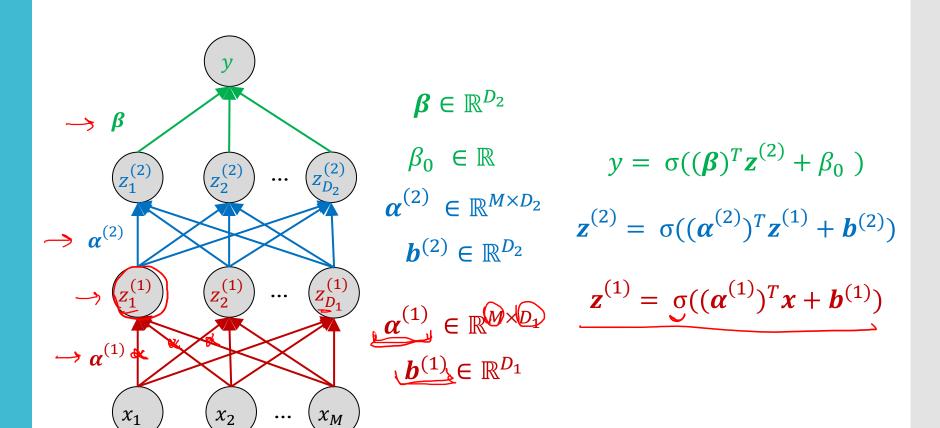
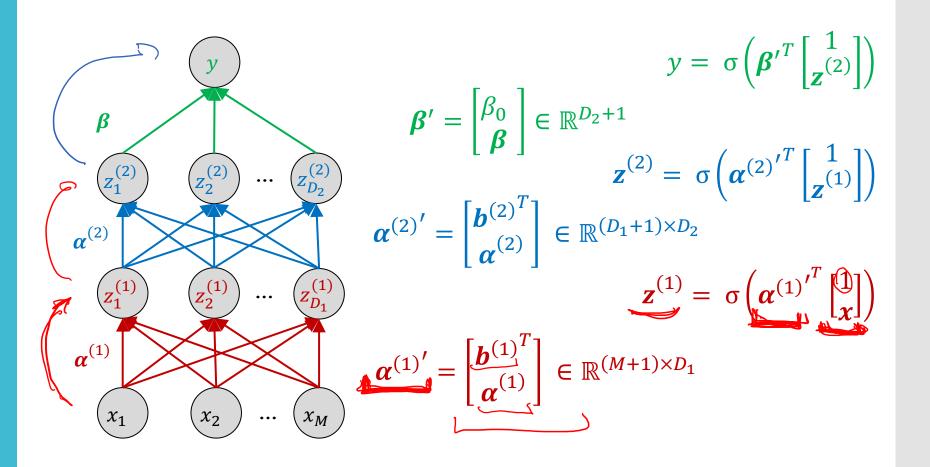
10-301/601: Introduction to Machine Learning Lecture 13 – Differentiation

Henry Chai & Matt Gormley & Hoda Heidari 2/26/24

Recall: Neural Networks (Matrix Form)



Recall: Neural Networks (Matrix Form)



Forward Propagation for Making Predictions

- Inputs: weights $\pmb{\alpha}^{(1)}$, ..., $\pmb{\alpha}^{(L)}$, $\pmb{\beta}$ and a query data point \pmb{x}'
- Initialize $\mathbf{z}^{(0)} = \mathbf{x}'$
- For l = 1, ..., L

$$\mathbf{a}^{(l)} = \boldsymbol{\alpha}^{(l)}^T \mathbf{z}^{(l-1)}$$

$$\mathbf{z}^{(l)} = \sigma(\mathbf{a}^{(l)})$$

$$\cdot \hat{y} = \sigma(\boldsymbol{\beta}^T \mathbf{z}^{(L)})$$

• Output: the prediction \hat{y}

Stochastic Gradient Descent for Learning

- Initialize all weights $\alpha^{(1)}$, ..., $\alpha^{(L)}$, β
- While TERMINATION CRITERION is not satisfied
 - For $i \in \text{shuffle}(\{1, ..., N\})$

gradient
$$g_{oldsymbol{eta}} = \nabla_{oldsymbol{eta}} J^{(i)}(oldsymbol{lpha}^{(1)},...,oldsymbol{lpha}^{(L)},oldsymbol{eta})$$
• For $l=1,...,L$
• Compute $g_{oldsymbol{lpha}^{(l)}} = \nabla_{oldsymbol{lpha}^{(l)}} J^{(i)}(oldsymbol{lpha}^{(1)},...,oldsymbol{lpha}^{(L)},oldsymbol{eta})$
• Update $oldsymbol{eta} = oldsymbol{eta} - \gamma g_{oldsymbol{eta}}$
• For $l=1,...,L$
• Update $oldsymbol{lpha}^{(l)} = oldsymbol{lpha}^{(l)} - \gamma g_{oldsymbol{lpha}^{(l)}}$

• Output: $\alpha^{(1)}$, ..., $\alpha^{(L)}$, β

Two questions:

- 1. What is this loss function $J^{(i)}$?
- 2. How on earth do we take these gradients?

- Input: $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}, \gamma$
- Initialize all weights $\alpha^{(1)}$, ..., $\alpha^{(L)}$, β
- While TERMINATION CRITERION is not satisfied
 - For $i \in \text{shuffle}(\{1, ..., N\})$
 - Compute $g_{\beta} = \nabla_{\beta} J^{(i)}(\alpha^{(1)}, ..., \alpha^{(L)}, \beta)$
 - For l = 1, ..., L
 - Compute $g_{\boldsymbol{\alpha}^{(l)}} = \nabla_{\boldsymbol{\alpha}^{(l)}} J^{(i)}(\boldsymbol{\alpha}^{(1)}, \dots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta})$
 - Update $\beta = \beta \gamma g_{\beta}$
 - For l = 1, ..., L
 - Update $\alpha^{(l)} = \alpha^{(l)} \gamma g_{\alpha^{(l)}}$
- Output: $\alpha^{(1)}$, ..., $\alpha^{(L)}$, β

Two questions:

- 1. What is this loss function $J^{(i)}$?
- 2. How on earth do we take these gradients?

- Input: $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}, \gamma$
- Initialize all weights $\alpha^{(1)}$, ..., $\alpha^{(L)}$, β
- While TERMINATION CRITERION is not satisfied
 - For $i \in \text{shuffle}(\{1, ..., N\})$
 - Compute $g_{\beta} = \nabla_{\beta} J^{(i)}(\alpha^{(1)}, ..., \alpha^{(L)}, \beta)$
 - For l = 1, ..., L
 - Compute $g_{\boldsymbol{\alpha}^{(l)}} = \nabla_{\boldsymbol{\alpha}^{(l)}} J^{(i)}(\boldsymbol{\alpha}^{(1)}, \dots, \boldsymbol{\alpha}^{(L)}, \boldsymbol{\beta})$
 - Update $\beta = \beta \gamma g_{\beta}$
 - For l = 1, ..., L
 - Update $\alpha^{(l)} = \alpha^{(l)} \gamma g_{\alpha^{(l)}}$
- Output: $\alpha^{(1)}$, ..., $\alpha^{(L)}$, β

Loss Functions for Neural Networks

- Let $\Theta = \{\alpha^{(1)}, ..., \alpha^{(L)}, \beta\}$ be the parameters of our neural network
- Regression squared error (same as linear regression!)

$$J^{(i)}(\mathbf{\Theta}) = \left(\hat{y}_{\mathbf{\Theta}}(\mathbf{x}^{(i)}) - y^{(i)}\right)^{2}$$

- Binary classification cross-entropy loss (same as logistic regression!)
 - Assume $Y \in \{0,1\}$ and $P(Y = 1|x, 0) = \widehat{y_0}(x)$ $J^{(i)}(0) = -\log P(y^{(i)}|x^{(i)}, 0) = \begin{cases} if \ y_{i=1} \rightarrow \widehat{y_0}(x^{(i)}) \leftarrow \\ if \ y_{i=0} \rightarrow 1 \widehat{y_0}(x^{(i)}) \leftarrow \end{cases}$ $= -\log \left(\widehat{y_0}(x^{(i)})\right) + \left(1 \widehat{y_0}(x^{(i)})\right) \widehat{y_0}(x^{(i)})$ $= -\left(y_i \log \widehat{y_0}(x^{(i)}) + (1 y_i) \log (1 \widehat{y_0}(x^{(i)}))\right)$

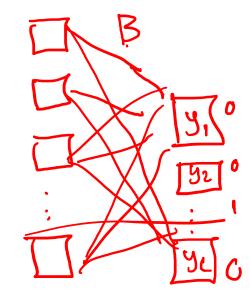
$$y = \{1,2,\dots,C\} \qquad (\vec{z},3) \rightarrow (\vec{z},[\delta,\delta,t,\dots,\delta])$$

- Let $\Theta = \{ \pmb{\alpha}^{(1)}, ..., \pmb{\alpha}^{(L)}, \pmb{\beta} \}$ be the parameters of our neural network
- Multi-class classification cross-entropy loss again!
 - Express the label as a one-hot or one-of-C vector e.g.,

$$\mathbf{y} = \begin{bmatrix} 0 & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

• Assume the neural network output is also a vector of length C, \widehat{y}_{Θ}

$$P(\mathbf{y}[c] = 1 | \mathbf{x}, \mathbf{\Theta}) = \widehat{\mathbf{y}}_{\mathbf{\Theta}}(\mathbf{x}^{(i)})[c]$$



Okay but how do we get our network to output this vector?

- Let $\Theta = \{ \pmb{\alpha}^{(1)}, ..., \pmb{\alpha}^{(L)}, \pmb{\beta} \}$ be the parameters of our neural network
- Multi-class classification cross-entropy loss
 - Express the label as a one-hot or one-of-C vector e.g.,

$$\mathbf{y} = \begin{bmatrix} 0 & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

• Assume the neural network output is also a vector of length C, $\widehat{\boldsymbol{y}}_{\boldsymbol{\Theta}}$

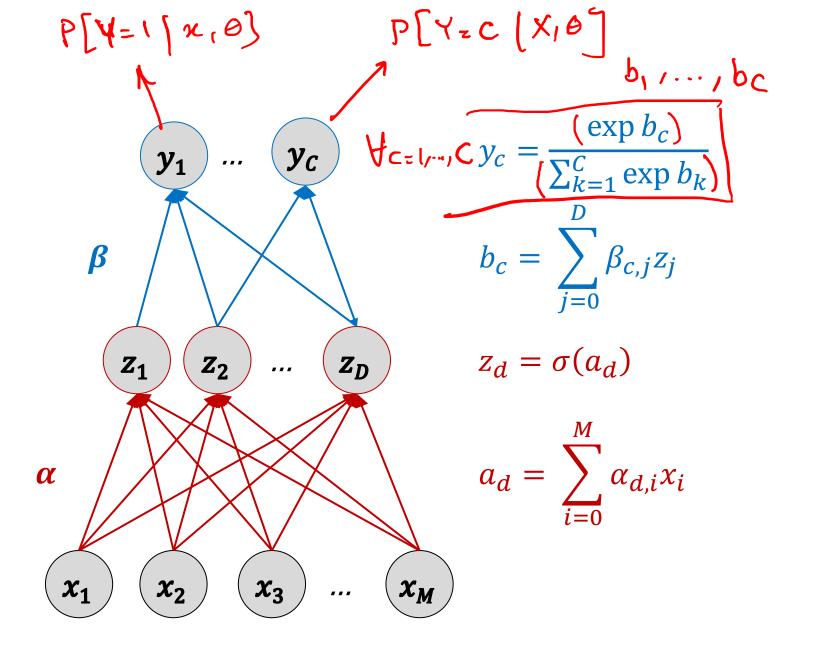
$$P(\mathbf{y}[c] = 1|\mathbf{x}, \mathbf{\Theta}) = \widehat{\mathbf{y}}_{\mathbf{\Theta}}(\mathbf{x}^{(i)})[c]$$

Then the cross-entropy loss is

$$J^{(i)}(\mathbf{\Theta}) = -\log P(y^{(i)}|\mathbf{x}^{(i)},\mathbf{\Theta})$$

$$= -\sum_{c=1}^{C} \mathbf{y}^{(i)}[c] \log(\mathbf{\hat{y}_{\Theta}}(\mathbf{x}^{(i)})[c])$$

Softmax



Two questions:

- 1. What is this loss function $J^{(i)}$?
- 2. How on earth do we take these gradients?

- Input: $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}, \gamma$
- Initialize all weights $\alpha^{(1)}$, ..., $\alpha^{(L)}$, β
- While TERMINATION CRITERION is not satisfied
 - For $i \in \text{shuffle}(\{1, ..., N\})$
 - Compute $g_{\beta} = \nabla_{\beta} J^{(i)}(\alpha^{(1)}, ..., \alpha^{(L)}, \beta)$
 - For $l=1,\ldots,L$
 - Compute $g_{\alpha^{(l)}} = \nabla_{\alpha^{(l)}} J^{(i)}(\alpha^{(1)}, \dots, \alpha^{(L)}, \beta)$
 - Update $\beta = \beta \gamma g_{\beta}$
 - For l = 1, ..., L
 - Update $\alpha^{(l)} = \alpha^{(l)} \gamma g_{\alpha^{(l)}}$
- Output: $\boldsymbol{\alpha}^{(1)}$, ..., $\boldsymbol{\alpha}^{(L)}$, $\boldsymbol{\beta}$

Numerator

Matrix

Types of Derivatives	scalar	vector	matrix
scalar	$\frac{\partial y}{\partial x}$	$\frac{\partial \mathbf{y}}{\partial x}$	$\frac{\partial \mathbf{Y}}{\partial x}$
vector	$\frac{\partial y}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$
matrix	$\frac{\partial y}{\partial \mathbf{X}}$	$rac{\partial \mathbf{y}}{\partial \mathbf{X}}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$

Denominator

Calculus

Matrix Calculus: Denominator Layout

 Derivatives of a scalar always have the same shape as the entity that the derivative is being taken with respect to.

Types of Derivatives	scalar		
scalar	$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x}\right]$		
vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_p \end{bmatrix}$		
matrix	$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1Q}} \\ \frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2Q}} \\ \vdots & & \vdots \\ \frac{\partial y}{\partial X_{P1}} & \frac{\partial y}{\partial X_{P2}} & \cdots & \frac{\partial y}{\partial X_{PQ}} \end{bmatrix}$		

Matrix Calculus: Denominator Layout	Types of Derivatives	scalar	vector
	scalar	$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x}\right]$	$\frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} & \frac{\partial y_2}{\partial x} & \cdots & \frac{\partial y_N}{\partial x} \end{bmatrix}$
	vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$	$ \frac{\mathbf{y} \in \mathbb{R}^{N}}{\mathbf{x} \in \mathbb{P}^{P}} \begin{bmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} & \cdots & \frac{\partial y_{N}}{\partial x_{1}} \\ \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{N}}{\partial x_{2}} \end{bmatrix} $ $ \vdots $ $ \frac{\partial y_{1}}{\partial x_{P}} & \frac{\partial y_{2}}{\partial x_{P}} & \cdots & \frac{\partial y_{N}}{\partial x_{P}} \end{bmatrix} $

• Given
$$f: \mathbb{R}^D \to \mathbb{R}$$
, compute $\nabla_x f(x) = \frac{\partial f(x)}{\partial x}$

1. Finite difference method

Three Approaches to Differentiation

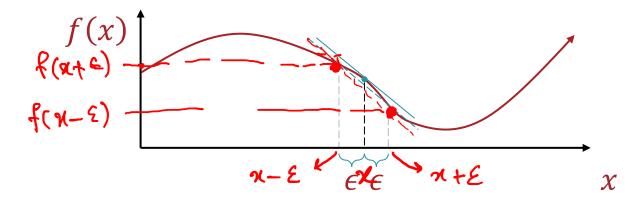
2. Symbolic differentiation

3. Automatic differentiation (reverse mode)

Approach 1: Finite Difference Method

• Given
$$f: \mathbb{R}^D \to \mathbb{R}$$
, compute $\nabla_{x} f(x) = \frac{\partial f(x)}{\partial x} / \frac{\partial f(x)}{\partial x_i} \approx \frac{f(x) + \epsilon d_i) - f(x - \epsilon d_i)}{2\epsilon} d_{\epsilon} d_{$

where d_i is a one-hot vector with a 1 in the i^{th} position



- We want ϵ to be small to get a good approximation but we run into floating point issues when ϵ is too small
- Getting the full gradient requires computing the above approximation for each dimension of the input

Approach 1: Finite Difference Method Example

Given

$$y = f(x,z) = e^{xz} + \frac{xz}{\ln(x)} + \frac{\sin(\ln(x))}{xz}$$
what are $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$ at $x = 2, z = 3$?
$$\frac{\partial y}{\partial x} \approx \frac{f(x+\xi_1 z) - f(x-\xi), z}{2\xi} \qquad \begin{cases} f(x+\xi_1 z) \\ f(x-\xi_1 z) \end{cases}$$

$$\frac{\partial y}{\partial z} \approx \frac{f(x_1 z+\xi_2) - f(x_1 z-\xi)}{2\xi} \qquad \begin{cases} f(x_1 z+\xi) \\ f(x_1 z-\xi) \end{cases}$$

Three Approaches to Differentiation

- Given $f: \mathbb{R}^D \to \mathbb{R}$, compute $\nabla_x f(x) = \frac{\partial f(x)}{\partial x}$
- 1. Finite difference method
 - Requires the ability to call f(x)
 - Great for checking accuracy of implementations of more complex differentiation methods
 - Computationally expensive for high-dimensional inputs
- 2. Symbolic differentiation

3. Automatic differentiation (reverse mode)

10/6/23 **19**

Given

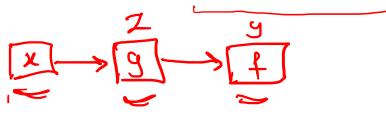
$$y = f(x, z) = e^{xz} + \frac{xz}{\ln(x)} + \frac{\sin(\ln(x))}{xz}$$

what are $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$ at x = 2, z = 3?

Approach 2: Symbolic Differentiation

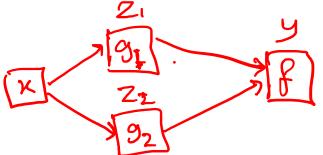
The Chain Rule of Calculus

- If y = f(z) and z = g(x) then
- the corresponding computation graph is



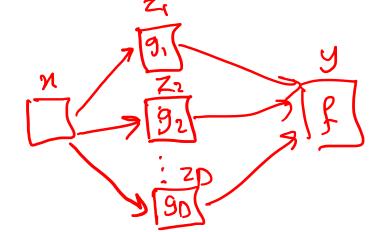
$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}$$

• If $y = f(z_1, z_2)$ and $z_1 = g_1(x), z_2 = g_2(x)$ then



$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z_1} \frac{\partial z_1}{\partial n} + \frac{\partial y}{\partial z_2} \frac{\partial z_2}{\partial x}$$

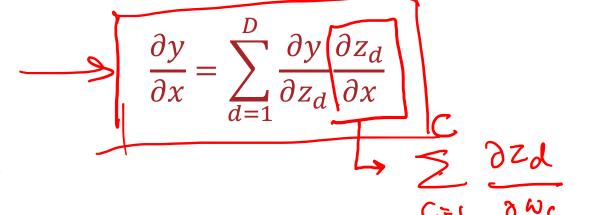
• If $y = f(\mathbf{z})$ and $\mathbf{z} = g(x)$ then



$$\frac{\partial y}{\partial x} = \sum_{d=1}^{d=1} \frac{\partial z_d}{\partial z_d} \frac{\partial x}{\partial x_d}$$

$\begin{array}{c|c} x & & \\ \hline & &$

• If y = f(z), z = g(w) and w = h(x), does the equation



Poll Question 1

still hold?

B. No

Only on Fridays (TOXIC)

Given

$$y = f(x,z) = e^{xz} + \frac{xz}{\ln(x)} + \frac{\sin(\ln(x))}{xz}$$

what are $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$ at x = 2, z = 3?

$$\frac{\partial y}{\partial x} = e^{xz} + \frac{z}{2 \cos x} + \frac{\pi z}{(2 \cos x)^2} \left(\frac{-1}{\pi} \right) + \frac{\cos(\log x)}{\pi^2 z} + \frac{\sin \log x}{x^2 z}$$

$$= 3e^{6} + \frac{3}{\log 2} + \frac{3}{(\log 2)^{2}} + \frac{\cos(\log 2)}{\log 2} + \frac{-\sin(\log 2)}{\log 2}$$

$$\frac{\partial y}{\partial z}\Big|_{x=2, z=3} = 2e^{4} + \frac{2}{2e^{5}(2)} - \frac{\sin(\log(2))}{18}$$

Approach 2: Symbolic Differentiation

Three Approaches to Differentiation

- Given $f: \mathbb{R}^D \to \mathbb{R}$, compute $\nabla_x f(x) = \frac{\partial f(x)}{\partial x}$
- 1. Finite difference method
 - Requires the ability to call f(x)
 - Great for checking accuracy of implementations of more complex differentiation methods
 - Computationally expensive for high-dimensional inputs
- 2. Symbolic differentiation
 - Requires systematic knowledge of derivatives
 - Can be computationally expensive if poorly implemented
- 3. Automatic differentiation (reverse mode)

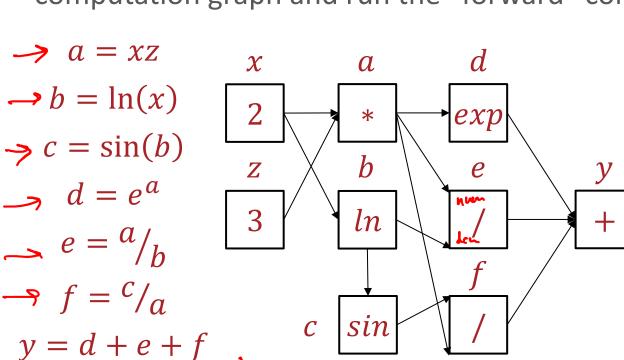
Given

$$y = f(x, z) = e^{xz} + \underbrace{\frac{xz}{\ln(x)}} + \underbrace{\frac{\sin(\ln(x))}{xz}}$$

what are $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$ at x = 2, z = 3?

• First define some intermediate quantities, draw the computation graph and run the "forward" computation

Approach 3:
Automatic
Differentiation
(reverse mode)

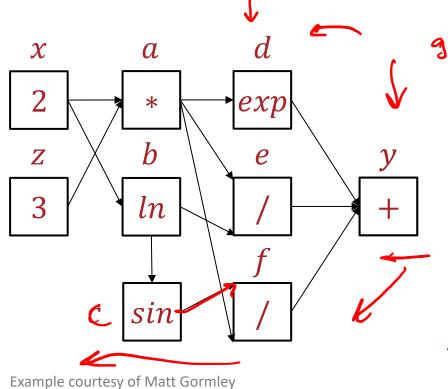


Given

$$y = f(x, z) = e^{xz} + \frac{xz}{\ln(x)} + \frac{\sin(\ln(x))}{xz}$$

what are $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$ at x = 2, z = 3?

 Then compute partial derivatives, starting from y and working back



$$0c = \frac{9\lambda}{9R} = 3t \frac{9c}{9t} = 3t \left(\frac{9}{9}\right)$$

96

30

Approach 3:

Differentiation

(reverse mode)

Automatic

Three Approaches to Differentiation

- Given $f: \mathbb{R}^D \to \mathbb{R}$, compute $\nabla_x f(x) = \frac{\partial f(x)}{\partial x}$
- 1. Finite difference method
 - Requires the ability to call f(x)
 - Great for checking accuracy of implementations of more complex differentiation methods
 - Computationally expensive for high-dimensional inputs
- 2. Symbolic differentiation
 - Requires systematic knowledge of derivatives
 - Can be computationally expensive if poorly implemented
- 3. Automatic differentiation (reverse mode)
 - Requires systematic knowledge of derivatives and an algorithm for computing f(x)
 - Computational cost of computing $\frac{\partial f(x)}{\partial x}$ is proportional to the cost of computing f(x)

Automatic Differentiation

- Given $f: \mathbb{R}^D \to \mathbb{R}^C$, compute $\nabla_x f(x) = \frac{\partial f(x)}{\partial x}$
- 3. Automatic differentiation (reverse mode)
 - Requires systematic knowledge of derivatives and an algorithm for computing f(x)
 - Computational cost of computing $\nabla_x f(x)_c = \frac{\partial f(x)_c}{\partial x}$ is proportional to the cost of computing f(x)
 - Great for high-dimensional inputs and low-dimensional outputs $(D \gg C)$
- 4. Automatic differentiation (forward mode)
 - Requires systematic knowledge of derivatives and an algorithm for computing f(x)
 - Computational cost of computing $\frac{\partial f(x)}{\partial x_d}$ is proportional to the cost of computing f(x)
 - Great for low-dimensional inputs and high-dimensional outputs ($D \ll C$)

Computation Graph: 10-301/601 Conventions

- The diagram represents an algorithm
- Nodes are rectangles with one node per intermediate variable in the algorithm
- Each node is labeled with the function that it computes (inside the box) and the variable name (outside the box)
- Edges are directed and do not have labels
- For neural networks:
 - Each weight, feature value, label and bias term appears as a node
 - We can include the loss function

Neural Network Diagram Conventions

- The diagram represents a *neural network*
- Nodes are circles with one node per hidden unit
- Each node is labeled with the variable corresponding to the hidden unit
- Edges are directed and each edge is labeled with its weight
- Following standard convention, the bias term is typically not shown as a node, but rather is assumed to be part of the activation function i.e., its weight does not appear in the picture anywhere.
- The diagram typically does not include any nodes related to the loss computation

31

Backprop Learning Objectives

You should be able to...

- Differentiate between a neural network diagram and a computation graph
- Construct a computation graph for a function as specified by an algorithm
- Carry out the backpropagation on an arbitrary computation graph
- Construct a computation graph for a neural network, identifying all the given and intermediate quantities that are relevant
- Instantiate the backpropagation algorithm for a neural network
- Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the parameters of a model are comprised of several matrices corresponding to different layers of a neural network
- Use the finite difference method to evaluate the gradient of a function
- Identify when the gradient of a function can be computed at all and when it can be computed efficiently
- Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

32