge of derivatives and an
algorithm for computing f(x)

* Computational cost of computing af(x)/axd
is proportional to the cost of computing f (x)

* Great for low-dimensional inputs and high-dimensional
torer outputs (D «< ()

29

Computation
Graph:

10-301/601
Conventions

10/6/23

- The diagram represents an algorithm

* Nodes are rectangles with one node per intermediate

variable in the algorithm

* Each node is labeled with the function that it computes

(inside the box) and the variable name (outside the box)

° Edges are directed and do not have labels

* For neural networks:

- Each weight, feature value, label and bias term

appears as a hode

* We can include the loss function

30

Neural
Network

Diagram
Conventions

10/6/23

* The diagram represents a neural network
* Nodes are circles with one node per hidden unit

- Each node is labeled with the variable corresponding to

the hidden unit

- Edges are directed and each edge is labeled with its weight

* Following standard convention, the bias term is typically

not shown as a node, but rather is assumed to be part of
the activation function i.e., its weight does not appear in

the picture anywhere.

* The diagram typically does not include any nodes related

to the loss computation

31

Backprop

Learning
Objectives

10/6/23

You should be able to...

Differentiate between a neural network diagram and a computation graph
Construct a computation graph for a function as specified by an algorithm
Carry out the backpropagation on an arbitrary computation graph

Construct a computation graph for a neural network, identifying all the
given and intermediate quantities that are relevant

Instantiate the backpropagation algorithm for a neural network

Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2)
when the parameters of a model are comprised of several matrices
corresponding to different layers of a neural network

Use the finite difference method to evaluate the gradient of a function

Identify when the gradient of a function can be computed at all and when
it can be computed efficiently

Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

32

