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Reminders

* Homework 8: Reinforcement Learning
— Out: Mon, Apr. 10
— Due: Fri, Apr. 21 at 11:59pm




Playing Atari games with Deep RL
L = u

Source: https://www.youtube.com/watch?v=VieYniJoRnk&t=2s&ab_channel=TwoMinutePapers




DIMENSIONALITY REDUCTION



High Dimension Data

Examples of high dimensional data:
— High resolution images (millions of pixels)




Data

Imension

High D

Examples of high dimensional data

— Multilingual News Stories

(vocabulary of hundreds of thousands of words)
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High Dimension Data

Examples of high dimensional data:
— Brain Imaging Data (100s of MBs per scan)

Subject Object
Image from (Wehbe et al., 2014)
10

Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/



High Dimension Data

Examples of high dimensional data:

— Customer Purchase Data
‘ w NEW & INTERESTING FINDS ON AMAZON { - [ “’ §/

amazon

Hello, Matt
Departments ~ Browsing History ~  Matt's Amazon.com Cyber Monday Gift Cards & Registry Sell Help Your Account ~

Your Amazon.com  Your Browsing History ~ Recommended For You  Improve Your Recommendations ~ Your Profile  Learn More

'S You could be seeing useful stuff here!
e :
Amazon Sign in to get your order status, balances and rewards.

Recommended for you, Matt

(= Lo 1\ S

Grocery Pets ) . Baby Products Engineering Books
14 ITEMS 6 ITEMS 5 ITEMS 86 ITEMS



Learning Representations

Dimensionality Reduction Algorithms:

Powerful (often unsupervised) learning techniques for extracting
hidden (potentially lower dimensional) structure from high
dimensional datasets.

Examples:

PCA, Kernel PCA, ICA, CCA, t-SNE, Autoencoders, Matrix
Factorization

Useful for:
* Visualization

* More efficient use of resources (e.g., time, memory,
communication)

 Statistical: fewer dimensions = better generalization
* Noise removal (improving data quality)

Slide adapted from Nina Balcan



Shortcut Example

16
Photo from https://www.springcarnival.org/booth.shtml



Shortcut Example

https://youtu.be/606396EJcJ0?t=20



https://youtu.be/606396EJcJo?t=20

This section in one slide...

1. Dimensionality reduction: 2. Random Projection:
J KxM
1 ® CD Paﬂioa,7 S‘-"‘“f“' M“Ln.x \/e K
1° -e ’—@) Pm]e(:l‘ AMJA B T\)LJ & V)‘Z(’)
> @ ® ® A A o S ST
4. Algorithm for PCA:

3. Definition of PCA: The option we’ll focus on:

Choose the matrix V that either...

1. minimizes reconstruction error

2. consists of the K eigenvectors with
largest eigenvalue

Run Singular Value
Decomposition (SVD) to
obtain all the eigenvectors.
Keep just the top-K to form V.

Play some tricks to keep
The above are equivalent definitions. things efficient.

5. An Example

e




DIMENSIONALITY REDUCTION BY
RANDOM PROJECTION



Random Projection

2D input data

Example: 2D to 1D

Goal: project from M-dimensions down A «(© VER®
to K-dimensions »
55 QX
Data: @ @\.
; : / x(S)
D = {x(1N  where x() ¢ RM /
. %x(4)
Algorithm: o ",
x2
1. Randomly sample matrix: V € R&*xM /Q\. -
Viem ~ Gaussian(0, 1) joie
2. Project down: u¥ = v x( /%0 eR
P N
Kx1 KXxMMx1 / x() gRx2
. | 8 >
3. Projectup: X9 = VT u® = vT(vx®) X
N~ "~~~
Mx1 — MxKKXI1 1D projection onto the real line
um er  u® u®d) u) ud)  u®
--0--0-0-0--00-



Random Projection
Example: 2D to 1D

a
2D input da
Goal: project from M-dimensions down A V ER™
to K-dimensions é\.

Data:
D = {x(1N  where x() ¢ RM

Algorithm:

I
|
|
>
1. Randomly sample matrix: V ¢ RE*M M.
|
|

Viem ~ Gaussian(0, 1)

2. Project down: ul = Vv
—~— ~—~ ~
Kx1 KxMMx1

. | | L >
3. Projectup: x'9 = VT u® = vT(vx®) X
S
M x1 MxKKx1

Problem: a random projection might give
us a poor low dimensional
representation of the data



Johnson-Lindenstrauss Lemma

. But how could we ever hope to preserve any useful information
by randomly projecting into a low-dimensional space?

Even random projection enjoys some surprisingly impressive properties.
In fact, a standard of the J-L lemma starts by assuming we have a random
linear projection obtained by sampling each matrix entry from a

Gaussian(0,1).

An Elementary Proof of a Theorem of
Johnson and Lindenstrauss

Sanjoy Dasgupta,’ Anupam Gupta®

ABSTRACT: A result of Johnson and Lindenstrauss [13] shows that a set of n points in high
dimensional Euclidean space can be mapped into an O(log n/e”)-dimensional Euclidean space such
that the distance between any two points changes by only a factor of (1 * €). In this note, we prove
this theorem using elementary probabilistic techniques. © 2003 Wiley Periodicals, Inc. Random Struct.

Alg., 22: 60-65, 2002

http://www.cs.cmu.edu/~anupamg/papers/jl.pdf



DEFINITION OF PRINCIPAL
COMPONENT ANALYSIS (PCA)



Principal Component Analy5|s (PCA)

* Assumption: the data
lies on a low K-
dimensional linear
subspace

* Goal: identify the axes
of that subspace, and
project each point
onto hyperplane

* Algorithm: find the K
eigenvectors with
largest eigenvalue
using classic matrix
decomposition tools

1st principal |

component

2nd principal
component

24

https://[commons.wikimedia.org/wiki/File:Scatter _diagram_for quality characteristic XXX.svg



Data for PCA

(<)

D = {x1 V. (x(2)T

X(Z) c RM .
(xNT

We assume the data is centered,
l.e. the sample mean is zero

1
N — E () —
pn = i:1x =0

Q: What if A: Subtract off the sample mean

your data is (i - A
not centered? 70 = 540 p, Vi



Background: Sample Variance

Suppose we have a sequence of random samples {z() ... z(M)}
from a random variable X.
The (biased) sample variance 62 is given by:

N
/\2_

1 |
— (0) _ 7)2

1=1

where [i is the sample mean.



Sample Covariance Matrix

The sample covariance matrix ¥ ¢ R™*M
is given by:
1 o |
2jk = N Z(xﬁz) - Nj)(xziz) — k)
=1

Since the data matrix is centered, we rewrite as:
——
| (X( ))

_ - xT <« (CNT
> NXX < (.)

()T



Principal Component Analysis (PCA)

Linear Projection:

(—V
Given KxM matrix V, and Mx1 V= | —g—
vector x() we obtain the Kx1 :
projection u® by: -
u(i) — Vx(i) 4

Definition of PCA:

PCA repeatedly chooses a next vector v; that
s.t.v;is orthogonal to vy, Vy,eesy Vs

Vector v; is called the jth principal component.

Notice: Two vectors a and b are orthogonal if a'b = o.
=>»the K-dimensions in PCA are uncorrelated



Vector Projection
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Principal Component Analysis (PCA)

Whiteboard
— Objective functions for PCA



Projection Example

Question:

Below are two plots of the same dataset D. Consider the
two projections shown.

1.  Which maximizes the variance?
2.  Which minimizes the reconstruction error?

Answer:
A A
M| Al N
~N | ~N ]
/4- Option A Option B
I []

l l ] ] >
|1 |2 |3 > I1 | |



PCA Objective Functions

What is the first principal component v, chosen by PCA?

Option 1: The vector that minimizes the reconstruction error

N
1 . |
Vi = argmin N E ||X(%) _ (VTX(z))VHQ

vi||v|[?=1 i=1

Option 2: The vector that maximizes the variance

N
1 |
V] = argmax — E (vIx(¥))?

vi|v|[?=1 i—=1



Equivalence of Maximizing PCA

Variance and Minimizing
Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximiz-
ing the variance.

Proof: First, note that:
[x® = (vxD)v|[? = [xD|? - (vIxP)? (1)

since viv =||v||? = 1.

Substituting into the minimization problem, and removing the extra-
neous terms, we obtain the maximization problem.

v* = argmin — x() — (vTx@)y]||2 2
axgmin 1NZH I @)
| N
= argmin + 3 O] - (vVx®)? G
v:||v||?2=1 i—=1
1 < |
= argmax — z:(vTx(z))2 (4)

v:||v|[?=1 =il



PCA Objective Functions

What is the first principal component v, chosen by PCA?

- o )
Option 1: The vector that minimizes the recc Queﬁtlon- Why can t
we just use gradient

N
v, = argmin 1 ST x® — (vT descent to find the
vi|lvlz=1 N = principal

components?

Option 2: The vector that maximizes the variance

N
1 .
V] = argmax — E (vIx(9))2

vi||v]|2=1 i—1



Principal Component Analysis (PCA)

Linear Projection: 3T -7
Given KxM matrix V, and Mx1 \/: b4
vector x() we obtain the Kx1
projection u® by:

u(i) — Vx(i)

“t " Question: Why can’t
, We just use gradient
““Vu descent to nind the
principal
components?

Definition of PCA:

PCA repeatedly chooses a next vector v; that
s.t.v;is orthogonal to vy, Vy,eesy Vs

Vector v; is called the jth principal component.

Notice: Two vectors a and b are orthogonal if a'b = o.
=>»the K-dimensions in PCA are uncorrelated



Background:
Eigenvectors & Eigenvalues

For a square matrix A (n X n matrix), the
vector v (n x 1 matrix) is an eigenvector
iff there exists eigenvalue A (scalar)
such that:

Av = A\v

Av = Av
The linear transformation A is only

stretching vectorv.

That is, Av is a scalar multiple of v.




Background:
Eigenvectors & Eigenvalues

Fact #1: The eigenvectors of a symmetric
matrix are orthogonal to each other.

Fact #2: The covariance matrix X is
symmetric.



The First
Principal
Component

Claim: The vector that maximizes the variances is the
eigenvector of 3 with largest eigenvalue.

Proof Sketch: To find the first principal component, we
wish to solve the following constrained optimization
problem (variance minimization).

V] = argmax v v (1)
vi|v][?=1

So we turn to the method of Lagrange multipliers. The
Lagrangian is:

LV,\) =vIZv - Aviv-1) (2)

Taking the derivative of the Lagrangian and setting to
zero gives:

a (VTZV —AvTv— 1)) =0 (3)

dv
v—-Av=0 (4)
Yv=J\v (5)

PCA

Recall: For a square matrix A, the vector v is an eigen-
vector iff there exists eigenvalue \ such that:

Av =)\v (6)

Rewriting the objective of the maximization shows that
not only will the optimal vector v; be an eigenvector,
it will be one with maximal eigenvalue.

viZv =vi)v (7)
= vlv (8)
= Alv[]? (9)
= (10)



Principal Component Analysis (PCA)

Thus, the eigenvalue 4 denotes the amount of variability
captured along that dimension (aka amount of energy along that
dimension).

Slide from Nina Balcan



ALGORITHMS FOR PCA



Algorithms for PCA

How do we find principal components (i.e. eigenvectors)?

* Power iteration (aka. Von Mises iteration)
— finds each principal component one at a time in order

» Singular Value Decomposition (SVD)
— finds all the principal components at once

— two options:

* Option A: run SVD on XX

* Option B: run SVD on X
(not obvious why Option B should work...)

* Stochastic Methods (approximate)

— very efficient for high dimensional datasets with lots of
points

41



SVD ”
X=USV!

Eigenassay Singular Figengene
A g " '
1 - u n I(’:‘ ¥ a; n
TEE———— “‘ ‘S.k
I — | Y
’ si| oL
r I %
n n
gt‘ g; [ |
m m
m=n m»=n nxn nxn
Data X, one US gives S is diagonal, Rows of V7 are unit
row per data coordinates S8 length eigenvectors of
point of rows of X S.2 is kth XX
in the space largest
of princ?ple eiggenvalue FGoiSIofAaNeizons
components mean, then X’X =¢ X

and eigenvects are the
Principle Components

[from Wall et al., 2003] Slide from Tom Mitchell



Singular Value Decomposition

To generate principle components:

— 1 o n
+ Subtract mean X= 2 X from each data point, to

n=1

create zero-centered data

» Create matrix X with one row vector per (zero centered)
data point

« Solve SVD: X =USIT

* Qutput Principle components: columns of V' (= rows of J7)
— Eigenvectors in V are sorted from largest to smallest eigenvalues
— S is diagonal, with s;? giving eigenvalue for kth eigenvector

Slide from Tom Mitchell



Singular Value Decomposition

To project a point (column vector x) into PC coordinates:
VT x

If x; is i!" row of data matrix X, then
e (i"rowof US) =VTxT
« (US)T=VTX"

To project a column vector x to M dim Principle Components
subspace, take just the first M coordinates of V7 x

Slide from Tom Mitchell



How Many PCs?

For M original dimensions, sample covariance matrix is MxM, and has
up to M eigenvectors. So M principal components (PCs).

Where does dimensionality reduction come from?
Can ignore the components of lesser significance.

o5 _ Variance (%) = ratio of variance along
given principal component to total
0 . variance of all principal components
£ 15 |
[}] —
o
&
= 10 A
©
> __
5 4
JH H B H A A mem

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues are small, you don’t lose

much
— Mdimensions in original data
— calculate M eigenvectors and eigenvalues
— choose only the first D eigenvectors, based on their eigenvalues
— final data set has only D dimensions



PCA EXAMPLES



Task Setting:

Projecting MNIST digits

1. Take each 28x28 image of a digit (i.e. a vector x() of length 784) and project it
down to K components (i.e. a vector u®)

2.  Report percent of variance explained for K components

3. Then project back up to 28x28 image (i.e. a vector X() of length 784) to
visualize how much information was preserved

15

[

95% of Explained Variance
0

5 0 25 5 10 20
784 components 154 components

95% of Explained Variance
0

5 0 5 0 25 5 0 20 25
784 components 154 components

95% of Explained Variance
0

5 0 20 2
784 components

90% of Explained Variance 80% of Explained Variance
0 ]

50% of Explained Variance
o

5 10 15 20 25 0 5 10 15 20 25 5 10 15 20 25
87 components 43 components 11 components

50% of Explained Variance

90% of Explained Variance 80% of Explained Variance
0 0

5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
87 components 43 components 11 components

90% of Explained Variance 80% of Explained Variance 50% of Explained Variance

0

5 10 1 25 0 S 10 15 2

S 20 5 10 5 20 5 10 15
87 components 43 components

Q 5 20
11 components

Takeaway:
Using fewer
principal
components K
leads to higher
reconstruction
error.

But even a
small number
(say 43) still
preserves a lot
of information
about the
original image.



Projecting MNIST digits

Task Setting:
Take each 28x28 image of a digit (i.e. a vector x( of length 784) and project it

1.

down to K=2 components (i.e. a vector u®)

Plot the 2 dimensional points u® and label with the (unknown to PCA) label y®

as the color

Here we look at all ten digits 0 -9

3_

-

Takeaway:
Even with a
tiny number of
principal
components
K=2, PCA
learns a
representation
that captures
the latent
information
about the type
of digit

50



Projecting MNIST digits

u®)

Take each 28x28 image of a digit (i.e. a vector x( of length 784) and project it

Plot the 2 dimensional points u® and label with the (unknown to PCA) label y®

Task Setting:
1.
down to K=2 components (i.e. a vector
2.
as the color
3.  Here welook at just four digits o, 1, 2, 3

3

DI A o T
, 3 R A YL LR

Y 1 -
b : ,.,c

2. 4

&u

D {$

o £

o*

e ’.-'.'.

A2
.

.I
4t

%o .o,

o '.hi-

S AT IR BT
L o6 N
FRMEER

”
¢ od®s

3.0

2.5

- 2.0

1.5

10

0.5

0.0

Takeaway:
Even with a
tiny number of
principal
components
K=2, PCA
learns a
representation
that captures
the latent
information
about the type
of digit

51



Learning Objectives

Dimensionality Reduction /| PCA

You should be able to...

1.

W

Define the sample mean, sample variance, and sample
covariance of a vector-valued dataset

|dentify examples of high dimensional data and common use
cases for dimensionality reduction

Draw the principal components of a given toy dataset

Establish the equivalence of minimization of reconstruction
error with maximization of variance

Given a set of principal components, project from high to low
dimensional space and do the reverse to produce a
reconstruction

Explain the connection between PCA, eigenvectors,
eigenvalues, and covariance matrix

Use common methods in linear algebra to obtain the principal
components



