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Reminders

 Exit Poll: Exam 1

* Homework 5: Neural Networks

— Out: Sun, Feb 26
— Due: Fri, Mar 17 at 11:59pm




Peer Tutoring




Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) are simply
fancy computation graphs (aka. hypotheses or
decision functions).

Our recipe also applies to these models and
(again) relies on the backpropagation
algorithm to compute the necessary
gradients.



BACKGROUND: HUMAN
LANGUAGE TECHNOLOGIES



Human Language Technologies

Speech Recognition

Machine Translation
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ipsum dolor st amet,

Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut
labore et dolore magna aliqua. Id
nibh tortor id aliquet lectus proin
nibh nisl. Odio~ ut enim- blandit
volutpat maecenas  volutpat.
Porta nibh venenatis cras sed.
Quam id leo in vitae. Aliquam id
diam maecenas _ultricies mi. Et
sollicitudin  ac orci phasellus
egestas. Diam in arcu cursus
euismod quis viverra. Vitae auctor
eu augue ut lectus arcu. Semper
quis lectus nulla at volutpat diam
ut. Sed arcu non odio euismod
lacinia.— Velit —euismod ——in
pellentesque massa. Augue lacus
viverra vitae congue eu consequat
ac. Tincidunt id ali.
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Bidirectional RNN

RNNs are a now commonplace backbone in
deep learning approaches to natural language
processing

‘ Y1 \ ‘ Y2 \ ‘ Y3 \ ‘ Y4 \ probabilistic output

h, h, i, ) right-to-left hidden
h, h, hy h, left-to-right hidden
A A A A states

word embeddings



BACKGROUND:
N-GRAM LANGUAGE MODELS



n-Gram Language Model

* Goal: Generate realistic looking sentences in a human
language
* Key Ildea: condition on the last n-1 words to sample

the nth word




n-Gram Language Model

Question: How can we define a probability distribution over a
sequence of length T?

e

W, w, Ws W, W Wg
T

n-Gram Model (n=2) p(w1,wa, ..., wr) = HP(’wt | we—1)
t=1

p(Wv W,, W3: cee W6) =
The p(W1)
[ The ][ bat | p(WZ W1)
[ bat ][ made | p(W3 Wz)
[ made ][ noise ] p(W4 W3)
[ noise |[ at | P(W5 W4)
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n-Gram Language Model

Question: How can we define a probability distribution over a
sequence of length T?

e

W, W, W; w, W, W
T

n-Gram Model (n=3) p(wi,wa, ..., wr) = | [ p(we | we—1, we—o)
t=1

p(Wv Wy, W3, ety W6) =

The p(W1)
[ The ][ bat | p(WZ W1)
[ The ] [ bat ][ made ] p(W3 W,, W1)
[ bat ][ made ][ noise ] p(W4 W3’ WZ)
[ made || noise || at | P(W5 W, W3)
[ noise ][ at [ night | p(W6 W, W4)
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n-Gram Language Model

Question: How can we define a probability distribution over a
sequence of length T?

e

W, WA W w, W W
T
n-Gram Model (n=3) p(wy,wa,...,wr) = | [ p(we | we1,we—o)
t=1
p(Wv 39 °°° ) W6) =
The p(W1)
i I Sr— olaas 1o\

—| Note: This is called a model because we
made some assumptions about how many
previous words to condition on
(i.e. only n-1 words)




Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?

p(Wt I W, = The, p(Wt l W, = made, p(Wt l Wi, = COWS,

0 W, = bat) 0 W, = Noise) 0 W, = eat)

Wi p(: | 53, Wi p(: I ) Wi p(: | 53]
ate 0.015 at 0.020 corn 0.420
flies 0.046 pollution 0.030 grass 0.510

zebra 0.000 zebra 0.000 zebra 0.000
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Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?
Answer: From data! Just count n-gram frequencies

P(W¢ | W, = cows,

0 W, = eat)

...the cows eat grass...
..our cows eat hay daily...

... factory-farm cows eat corn...

..on an organic farm, cows eat hay and... corm 411
2
..do your cows eat grass or corn?... grass 3/11
...what do cows eat if they have...
...cows eat corn when there is no... hay 2/11
... which cows eat which foods depends...
..if cows eat grass... if 111
...when cows eat corn their stomachs... ,
which 1/11

... Should we let cows eat corn?...




Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

Treat each probability distribution like a (50k-sided) weighted die
Pick the die corresponding to p(w; | wy,, W¢.,)
Roll that die and generate whichever word w, lands face up

—
)

2.
3.
4.




Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1.

2.
3.
4.

Repeat

Treat each probability distribution like a (50k-sided) weighted die
Pick the die corresponding to p(w; | wy,, W¢.,)
Roll that die and generate whichever word w, lands face up

Training Data (Shakespeaere)

5-Gram Model

| tell you, friends, most charitable care
ave the patricians of you. For your
wants, Your suffering in this dearth,
you may as well Strike at the heaven
with your staves as lift them Against
the Roman state, whose course will on
The way it takes, cracking ten thousand
curbs Of more strong link asunder than
can ever Appear in your impediment.
For the dearth, The gods, not the
patricians, make it, and Your knees to
them, not arms, must help.

Approacheth, denay. dungy
Thither! Julius think: grant,—-0
Yead linens, sheep's Ancient,
Agreed: Petrarch plaguy Resolved
pear! observingly honourest
adulteries wherever scabbard
guess; affirmation—-—his monsieur;
died. jealousy, chequins me.
Daphne building. weakness: sun-
rise, cannot stays carry't,
unpurposed. prophet-1like drink;
back-return 'gainst surmise
Bridget ships? wane; interim?
She's striving wet;




RECURRENT NEURAL NETWORK (RNN)
LANGUAGE MODELS



Recurrent Neural Networks (RNNs)

inputs:

hidden units

outputs

nonlinearity

X
. h
Ly
: H

($17$27 s ,fl?T),ﬂ?i S RI

(h1,ha,...,hr), h; € RY

(y17y27 s 7yT)7yi S RK

Definition of the RNN:
hy = H (Wynxe + Whphe—1 + bp)
Yt = Whyht + by
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The Chain Rule of Probability%

Question: How can we define a probability distribution over a

sequence of length T?

e

W, W, W W, W W
T
Chain rule of probability: p(w1,w2,...,wr) = Hp(wt | wi—1,...,w1)

t=1

The

S

) ) olaas 1o\

The

2z

The

:

The

The

Note: This is called the chain rule because
it is always true for every probability

distribution
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RNN Language Model

T

RNN Language Model: p(w1,ws, ..., wr) = | [ p(we | fo(wi—y, ..., w1))
t=1

p(Wv W,, W37 cec ) W6) =
The p(W1)

[ The J[ bat ] p(Wz fe(W1))

[ The ][ bat J( made ] p(ws | fo(w,, W)

[ The ][ bat ][ made ][ noise | p(W4 fe(Ws) W, W1))

[ The J( bat ][ made ][ noise J[ at | P(Ws | fo(wy, Wi, Wy, W)

[ The J [ bat J((made J [noise J(_at J[night ] p(wy |fo(wWs, Wy, W3, Wy, W,))
Key Idea:

(1) convert all previous words to a fixed length vector
(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector



RNN Language Model

[The ] [ bat ][made][noise][ at ][night][END]

[ R A R R

TP(WJhD Tp(wzlhz) TP(W3|h3) TP(W4lh4) T](Wslhs) T(W6|h6) TP(W7|h7)
> > > > >l— >
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[START] [ The ] [ bat ] [made] [noise] [ at ] [ night]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)




RNN Language Model

The

T

p(w,|h,)

A
h,
[TT]
A

START

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)




RNN Language Model

bat

T
[p(wzlhz)

h, h,

ITTH—{ 111

(START | [ The |
Key Idea:

(1) convert all previous words to a fixed length vector
(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)



RNN Language Model

made

T
[p(wslhg)

h, h, h,

I e I I I e

(START| [ The ] [ bat |
Key Idea:

(1) convert all previous words to a fixed length vector
(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)



RNN Language Model

noise

T
/[ p(wylh,)

N
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(START] [ The ] [ bat | [ made |

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)




RNN Language Model

T
t(wslhs)

N

h, h, h, h, hy

[(ITTH+—ll T+l =l 1]

[ T T 1

(START] [ The ] [ bat | [ made | [ noise |

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)




RNN Language Model
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[START] [ The ] [ bat ][made] [noise][ at ]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)




RNN Language Model

h, h, h, h, hs he h,
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(START] [ The ] [ bat | [ made ] [ noise ] [ at | [ night |

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)




RNN Language Model

[The ] [ bat ][made][noise][ at ][night][END]
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p(Wv W, W3: *cc WT) = p(W1 I h1) p(Wz I hz) p(Wz I hT)



Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2.  Pick the die corresponding to p(w; | Wy, W¢.,)

3. Roll that die and generate whichever word w;, lands face up
4

Repeat D
o S A
& S S &
£ b@" o
*XA -9
S Y J
Q £ N
O O O
Q Q Q
< - -

The same approach to
sampling we used for an n-
Gram Language Model also
works here for an RNN
Language Model




Sampling from an RNN-LM

N

VIOLA: Why, Salisbury must find his flesh and
thought That which I am not aps, not a man and
in fire, To show the reining of the raven and the
wars To grace my hand reproach within, and
not a fair are hand, That Caesar and my goodly

father's world; When | was heaven of presence
and our fleets, We spare with haucs bt cut thy

N

CHARLES: Marry, do |, sir; and | came to
acquaint you with a matter | am given, sir,
secretly to understand that your younger
brother Orlando hath a disposition to come in
disguised against me to try a fall. To-morrow,

snr | wrestle for my credit; and he that escapes
roken limb shall acquit him

council  am great Murdered a
master's ready there My powe
so much as hell: Some service i
bondman here, Would showAi

Which is the real
Shakespeare?!

is but young and tender; and,
Id be loath to foil him, as |
onour, if he come in:

KING LEAR: O, if you w eeble sight, the
courtesy of your law, Your sight and several
breath, will wear the gods With his heads, and
my hands are wonder'd at the deeds, So drop
upon your lordship's head, and your opinion
Shall be against your honour.

Example from

love to you, | came hither
to acquaint you wyj t either you might
stay him from his in ent or brook such

disgrace well as he sh ninto, in thatitis a
thing of his own search and altogether against
my will.

TOUCHSTONE: For my part, | had rather bear
with you than bear you; yet | should bear no
cross if | did bear you, for | think you have no
money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

Shakespeare’s As You Like It

VIOLA: Why, Salisbury must find his flesh and
thought That which I am not aps, not a man and
in fire, To show the reining of the raven and the
wars To grace my hand reproach within, and
not a fair are hand, That Caesar and my goodly
father's world; When | was heaven of presence
and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy
master's ready there My power to give thee but
so much as hell: Some service in the noble
bondman here, Would show him to her wine.

KING LEAR: O, if you were a feeble sight, the
courtesy of your law, Your sight and several
breath, will wear the gods With his heads, and
my hands are wonder'd at the deeds, So drop
upon your lordship's head, and your opinion
Shall be against your honour.

Example from

RNN-LM Sample

CHARLES: Marry, do |, sir; and | came to
acquaint you with a matter. | am given, sir,
secretly to understand that your younger
brother Orlando hath a disposition to come in
disguised against me to try a fall. To-morrow,
sir, | wrestle for my credit; and he that escapes
me without some broken limb shall acquit him
well. Your brother is but young and tender; and,
for your love, | would be loath to foil him, as |
must, for my own honour, if he come in:
therefore, out of my love to you, | came hither
to acquaint you withal, that either you might
stay him from his intendment or brook such
disgrace well as he shall run into, in that itis a
thing of his own search and altogether against
my will.

TOUCHSTONE: For my part, | had rather bear
with you than bear you; yet | should bear no
cross if | did bear you, for | think you have no
money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

RNN-LM Sample

VIOLA: Why, Salisbury must find his flesh and
thought That which I am not aps, not a man and
in fire, To show the reining of the raven and the
wars To grace my hand reproach within, and
not a fair are hand, That Caesar and my goodly
father's world; When | was heaven of presence
and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy
master's ready there My power to give thee but
so much as hell: Some service in the noble
bondman here, Would show him to her wine.

KING LEAR: O, if you were a feeble sight, the
courtesy of your law, Your sight and several
breath, will wear the gods With his heads, and
my hands are wonder'd at the deeds, So drop
upon your lordship's head, and your opinion
Shall be against your honour.

Example from

Shakespeare’s As You Like It

CHARLES: Marry, do |, sir; and | came to
acquaint you with a matter. | am given, sir,
secretly to understand that your younger
brother Orlando hath a disposition to come in
disguised against me to try a fall. To-morrow,
sir, | wrestle for my credit; and he that escapes
me without some broken limb shall acquit him
well. Your brother is but young and tender; and,
for your love, | would be loath to foil him, as |
must, for my own honour, if he come in:
therefore, out of my love to you, | came hither
to acquaint you withal, that either you might
stay him from his intendment or brook such
disgrace well as he shall run into, in that itis a
thing of his own search and altogether against
my will.

TOUCHSTONE: For my part, | had rather bear
with you than bear you; yet | should bear no
cross if | did bear you, for | think you have no
money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

N

VIOLA: Why, Salisbury must find his flesh and
thought That which I am not aps, not a man and
in fire, To show the reining of the raven and the
wars To grace my hand reproach within, and
not a fair are hand, That Caesar and my goodly

father's world; When | was heaven of presence
and our fleets, We spare with haucs bt cut thy

N

CHARLES: Marry, do |, sir; and | came to
acquaint you with a matter | am given, sir,
secretly to understand that your younger
brother Orlando hath a disposition to come in
disguised against me to try a fall. To-morrow,

snr | wrestle for my credit; and he that escapes
roken limb shall acquit him

council  am great Murdered a
master's ready there My powe
so much as hell: Some service i
bondman here, Would showAi

Which is the real
Shakespeare?!

is but young and tender; and,
Id be loath to foil him, as |
onour, if he come in:

KING LEAR: O, if you w eeble sight, the
courtesy of your law, Your sight and several
breath, will wear the gods With his heads, and
my hands are wonder'd at the deeds, So drop
upon your lordship's head, and your opinion
Shall be against your honour.

Example from

love to you, | came hither
to acquaint you wyj t either you might
stay him from his in ent or brook such

disgrace well as he sh ninto, in thatitis a
thing of his own search and altogether against
my will.

TOUCHSTONE: For my part, | had rather bear
with you than bear you; yet | should bear no
cross if | did bear you, for | think you have no
money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

SEQUENCE TO SEQUENCE
MODELS



Sequence to Sequence Mode]

Speech Recognition

Machine Translation
| HY =2 E5| Ot

11—

o
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ummarization

Lorem ipsum dolor sit amet,

A

cor ~

eiu

ap  Lorem ipsumA dolor sit a:nit,

nib

nib |, Lorem ipsum dolor sit amet,

i COPenrintees ~iniosin

;z\ e an

QoMb |y Lorem ipsum dolor sit amet,

=

sol o mb L torem ipsum dolor sit ame,

eg o vol ' consectetur adipiscing elit sed do

ai gy Po b eiusmod tempor incididunt ut

@ g Qu M labore et dolore magna aliqua. Id

qui ot dia % nibh tortor id aliquet lectus proin

ut. @ sol '® nibh nisl. Odio ut enim-bandit

the— S —eg Si‘; volutpat ~ maecenas  volutpat.

pel— Y ey | Porta nibh venenatis cras sed.

viv t‘;( eu o Quam id leo in vitae. Aliquam id

ac pa @u o diam maccenas ultricies mi. Et
By ut S solicitudin ac orci phaselus

lac egestas. Diam in arcu- cursus

3¢ pet % euismod quis viverra. Vitae auctor

viv " eu augue ut lectus arcu. Semper
quis lectus nulla at volutpat diam

el
P ut. Sed arcu non odio euismod

lacinia. Velit euismod in
ac.

pellentesque massa. Augue lacus
viverra vitae congue eu consequat
ac. Tincidunt id ali.



Sequence to Sequence Mode]

Now suppose you want generate  Applications:
 translation:

a sequence conditioned on Spanish > English
another Input e summarization:
Key Idea: article 2 summary
0 * speechrecognition:
1. Use an encoder model to speech signal = transcription

generate a vector
representation of the input ___Decoder

2. Feed the output of the i
encoder to a decoder which |
will generate the output |

p(wslhy)
___Encoder |

e, e e e

2 3 4
[T+ TF—>TTFH—>{T1TF

T

[Vamos] [ al ] [ cafe ] [ahora]

T T
i[ ]



BACKGROUND: COMPUTER VISION



Example: Image Classification




IMSGENET i
® R o oy About Download

Not logged in. Login | Signup

Bird 'E
2126 92.85% -
Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings pictures gg'pcu;ﬂrtﬁg :rggrdnet

l marine animal, marine creature, sea animal, sea creature (1)
v scavenger (1) Treemap Visualization Images of the Synset Downloads
- biped (0)
.- predator, predatory animal (1)
i larva (49)
- acrodont (0)
- feeder (0)
- stunt (0)
“ chordate (3087)
| tunicate, urochordate, urochord (6)
x cephalochordate (1)
. vertebrate, craniate (3077)
- mammal, mammalian (1169)
- bird (871)
dickeybird, dickey-bird, dickybird, dicky-bird (0)
k- cock (1)
- hen (0)
- nester (0)
I night bird (1)
- bird of passage (0)
- protoavis (0)
- archaeopteryx, archeopteryx, Archaeopteryx lithographi
- Sinornis (0)
- |bero-mesornis (0)
- archaeornis (0)
i ratite, ratite bird, flightless bird (10)
- carinate, carinate bird, flying bird (0)
I passerine, passeriform bird (279)
- nonpasserine bird (0)
.- bird of prey, raptor, raptorial bird (80)
: gallinaceous bird, gallinacean (114)




IMAGENET I B Dowsces

14,197,122 images, 21841 synsets indexed

Not logged in. Login | Signup

- - - .. L“.
German iris, Iris kochii 469  49.6% E
Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica pictures nggﬂﬂ;‘jg }gg’d”et

halophyte (0)
i succulent (39) Treemap Visualization Images of the Synset Downloads
- cultivar (0)

- cultivated plant (0)

I weed (54)

- evergreen, evergreen plant (0)

- deciduous plant (O)

i vine (272)

- creeper (0)

i~ woody plant, ligneous plant (1868)

- geophyte (0)

i desert plant, xerophyte, xerophytic plant, xerophile, xerophilc
- mesophyte, mesophytic plant (0)

i aquatic plant, water plant, hydrophyte, hydrophytic plant (11
- tuberous plant (0)

- bulbous plant (179)

“. iridaceous plant (27)

+. iris, flag, fleur-de-lis, sword lily (19)

. bearded iris (4)

Florentine iris, orris, Iris germanica florentina, Iris
German iris, Iris germanica (0)

- German iris, Iris kochii (0)

... Dalmatian iris, Iris pallida (0)

I beardless iris (4)

- bulbous iris (0)

- dwarf iris, Iris cristata (0)

- stinking iris, gladdon, gladdon iris, stinking gladwyn,
- Persian iris, Iris persica (0)

- yellow iris, yellow flag, yellow water flag, Iris pseuda
- dwarf iris, vernal iris, Iris verna (0)

- blue flag, Iris versicolor (0)




IMZGENET I el

ages, 21841 synsets indexed

Not logged in. Login | Signup

=
Court, courtyard 165  92.61% B
An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court" pictures ggfc‘gﬂ’t'}g l‘gg’d”et
1
© Numbers in brackets: (the number of synsets in the subtree ). Treemap Visualization Images of the Synset Downloads

ImageNet 2011 Fall Release (32326)
v plant, flora, plant life (4486)
| geological formation, formation (175)
- natural object (1112)
- sport, athletics (176)
+. artifact, artefact (10504)
| - instrumentality, instrumentation (5494)
+. structure, construction (1405)
airdock, hangar, repair shed (0)
| altar (1)
- arcade, colonnade (1)
e arch (31)
. area (344)
- aisle (0)
- auditorium (1)
- baggage claim (0)
- box (1)
- breakfast area, breakfast nook (0)
- bullpen (0)
- chancel, sanctuary, bema (0)
- choir (0)
-+ corner, nook (2)
“. court, courtyard (6)
- atrium (0)
- bailey (0)
- cloister (0)
- food court (0)

- forecourt (0)
.. narvie (N




Feature Engineering for CV

Edge detection (Canny)

‘ Original Image Edge Image

I
e | 3
—

octave)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

3 Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
igure 3: Model images of planar objects are shown in the produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted

»prow. Recognition results below show model outlines and to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
mama Lo noad fac matahing Anwm_camnlad hv a factar nf 7 and the nrncace ranaatad

—_ 8% o

Figures from http://opencv.org Figure from Lowe (1999) and Lowe (2004)



Example: Image Classification




CNNs for Image Recognition

Research
Revolution of Depth 262
' 152 layers
A
\
\
L
5
\
%
\
[ 22 layers ‘ [ 19 Ia',rers
'~ 6.7
3 57 I I l 8 layers ‘ | E Ia'-,rers shallow
ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet
ImageNet Classification top-5 error (%)
2ICCVI T
[ ——— Kaiming He, Xiangyu Zhang, Shaoging Ren, & lian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015,
56

Slide from Kaiming He



Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) are simply
fancy computation graphs (aka. hypotheses or
decision functions).

Our recipe also applies to these models and
(again) relies on the backpropagation
algorithm to compute the necessary
gradients.



CONVOLUTION



What’s a convolution?

Basic idea:
— Pick a 3x3 matrix F of weights

— Slide this over an image and compute the “inner product”
(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the

inner product operation

Key point:

— Different convolutions extract different types of low-level
“features” from an image

— All that we need to vary to generate these different features is the

weights of F

Conv

? -E(u o‘l&

[t Locen

Slide adapted from William Cohen
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Identity

Convolution 1 1 1 1 1
0] 0] 0] 1

o|l1]o0 1
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image
Blurring

Convolution
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What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

Rice ’ Load|

Use filtered i magel

Filter

m
Q.
0q
¢
“«>
4>

Ov/ |19 2%
O¢|| 4% | -1%
Ov/ 0%/ O+
Filter normalization

O Apply filter

Slide from William Cohen



What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo
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What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

— '.':' Rice ¢L04ad|

Use filtered image|

Filter
Edge 1
0v  -1% | 2%
Ov | 4% | 1%
Ov | 0% O+
Filter normalization

4>
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What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

Rice v L04ad|

Use filtered image|

Filter
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Filter normalization
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What’s a convolution?

Basic idea:
— Pick a 3x3 matrix F of weights

— Slide this over an image and compute the “inner product”
(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the

inner product operation

Key point:

— Different convolutions extract different types of low-level
“features” from an image

— All that we need to vary to generate these different features is the

weights of F

Conv

? -E(u o‘l&

[t Locen

Slide adapted from William Cohen
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DOWNSAMPLING



Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution
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Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output
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Downsampling by Averaging

* Downsampling by averaging is a special case of convolution
where the weights are fixed to a uniform distribution

* The example below uses a stride of 2

Input Image

Convolved Image

Convolution
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Max-Pooling

Max-pooling is another form of downsampling

Instead of averaging, we take the max value within the same range as
the equivalently-sized convolution

The example below uses a stride of 2

Input Image

Max-Pooled
Image

Max-
pooling

Yij = max(zij,

Li 41,
Lit1,5,
Tit1,j+1)

97



CONVOLUTIONAL NEURAL NETS



A Recipe for

Background : :
Machine Learning

1. Given training data: 3. Define goal:

{®i, Y, }is 3

79 1) 1=1 C— : : ,
2 0" = arg meméf(fe(wz), Y;)
2. Choose each of these:
— Decision function 4. Train with SGD:
N T (take small steps
J fe( Z) opposite the gradient)

— Loss function

((9,y,) €R 61 =0 — . Ve(fo(wi), y,)
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Convolutional Layer

Input Image

CNN key idea:
Treat convolution matrix as
parameters and learn them!

@ Convolved Image

Learned
Convolution

e11 e12 e13
e21 ezz 623
631 632 633

102



Convolutional Neural Network (CNN)

Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28
32x32 @ S2: f. maps CS: layer pg. layer OUTPUT
84 10

6@14x14 IT— rrr 120
i

I
| | Full oonrlection I Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical. 103



TRAINING CNNS



A Recipe for

Background : :
Machine Learning

1. Given training data: 3. Define goal:

{®i, Y, }is 3

79 1) 1=1 C— : : ,
2 0" = arg meméf(fe(wz), Y;)
2. Choose each of these:
— Decision function 4. Train with SGD:
N T (take small steps
J fe( Z) opposite the gradient)

— Loss function

((9,y,) €R 61 =0 — . Ve(fo(wi), y,)






SGD for CNNs
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LAYERS OF A CNN



RelLU Layer
[Rell Lo/ I*Vu’fz?(éﬁk Oukouk 76&“
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Softmax Layer
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Fully-Connected Layer
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Convolutional Layer

Q :L ;A‘\J" CL"MN.‘ y, i OU“T«J“' CLawM.l

—:rig‘i COV‘V _MML y“ = Ky X * K.LXQ 40&;)(3‘ 4 “22\‘2.7. +o,

)’\2 = Xy X il K.,,x\; “”’lezz 4 0(22 X2z, +oly

X X (%s B &z ‘
? : - w iz ¢ = Ky + KipXpp +0QiXgy 4+ oz X
Xor |%ez % loi, 0¢en | e X2y 2 Xz 31t Koz Xs2 1,
M3 %l Y22 = KuXgy * Kphey + 091X, t Wzz Xg3 +a,
-

X% 1 E;\‘\d(' CL&\MM.‘ p 2 OU"T.)“’ CLawM.ls

7T Q)] Q) ) Q) )
_lmgd\' C_ov.vﬂ M' 7{;’ = Ky Xu * KX 404.)(,‘ 4+ K32 %22 +o(f
o 2
X ¥z Xs Bl & tH—ert- )’\z T e
T T ——> (RVLA O]
X, |¥ex|¥s 06 ocen | oIFY W x oo
XS‘ )(31 0) {1 (‘) (‘7 ( | ) (')
= In Yzz = KuXgp * Kigkay +0Q1 %5, 4+ 0 Xz3 +0lg
2
\C—S"‘ﬁ otz Q) @ @ @) (@) @
[(g-) 7” = Ky Xn + K.LXQ 4—0&|X“ 4 “ZZXL'L"’WO
y O(q &2 == (Ve (22) =
lii(‘t:)&ﬂ- |) 2; )/‘(2) i

] = & -t

Q @ (2 2) (2 @
)’zz = KuXgy * Kighay +0Q1 Xsy 4 0oz Xg3 +ix,



115




Max-Pooling Layer
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Max-Pooling Layer
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Convolutional Neural Network (CNN)

Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28
32x32 @ S2: f. maps CS: layer pg. layer OUTPUT
84 10

6@14x14 IT— rrr 120
i

I
| | Full oonrlection I Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical. 118



Architecture #2: AlexNet




CNNs for Image Recognition

Research
Revolution of Depth 262
' 152 layers
A
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\
L
5
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\
[ 22 layers ‘ [ 19 Ia',rers
'~ 6.7
3 57 I I l 8 layers ‘ | E Ia'-,rers shallow
ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet
ImageNet Classification top-5 error (%)
2ICCVI T
[ ——— Kaiming He, Xiangyu Zhang, Shaoging Ren, & lian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015,
120

Slide from Kaiming He



CNN VISUALIZATIONS



3D Visualization of CNN

http://scs.ryerson.ca/~aharley/vis/conv/




Convolution of a Color Image

* Colorimages consist of 3 floats per pixel for
RGB (red, green blue) color values

* Convolution must also be 3-dimensional

activation map

___— 32x32x3 image

5x5x3 filter /
2
@>@ ”

convolve (slide) over all

spatial locations
32 28

3 1

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)




Animation of 3D Convolution

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)

X[:,:,0] wO[:,:,0] wl[:,:,0] o[:,:,0]
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Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)


http://cs231n.github.io/convolutional-networks/

MNIST Digit Recognition with CNNs
(in your browser)

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Network Visualization

input (24x24x1) Activations:

max activation: 1, min: 0
max gradient: 0.00015, min: -0.00014

Activation Gradients:

conv (24x24x8) Activations:
filter size 5x5x1, stride 1 - -
max activation: 4.78388, min: -3.44063 - ’ )
max gradient: 0.00005, min: -0.00006 —

parameters: 8x5x5x1+8 = 208 Activation Gradients:

Weights:

(=')(F')(‘-)( ) (e )(IE)()(<6)
Weight Gradients:

() (W )(=)(=)(T)(A)(=)(®)

softmax (1x1x10) Activations:
max activation: 0.99768, min: 0 H EENEEEEE
max gradient: 0, min: O

Example predictions on Test set

I /A B BRE
: : : 3

Figure from Andrej Karpathy
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CNN Summary

CNNs

— Are used for all aspects of computer vision, and
have won numerous pattern recognition
competitions

— Able learn interpretable features at different levels
of abstraction

— Typically, consist of convolution layers, pooling
layers, nonlinearities, and fully connected layers

Other Resources:

— Readings on course website
— Andrej Karpathy, C5231n Notes


http://cs231n.github.io/convolutional-networks/

Deep Learning Objectives

You should be able to...

Implement the common layers found in Convolutional
Neural Networks (CNNs) such as linear layers,
convolution layers, max-pooling layers, and rectified
linear units (ReLU)

Explain how the shared parameters of a convolutional
layer could learn to detect spatial patterns in an image

Describe the backpropagation algorithm for a CNN

|dentify the parameter sharing used in a basic recurrent
neural network, e.g. an Elman network

Apply a recurrent neural network to model sequence
data

Differentiate between an RNN and an RNN-LM



ML Big Picture

Learning Paradigms: Problem Formulation:
What data is available and What is the structure of our output prediction? ch‘
when? What form of prediction? boolean Binary Classification 50
° SUPerVise_d Ifjalmmg‘ categorical Multiclass Classification *38
. unsupervised learning : 8 cE >
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«  hyperparameter optimization 'd systems that are development of the field?

robust, efficient, adaptive, , L
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What principles guide learning? 2. Model selection *  bias-variance decomposition
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L probabilistic el
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O information theoretic 4. Hyperparameter tuningon _ o P’ fg p
O evolutionary search validation data AC learning
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