Perceptron
Q&A

Q: How do we define a distance function when the features are categorical (e.g. weather takes values \{sunny, rainy, overcast\})?

A:

1. Convert from categorical attributes to numeric features (e.g. binary)
2. Select an appropriate distance function (e.g. Hamming distance)
Q: Those decision boundary figures for KNN were really cool, how did you make those?

A: Well it’s a little complicated for $k > 1$, but here’s a way you can think about decision boundaries for a nearest neighbor hypothesis ($k=1$).
Q: Those decision boundary figures for KNN were really cool, how did you make those?

A: Well it’s a little complicated for $k > 1$, but here’s a way you can think about decision boundaries for a nearest neighbor hypothesis ($k=1$).
Reminders

• Homework 2: Decision Trees
 – Out: Wed, Jan. 26
 – Due: Fri, Feb. 4 at 11:59pm

• HW1 Resubmission:
 – You should only resubmit if you receive email from us inviting you to resubmit.

• Homework 3: KNN, Perceptron, Lin.Reg.
 – Out: Fri, Feb. 4
 – Due: Fri, Feb. 11 at 11:59pm
 – (only two grace/late days permitted)
GEOMETRY & VECTORS
In-Class Exercise

Draw a picture of the region corresponding to:

\[w_1 x_1 + w_2 x_2 + b > 0 \]

where \(w_1 = 2, w_2 = 3, b = 6 \)

Draw the vector \(\mathbf{w} = [w_1, w_2] \)
Visualizing Dot-Products

Whiteboard:

– definition of dot product
– definition of L2 norm
– definition of orthogonality
Vector Projection

Question:

Which of the following is the projection of a vector \mathbf{a} onto a vector \mathbf{b}?

A. $\frac{\mathbf{a}^T \mathbf{b}}{\mathbf{b}} \mathbf{a}$

B. $\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a}^T \mathbf{b}}$

C. $\frac{(\mathbf{a}^T \mathbf{b})}{\|\mathbf{b}\|_2} \mathbf{b}$

D. $\frac{(\mathbf{a} \cdot \mathbf{b})}{\|\mathbf{b}\|_2} \mathbf{b}$

E. $\frac{(\mathbf{a}^T \mathbf{b})}{\|\mathbf{b}\|_2^2} \mathbf{b}$

F. $\frac{(\mathbf{a}^T \mathbf{b})^2}{\|\mathbf{b}\|_2^2} \mathbf{b}$
Visualizing Dot-Products

Whiteboard:

– vector projection
– hyperplane definition
– half-space definitions
Key idea: Try to learn this hyperplane directly

Directly modeling the hyperplane would use a decision function:

\[h(x) = \text{sign}(\theta^T x) \]

for:

\[y \in \{-1, +1\} \]

Looking ahead:

- We’ll see a number of commonly used Linear Classifiers
- These include:
 - Perceptron
 - Logistic Regression
 - Naïve Bayes (under certain conditions)
 - Support Vector Machines
ONLINE LEARNING
Online vs. Batch Learning

Batch Learning
Learn from all the examples at once

Online Learning
Gradually learn as each example is received
Online Learning

Examples

1. **Stock market** prediction (what will the value of Alphabet Inc. be tomorrow?)

2. **Email** classification (distribution of both spam and regular mail changes over time, but the target function stays fixed - last year's spam still looks like spam)

3. **Recommendation** systems. Examples: recommending movies; predicting whether a user will be interested in a new news article

4. **Ad placement** in a new market
Online Learning

For $i = 1, 2, 3, \ldots$:

- **Receive** an unlabeled instance $x^{(i)}$
- **Predict** $y' = h_\theta(x^{(i)})$
- **Receive** true label $y^{(i)}$
- **Suffer loss** if a mistake was made, $y' \neq y^{(i)}$
- **Update** parameters θ

Goal:

- **Minimize** the number of mistakes
THE PERCEPTRON ALGORITHM
Perceptron

Whiteboard:
– (Online) Perceptron Algorithm
– Hypothesis class for Perceptron
– 2D Example of Perceptron
Perceptron Algorithm: Example

Example: \((-1,2) - \times\)
- \((1,0) + \checkmark\)
- \((1,1) + \times\)
- \((-1,0) - \checkmark\)
- \((-1,-2) - \times\)
- \((1,-1) + \checkmark\)

Perceptron Algorithm: (without the bias term)

- Set \(t=1\), start with all-zeroes weight vector \(w_1\).
- Given example \(x\), predict positive iff \(w_t \cdot x \geq 0\).
- On a mistake, update as follows:
 - Mistake on positive, update \(w_{t+1} \leftarrow w_t + x\)
 - Mistake on negative, update \(w_{t+1} \leftarrow w_t - x\)

\[\begin{align*}
w_1 &= (0,0) \\
w_2 &= w_1 - (-1,2) = (1,-2) \\
w_3 &= w_2 + (1,1) = (2,-1) \\
w_4 &= w_3 - (-1,-2) = (3,1)\end{align*}\]

Slide adapted from Nina Balcan
Q: Why do we need an intercept term?

A: It shifts the decision boundary off the origin.

Q: Why do we add / subtract 1.0 to the intercept term during Perceptron training?

A: Two cases
1. Increasing b shifts the decision boundary towards the negative side.
2. Decreasing b shifts the decision boundary towards the positive side.
Perceptron Inductive Bias

1. Decision boundary should be linear
2. Most recent mistakes are most important (and should be corrected)
Background: Hyperplanes

Hyperplane (Definition 1):
\[\mathcal{H} = \{ x : w^T x = b \} \]

Hyperplane (Definition 2):
\[\mathcal{H} = \{ x' : \theta^T x' = 0 \text{ and } x'_1 = 1 \} \]
\[\theta = [b, w_1, \ldots, w_M]^T \]

Half-spaces:
\[\mathcal{H}^+ = \{ x : \theta^T x > 0 \text{ and } x'_1 = 1 \} \]
\[\mathcal{H}^- = \{ x : \theta^T x < 0 \text{ and } x'_1 = 1 \} \]

Notation Trick: fold the bias \(b \) and the weights \(w \) into a single vector \(\theta \) by prepending a constant to \(x \) and increasing dimensionality by one to get \(x' \)!
(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs are discrete. $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \ldots$
where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{+1, -1\}$

Prediction: Output determined by hyperplane.

$$\hat{y} = h_\theta(\mathbf{x}) = \text{sign}(\theta^T \mathbf{x})$$

Assume $\theta = [b, w_1, \ldots, w_M]^T$ and $x_1 = 1$

Learning: Iterative procedure:
- **initialize** parameters to vector of all zeroes
- **while** not converged
 - **receive** next example $(\mathbf{x}^{(i)}, y^{(i)})$
 - **predict** $y' = h(\mathbf{x}^{(i)})$
 - **if** positive mistake: *add* $\mathbf{x}^{(i)}$ to parameters
 - **if** negative mistake: *subtract* $\mathbf{x}^{(i)}$ from parameters
(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs are discrete.

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots$$

where $x \in \mathbb{R}^M$ and $y \in \{+1, -1\}$

Prediction: Output determined by hyperplane.

$$\hat{y} = h_{\theta}(x) = \text{sign}(\theta^T x)$$

Assume $\theta = [b, w_1, \ldots, w_M]^T$ and $x_1 = 1$

Learning:

```
Algorithm 1 Perceptron Learning Algorithm (Online)
1: procedure PERCEPTRON($D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots\}$)
2: \hspace{1cm} \theta \leftarrow 0 \quad \triangleright \text{Initialize parameters}
3: \hspace{1.5cm} for \ i \in \{1, 2, \ldots\} do \quad \triangleright \text{For each example}
4: \hspace{2cm} \hat{y} \leftarrow \text{sign}(\theta^T x^{(i)}) \quad \triangleright \text{Predict}
5: \hspace{2cm} \text{if } \hat{y} \neq y^{(i)} \text{ then} \quad \triangleright \text{If mistake}
6: \hspace{3cm} \theta \leftarrow \theta + y^{(i)} x^{(i)} \quad \triangleright \text{Update parameters}
7: \hspace{1cm} \text{return } \theta
```
(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs are discrete.

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots$$

where $x \in \mathbb{R}^M$ and $y \in \{+1, -1\}$

Prediction: Output determined by hyperplane.

$$\hat{y} = h_\theta(x) = \text{sign}(\theta^T x)$$

Assume $\theta = [b, w_1, \ldots, w_M]$

Learning:

Algorithm 1 Perceptron Learning Algorithm

1: procedure PERCEPTRON($\mathcal{D} = \{(x^{(i)}, y^{(i)})\}$)
2: \hspace{1cm} $\theta \leftarrow 0$
3: \hspace{1cm} for $i \in \{1, 2, \ldots\}$ do
4: \hspace{2cm} $\hat{y} \leftarrow \text{sign}(\theta^T x^{(i)})$
5: \hspace{2cm} if $\hat{y} \neq y^{(i)}$ then
6: \hspace{3cm} $\theta \leftarrow \theta + y^{(i)}x^{(i)}$
7: \hspace{1cm} return θ

Implementation Trick: same behavior as our “add on positive mistake and subtract on negative mistake” version, because $y^{(i)}$ takes care of the sign

- Initialize parameters
 - For each example
 - Predict
 - If mistake
 - Update parameters
Learning for Perceptron also works if we have a fixed training dataset, D. We call this the “batch” setting in contrast to the “online” setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1. **procedure** `PERCEPTRON(D = \{(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})\})`
2. \[\theta \leftarrow 0 \] ▶ Initialize parameters
3. **while** not converged **do**
4. **for** \(i \in \{1, 2, \ldots, N\} \) **do** ▶ For each example
5. \[\hat{y} \leftarrow \text{sign}(\theta^T x^{(i)}) \] ▶ Predict
6. **if** \(\hat{y} \neq y^{(i)} \) **then** ▶ If mistake
7. \[\theta \leftarrow \theta + y^{(i)} x^{(i)} \] ▶ Update parameters
8. **return** \(\theta \)
(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training dataset, D. We call this the “batch” setting in contrast to the “online” setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.
1. By extending the online Perceptron algorithm to the batch setting (as mentioned above)
2. By applying **Stochastic Gradient Descent (SGD)** to minimize a so-called **Hinge Loss** on a linear separator
Extensions of Perceptron

- **Voted Perceptron**
 - generalizes better than (standard) perceptron
 - memory intensive (keeps around every weight vector seen during training, so each one can vote)

- **Averaged Perceptron**
 - empirically similar performance to voted perceptron
 - can be implemented in a memory efficient way (running averages are efficient)

- **Kernel Perceptron**
 - Choose a kernel $K(x', x)$
 - Apply the **kernel trick** to Perceptron
 - Resulting algorithm is **still very simple**

- **Structured Perceptron**
 - Basic idea can also be applied when y ranges over an exponentially large set
 - Mistake bound **does not** depend on the size of that set
Perceptron Exercises

Question:
The parameter vector w learned by the Perceptron algorithm can be written as a linear combination of the feature vectors $x^{(1)}, x^{(2)}, ..., x^{(N)}$.

A. True, if you replace “linear” with “polynomial” above
B. True, for all datasets
C. False, for all datasets
D. True, but only for certain datasets
E. False, but only for certain datasets
PERCEPTRON MISTAKE BOUND
Perceptron Mistake Bound

Guarantee: if some data has margin γ and all points lie inside a ball of radius R, then the online Perceptron algorithm makes $\leq (R/\gamma)^2$ mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Def: We say that the (batch) perceptron algorithm has **converged** if it stops making mistakes on the training data (perfectly classifies the training data).

Main Takeaway: For **linearly separable** data, if the perceptron algorithm cycles repeatedly through the data, it will converge in a finite # of steps.