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Reminders

Homework 5: Neural Networks

— Out: Sun, Feb 26

— Due: Fri, Mar 17 at 11:59pm

Peer Tutoring

Homework 6: Learning Theory [ Generative
Models

— Out: Fri, Mar. 17
— Due: Fri, Mar. 24 at 11:59pm

Exam 2 (Thu, Mar 30)
Exam 3 (Tue, May 2)




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic
Thm|  For these two cases, we will use a new definition for the
Finite "H| Ef(')e “complexity” of a Hypothesis space called VC Dimension

have R(h) < e. have that \? R(h)| < e

Infinite |H|




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).

Four Cases we care about...

Finite |H |

Infinite |H|

Realizable

Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
beled examples are sufficient so that with
probability (1—6) all b € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 5 [log(|H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N=O(% [VC(H)log(1) +log(5)])
labeled examples are sufficient so that
with probability (1 — d) all A € H with
R(h) = 0 have R(h) < .

Thm. 4 N = O(% [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that [R(h) — R(h)| < e.




VC-DIMENSION



Finite vs. Infinite |H]

Finite |H|

Example: H = the set of all
decision trees of depth D over
binary feature vectors of length

-+ +

Example: H = the set of all
conjunctions over binary feature
vectors of length M

Infinite |H|
* Example: H = the set of all linear

decision boundaries in M

dimensions
A

o0
® =+

+ +

>

* Example: H = the set of all neural
networks with 1-hidden layer
with length M inputs



Labelings & Shattering

Def: A hypothesis h applied to some dataset S
generates a labeling of S.

Def: Let H [S] be the set of all (distinct)
labelings of S generated by hypotheses h € H..

H shatters S if |H[S]| = 2!

Equivalently, the hypotheses in H can
generate every possible labeling of S.



Labelings & Shattering

Whiteboard:
— Shattering example: binary classification



VC-dimension

Def: The VC-dimension (or Vaporik-Chervonenkis

dimension) of H is the cardinality of the largest
set S such that A can shatter S.

Special Case: If H can shatter arbitrarily large finite
sets, then the VC-dimension of H is infinity

Notation: We write VC(H') = d to say the V(-
Dimension of a hypothesis space H is d



VC-dimension Proof

Proof Technique: To prove that VC(H) = d
there are two steps:

1. show that there exists a set of d points that
can be shattered by H
= VC(H) = d

2. show that there does NOT existasetofd + 1
points that can be shattered by H
=2 VC(H)<d+1

12



VC-dimension

Whiteboard:

— VC-dimension Example: linear separators

— Proof sketch of VC-dimension for linear
separators in 2D



4 vs.V

VC-dimension

— Proving VC-dimension requires us to show that
there exists (3) a dataset of size d that can be
shattered and that there does not exist (7) a
dataset of size d+Cthat can be shattered

Shattering VS st 8l=3¢1 dow H s ot Sedlee S

— Proving that a particular dataset can be
shattered requires us to show that for all ()
labelings of the dataset, our hypothesis class
contains a hypothesis that can correctly classify it

17



VC-dimension Examples

f Definition: If VC(H) = d, then there exists (3) a dataset of size d that can
be shattered and that there does not exist (A) a dataset of size d+1 that
can be shattered

e

Question: Qi

What is the VC-di i f H = 1D positive rays. That is for a threshold w,
everything to tée right o%labeled as +1, everything else is [abeled -1.
—&

A

— {—"py V
f"iﬁ 2 (—-:FLD \/

Answer; 5% 0%
A= / B=2 C = e D=3 E’q




VC-dimension Examples

* Definition: If VC(H) = d, then there exists (3) a dataset of size d that can
be shattered and that there does not exist (A) a dataset of size d+1 that
can be shattered

Question: QZ

What is the VC-dimension of H = 1D positive intervals. That is for an interval
(w,, w,), everything inside the interval is labeled as +1, everything else is

[abeled -1. G 1 Con 2
o 4 <@
$ : : - ?(i- -+ .
i, , ,
‘H‘ |g_ W1 W2
ST
Answerdh 0

A- | DH |\ Cohic D3 £24




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).

Four Cases we care about...

Finite |H |

Infinite |H|

Realizable

Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
beled examples are sufficient so that with
probability (1 —4) all h € H with R(h) =0
have R(h) < e.
c.ons"“‘%
P

Thm. 2 N > 5 [log(|H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.

/~
vz T*
Thm. 3 N=O(% [VC(H)log(1) +log(5)])
labeled examples are sufficient so that
with probability (1 — §) all h € H with
R(h) =0have R(h) <.

Thm. 4 N = O(% [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that [R(h) — R(h)| < e.




SLT-STYLE COROLLARIES



SLT-style Corollaries
Thm. 1¢ = ;[log H|) + log(3)] le-
23

beled examfiples are sufficient so that with

probability (1—6) all h € H with R(h) =0
have R(h) <€

Solve the inequality in Thm.1 for
epsilon to obtain Corollary 1

N

Corollary 1 (Realizable, Finite |#{|). For some § > 0, with probabil-
ity at least (1 — ¢), for any h in H consistent with the training data

(i.e. R(h) = 0),

We can obtain

1 similar corollaries for
edach of the

) ) ] theorems...

R(h) < % [ln(|7-[|) +1n (




SLT-style Corollaries

Corollary 1 (Realizable, Finite |[#|). For some d > 0, with probabil-
ity at least (1 — ), for any h in H consistent with the training data

(i.e. R(h) = 0),

R(h) < % [ln(|7-[|) +1n (;)]

Corollary 2 (Agnostic, Finite |#|). Forsome > 0, with probability
at least (1 — 0), for all hypotheses h in H,

1

R(h) < R(h) + \/2]\7 [ln(|7'l|) + In (?)]



SLT-style Corollaries

Corollary 3 (Realizable, Infinite |#|). For some § > 0, with proba-
bility at least (1 — 4), for any hypothesis & in H consistent with the
data (i.e. with R(h) = 0),

R(h) < O (% [VC(?—L) In (VC](VH)) +1n G)D (1)

Corollary 4 (Agnostic, Infinite |7{|). Forsome ¢ > 0, with probabil-
ity at least (1 — 6), for all hypotheses A in H,

R(h)gR(h)+o<\/1 VC(H) +1n [ = ) (2)
\W\ii[ (5))




SLT-style Corollaries

Corollary 3 (Realizable, Infinite |#|). For some § > 0, with proba-
bility at least (1 — 4), for any hypothesis & in H consistent with the
data (i.e. with R(h) = 0),

R(h) < O (% {VC(H) In (VC](VH)) +1n (%)D (1)

Corollary 4 (Agnostic, Infinite [#{|). Forsome d > 0, with probabil-
ity at least (1 — 6), for all hypotheses h in H,

wr <o vo (i[5 e on(D)]) @

l@ Should these corollaries inform
how we do model selection?




Learning Theory & Model Selection

error A
(i.e. lower =»
good data fit)

Key Point:
we want
to tradeoff
between
low
training
error and
keeping H

simple >
(Iovy VC- VC(H)
Dim) (i.e. complexity)

Q:ls
Corollary
4 useful?

A: Yes!




Learning Theory & Model Selection

error
(i.e. lower =>»
good data fit)

Key Point:
we want
to tradeoff
between
low
training
error and
keeping H
simple
(low VC-
Dim)

Q:ls
Corollary
4 useful?

A: Yes!

A

w0 (|3 e 0n (3)])

bound from Corr. 4
R(h) true error

\ T T

R(h) train error

A |
>
|
best tradeoff VC(H)
(i.e. complexity)

Ex: H = Linear Separators in RM

VC(H) = M+1
Q: In practice, how do we tradeoff between error and VC(H)?

A: Use a regularizer! That is, reducing the number of (effective) features

reduces the VC dimension. More features usually leads to a better fit to the
data.




Ja

/s,

Questions For Today

Given a classifier with zero training error, what
can we say about generalization error?
(Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about generalization error?
(Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)

33



Learning Theory Objectives

You should be able to...

|dentify the properties of a learning setting and
assumptions required to ensure low generalization
error

Distinguish true error, train error, test error

Define PAC and explain what it means to be
approximately correct and what occurs with high
probability

Apply sample complexity bounds to real-world
learning examples

Distinguish between a large sample and a finite
sample analysis

Theoretically motivate regularization



PROBABILITY



Random Variables: Definitions

Discrete Random variable whose values come
Random X from a countable set (e.g. the natural
Variable numbers or {True, False})

Probability p(x) Function giving the probability that
mass discrete r.v. X takes value x.

function

(pmf)

p(z) := P(X = x)

36



Random Variables: Definitions

Continuous
Random
Variable

X

Random variable whose values come
from an interval or collection of
intervals (e.g. the real numbers or the

range (3, 5))

Probability
density
function

(pdf)

f(z)

Function the returns a nonnegative
real indicating the relative likelihood
that a continuous r.v. X takes value x

* Forany continuous random variable: P(X =x) = 0

* Non-zero probabilities are only available to intervals:

P(angb):/bf(x)d:C




Random Variables: Definitions

Cumulative Function that returns the probability
distribution F(x) that a random variable X is less than or
function equal to x:

F(z) = P(X < z)

e Fordiscrete random variables:

Flz)=P(X<z)= )Y PX=a)=) p

/' <x /' <x

* For continuous random variables:

Flz)=P(X <z)= /x f(z")dz'




Notational Shortcuts

A convenient shorthand:
P(A, B)
P(B)
= For all values of a and b:

P(A|B) =

P(A=a|B=0b) =



Notational Shortcuts
But then how do we tell P(E) apart from P(X)?
cent | [T |
Instead of writing: P(AIB) — P(A, B)
(A1B) = ~po
We should write: P4 5(A, B)

... but only probability theory textbooks go to such lengths.



COMMON PROBABILITY
DISTRIBUTIONS



Common Probability Distributions

* For Discrete Random Variables:
— Bernoulli
— Binomial
— Multinomial
— Categorical
— Poisson

 For Continuous Random Variables:
— Exponential
— Gamma
— Beta
—LDirichletJ
— Laplace
— Gaussian (1D)
—LI\/Tultivariate Gaussia&}




Common Probability Distributions

Beta Distribution g Bel"(“'@

Belo,
probability density function: [ ) K

4 k\x\n gm\vw

3 — a=0.1,=09
: — a=05,8=0.5
g : — a=10,0=1.0
) [~ a=50,3=50]

— a=10.0,8=15.0




Common Probability Distributions

Dirichlet Distribution

probability density function:
1

f ¢ aaﬁ — a—l 1 — p-1
Gl = g g? -9
4 T T
3 ’ | |
= 1 _ AN L @
- K T N\
0 - = | L L + 1 ————
0 0.2 0.4 0.6 0.8 1



Common Probability Distributions

,% N 'D\'Nc.\anJ'( &>
Dirichlet Distribution . £ 4 -1
probability density function: Sé - [0,'5, 0.1, D.q =
K /C’ \3‘\” \5\! K«
p(gﬂa) = L —1 where B(a) = [—i I'lar)

- F(Zle ay)




EXPECTATION AND VARIANCE



Expectation and Variance

The expected value of Xis E/X]. Also called the mean.

 Discrete random variables:

Suppose X can take any value in the set X'.

E[X]= ) ap(z)

reX




Expectation and Variance

The variance of Xis Var(X).
Var(X) = E[(X — E[X])?]

* Discrete random variables: \

Var(X) = > (z — p)*p(x)

reX




MULTIPLE RANDOM VARIABLES



Joint Probability

e Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

e \We call this a joint ensemble and write
p(x,y) = prob(X =x and Y = y)
&0 7

A
]

0A o. L

Slide from Sam Roweis (MLSS, 2005) B



Marginal Probabilities

e We can "sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

plz) = plx,y)
LY
e [ his is like adding slices of the table together.—
is is i ing sli g -

/
= Al
A1 N —
(\H"( fD v '
? / > /////
—_— -~ // g
2 y

X

e Another equivalent definition: p(x) = > _, p(x|y)p(y).

Slide from Sam Roweis (MLSS, 2005) ’



Conditional Probability

e If we know that some event has occurred, it changes our belief
about the probability of other events.

e This is like taking a "slice” through the joint table.

p(zly) = plz,y)/p(y)

/}Q pork Yo

p(x.ylz)
e ——

Slide from Sam Roweis (MLSS, 2005)
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Independence and
Conditional Independence

e Two variables are independent iff their joint factors:

p(z,y) = p(x)p(y)

p(x.y)

p(x)

p(y)

e Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(z,y|z) = p(z|z)p(y|z)  Vz

-

Slide from Sam Roweis (MLSS, 2005)



PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

x) ~ p* ()
y) = ¢*(x)

Our goal was to learn a
hypothesis h(x) that best
approximates c*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

x) ~ p* ()
y ~ p (- x1)

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)



MAXIMUM LIKELIHOOD
ESTIMATION (MLE)



Likelihood Function | ©neR.V.

Given N independent, identically distributed (iid) samples
D = {x(, x@), ..., x(} from a random variable X ...

The likelihood function is
— Case 1: X is discrete with probability mass function (pmf) p(x|0)
L(8) = p(x("|6) p(x)]B) ... p(x(V]6)
— Case 2: X is continuous with probability density function (pdf) f(x|0)
L(B) = f(x]B) f(x2]6) ... f(xN[8) | The likelihood tells us
how likely one sample is
The log-likelihood function is relative to another
— Case 1: X is discrete with probability mass function (pmf) p(x|0)
40) = log p(x|8) + ... +log p(x(V)|)
— Case 2: X is continuous with probability density function (pdf) f(x|0)
40) = log f(x[0) +... +log f(xN)]B)



Likelihood Function | TWoOR.V.s

Given N iid samples D = {(x(, yO), ..., (x™), y(N)} from a pair
of random variables X, Y

The conditional likelihood function:

— Case 1: Y is discrete with pmf p(y | x, 6)
L(8) = p(y" | x, ) ... p(y™ | x), ©)

— Case 2: Y is continuous with pdf f(y | x, ©)
L(8) = f(y"| x), 8) ... f(y™ ] x(V, ©)

The joint likelihood function:

— Case 1: Xand Y are discrete with pmf p(x,y|0)
L(©) = p(x1, y)[) ... p(xN), yV]©)

— Case 2: X and Y are continuous with pdf f(x,y|0)
L(8) = f(x(, yI|B) ... f(x(N), y(N)|O)



Likelihood Function | TwWoR.V.s

* Given Niid samples D = {(x(, y®), ..., (x(N), y(N\))} from a pair
of random variables X, Y

* The joint likelihood function:
— Case 1: Xand Y are discrete with pmf p(x,y|0)

L(6) = p(x, yD[B) ... p(x™), yN)|©) Mixed
— Case 2: X and Y are continuous with pdf f(x,y|0) discrete/

L(B) = f(x, y()]©) ... f(x(N), yM]e) continuous!

— Case 3: Y is discrete with pmf p(y|B) and
X is continuous with pdf f(x|y,a)
= f(x(M] y(1) (1) (N)] y(N) (N)
L(a, B) 2 FOX Y™, @) p(y®IB) ;- XTI y™, o) p(y™]B)
— Case 4:Y is continuous with pdf f(y|B) and
X is discrete with pmf p(x|y,a)

L(a, B) = ,E(X“)I yW, a) f(yO)B) ... p(xM] yM), a) f(y™)B)




MLE
Suppose we have data D = {z(W} ¥

Principle of Maximum Likelihood Estimation:
Choose the parameters that max1m|ze the likelihood

of the data.
™" = argmax Hp ()|9)
0

Maximum Likelihood Estimate (MLE)




MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



Recipe for Closed-form MLE

Assume data was generated iid from some model, i.e., write
the generative story
x® ~p(x]6)
Write the log-likelihood
(0) = log p(x([0) + ... +log p(x(N)])
Compute partial derivatives, i.e., the gradient
040)/06, = ...

| 048)/06y = ...

Set derivatives equal to zero and solve for 6

940)/96.. = o for all m e, ..., M}
@ solution to system of M equations and M variables

Compute the second derivative and check that {0) is
concave down at @MLE




EXAMPLE:
MLE FOR LINEAR REGRESSION



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : ho(x) = 07,0 ¢ RM}




Linear Regression: Closed Form

J(@)=J(6,06 :lz Y _ gTx(®))
Optimization Method #2: (1.0) (8 8:)= 5 i:1< )
Closed Form 0.000
1. Evaluate -
@: (XTX) 1XTy
2. Return GMLE 061 o S 5 B; N
o |5 ] 33
0.4 O
y = h*(x) S
N (unl;nown) . p
’
h(x; 6MLE)
0.0 Y T T f
0.0 0.2 0.4 0.6 0.8 1.0
> 91
t 0, 0, J(6,,0,)
/' MLE | 0.59 | 0.43 0.2
/




MLE for Linear Regression

You’ll work through
the view of linear
regression ds d
probabilistic model in
the homework!



MLE EXAMPLES



MLE of Exponential Distribution
Qﬂ' Vw*“

Goal: / [
o pdf of Exponential(A):%: )\e_m//
e Suppose X; ~ Exponential(\) for1 <i < N.
e Find MLE fordataD = {2V},

T —

Steps:

e First write down log-likelihood of sample.

e Compute first derivative, set to zero, solve for \.

e Compute second derivative and check that it is
concave down at AMLE,

P————




MLE of Exponential Distribution

e pdf of Exponential(\): f(z) = e~ *
e Suppose X; ~ Exponential(\) for1 <i < N.
e Find MLE for data D = {2V},

K

e First write down log-likelihood of sample.

N
() = log f(=) (1)
z;l
= Z log(X exp(—Az)) (2)
=) "log()) +(—)\:1:(Z)> (3)
1=1 N
= Nlog(\) — A z® (4) &¥——



MLE of Exponential Distribution

e pdf of Exponential(\): f(z) = Ae™*
e Suppose X; ~ Exponential(\) for1 <i < N.
e Find MLE for data D = {2V},

e Compute first derivative, set Bfﬁero, solve for \.
= l

(3)




MLE of Bernoulli

In-Class Exercise Steps to answer:
Show that the MLE of | 1. Write log-likelihood
parameter ¢ for N of sample
samples drawn from |5 Compute derivative
Bernoulli(¢) is: w.r.t. ¢
3. Set derivative to

Number of z; = 1 zero and solve for ¢

PMLE =

N



MLE of Bernoulli

Question:

Assume we have N iid
samples x(, x(), ..., x(N)
drawn from a Bernoulli(¢).

Step 1: What is the log-
likelihood of the data 4 ¢)?

Assume N, = # of (x() = 1)
N, = # of (x) = 0)

Answer:

S IOoOTmMmoON®R®

l(¢) =N, log(¢) + N, (1 - log(¢))
I(¢) = N,log(®) + N, log(1-9)
I(¢) = log($)"" + (1 - log(p))N°
(@) = log ()" + log(1-¢)™°

(@) = Nolog(®) + N, (1-log(¢))
I(¢) =N, log(¢) + N, log(1-9)
I(¢) = log($)"° + (1- log(¢))"
I(¢) = log(¢)™° + log(1-¢)""

I(¢) = N, + N,



MLE of Bernoulli

Question:

Assume we have N iid
samples x(, x®), ... x(N)
drawn from a Bernoulli(¢).

of the log-likelihood
0¢(0)/06?

Assume N, = # of (x() = 1)
N, = # of (x() = 0)

Answer:

A.
B.
C.

Step 2: What is the derivative | P

E.

F.

04(0)/06 = ¢ - (1- P)°

046)/00=¢/N, - (1-9) /N,

04(8)/00 =N,/ §-N, / (1- 9)

0¢(8)/06 = log($) / N, -
lOg(1 : ¢) / No

04 0)/00 =N,/ log(®) -

N,/ log(1- ¢)
040)/00 =0



MLE of Bernoulli

Whiteboard
— Example: MLE of Bernoulli



