Principal Component Analysis (PCA) + K-Means

Matt Gormley
Lecture 25
Apr. 18, 2022
Reminders

• Homework 8: Reinforcement Learning
 – Out: Tue, Apr. 12
 – Due: Thu, Apr. 21 at 11:59pm
DIMENSIONALITY REDUCTION
High Dimension Data

Examples of high dimensional data:
– High resolution images (millions of pixels)
High Dimension Data

Examples of high dimensional data:

– Multilingual News Stories
 (vocabulary of hundreds of thousands of words)
High Dimension Data

Examples of high dimensional data:
– Brain Imaging Data (100s of MBs per scan)

Image from (Wehbe et al., 2014)
High Dimension Data

Examples of high dimensional data:
– Customer Purchase Data
Learning Representations

Dimensionality Reduction Algorithms:
Powerful (often unsupervised) learning techniques for extracting hidden (potentially lower dimensional) structure from high dimensional datasets.

Examples:
PCA, Kernel PCA, ICA, CCA, t-SNE, Autoencoders, Matrix Factorization

Useful for:
- Visualization
- More efficient use of resources (e.g., time, memory, communication)
- Statistical: fewer dimensions \rightarrow better generalization
- Noise removal (improving data quality)

Slide adapted from Nina Balcan
Shortcut Example

https://www.youtube.com/watch?v=MlJN9pEfPfE

Photo from https://www.springcarnival.org/booth.shtml
This section in one slide...

1. Dimensionality reduction:

2. Random Projection:

3. Definition of PCA:

Choose the matrix V that either...
1. minimizes reconstruction error
2. consists of the K eigenvectors with largest eigenvalue

The above are equivalent definitions.

4. Algorithm for PCA:

The option we'll focus on:

Run Singular Value Decomposition (SVD) to obtain all the eigenvectors. Keep just the top-K to form V. Play some tricks to keep things efficient.

5. An Example
DIMENSIONALITY REDUCTION BY RANDOM PROJECTION
Random Projection

Whiteboard

– Random linear projection
Johnson-Lindenstrauss Lemma

Q: But how could we ever hope to preserve any useful information by randomly projecting into a low-dimensional space?

A: Even random projection enjoys some surprisingly impressive properties. In fact, a standard of the J-L lemma starts by assuming we have a random linear projection obtained by sampling each matrix entry from a Gaussian(0,1).

An Elementary Proof of a Theorem of Johnson and Lindenstrauss

Sanjoy Dasgupta, Anupam Gupta

Abstract: A result of Johnson and Lindenstrauss [13] shows that a set of n points in high dimensional Euclidean space can be mapped into an $O(\log n/\epsilon^2)$-dimensional Euclidean space such that the distance between any two points changes by only a factor of $(1 \pm \epsilon)$. In this note, we prove this theorem using elementary probabilistic techniques. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 22: 60–65, 2002

DEFINITION OF PRINCIPAL COMPONENT ANALYSIS (PCA)
Principal Component Analysis (PCA)

- **Assumption**: the data lies on a low K-dimensional linear subspace
- **Goal**: identify the axes of that subspace, and project each point onto hyperplane
- **Algorithm**: find the K eigenvectors with largest eigenvalue using classic matrix decomposition tools

![PCA Example: 2D Gaussian Data](https://commons.wikimedia.org/wiki/File:Scatter_diagram_for_quality_characteristic_XXX.svg)
Data for PCA

$$\mathcal{D} = \{ \mathbf{x}^{(i)} \}_{i=1}^{N}$$

$$\mathbf{x}^{(i)} \in \mathbb{R}^M$$

$$\mathbf{X} = \begin{bmatrix} (\mathbf{x}^{(1)})^T \\ (\mathbf{x}^{(2)})^T \\ \vdots \\ (\mathbf{x}^{(N)})^T \end{bmatrix}$$

We assume the data is **centered**

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)} = 0$$

Q: What if your data is **not** centered?

A: Subtract off the sample mean

$$\tilde{\mathbf{x}}^{(i)} = \mathbf{x}^{(i)} - \mu, \quad \forall i$$
The sample covariance matrix $\Sigma \in \mathbb{R}^{M \times M}$ is given by:

$$
\Sigma_{jk} = \frac{1}{N} \sum_{i=1}^{N} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k)
$$

Since the data matrix is centered, we rewrite as:

$$
\Sigma = \frac{1}{N} X^T X
$$

$$
X = \begin{bmatrix}
(x^{(1)})^T \\
(x^{(2)})^T \\
\vdots \\
(x^{(N)})^T
\end{bmatrix}
$$
Principal Component Analysis (PCA)

Linear Projection:
Given KxM matrix V, and Mx1 vector $x^{(i)}$ we obtain the Kx1 projection $u^{(i)}$ by:
$$u^{(i)} = V^T x^{(i)}$$

Definition of PCA:
PCA repeatedly chooses a next vector v_j that minimizes the reconstruction error s.t. v_j is orthogonal to $v_1, v_2, ..., v_{j-1}$.

Vector v_j is called the jth principal component.

Notice: Two vectors a and b are orthogonal if $a^T b = 0$.

\rightarrow the K-dimensions in PCA are uncorrelated
Vector Projection

Recall: Projection

\[\vec{x} \]
\[\vec{v} \]
\[a \]

length of projection of \(\vec{x} \) onto \(\vec{v} \)

\[a = \frac{\vec{v} \cdot \vec{x}}{||\vec{v}||_2} \]

if \(||\vec{v}||_2 = 1 \)

otherwise

projection of \(\vec{x} \) onto \(\vec{v} \)

\[\overrightarrow{\vec{u}} = a \vec{v} = \left(\frac{\vec{v} \cdot \vec{x}}{||\vec{v}||_2^2} \right) \vec{v} \]

if \(||\vec{v}||_2 = 1 \)

otherwise
Principal Component Analysis (PCA)

Whiteboard

– Objective functions for PCA
Maximizing the Variance

Quiz: Consider the two projections below

1. Which maximizes the variance?
2. Which minimizes the reconstruction error?

![Option A Diagram](image1)
![Option B Diagram](image2)
For a square matrix A (n x n matrix), the vector v (n x 1 matrix) is an **eigenvector** iff there exists **eigenvalue** λ (scalar) such that:

$$Av = \lambda v$$

The linear transformation A is only stretching vector v.

That is, λv is a *scalar multiple* of v.
Principal Component Analysis (PCA)

Whiteboard

– PCA, Eigenvectors, and Eigenvalues
Equivalence of Maximizing Variance and Minimizing Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximizing the variance.

Proof: First, note that:

\[
||\mathbf{x}^{(i)} - (\mathbf{v}^T \mathbf{x}^{(i)})\mathbf{v}||^2 = ||\mathbf{x}^{(i)}||^2 - (\mathbf{v}^T \mathbf{x}^{(i)})^2
\]

since \(\mathbf{v}^T \mathbf{v} = ||\mathbf{v}||^2 = 1\).

Substituting into the minimization problem, and removing the extraneous terms, we obtain the maximization problem.

\[
\mathbf{v}^* = \arg\min_{\mathbf{v}:||\mathbf{v}||^2 = 1} \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{x}^{(i)} - (\mathbf{v}^T \mathbf{x}^{(i)})\mathbf{v}||^2
\]

\[
= \arg\min_{\mathbf{v}:||\mathbf{v}||^2 = 1} \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{x}^{(i)}||^2 - (\mathbf{v}^T \mathbf{x}^{(i)})^2
\]

\[
= \arg\max_{\mathbf{v}:||\mathbf{v}||^2 = 1} \frac{1}{N} \sum_{i=1}^{N} (\mathbf{v}^T \mathbf{x}^{(i)})^2
\]
The First Principal Component

Claim: The vector that maximizes the variances is the eigenvector of Σ with largest eigenvalue.

Proof Sketch: To find the first principal component, we wish to solve the following constrained optimization problem (variance minimization).

$$v_1 = \arg\max_{v: ||v||^2 = 1} v^T \Sigma v$$ \hspace{1cm} (1)

So we turn to the method of Lagrange multipliers. The Lagrangian is:

$$\mathcal{L}(v, \lambda) = v^T \Sigma v - \lambda(v^T v - 1)$$ \hspace{1cm} (2)

Taking the derivative of the Lagrangian and setting to zero gives:

$$\frac{d}{dv} (v^T \Sigma v - \lambda(v^T v - 1)) = 0$$ \hspace{1cm} (3)

$$\Sigma v - \lambda v = 0$$ \hspace{1cm} (4)

$$\Sigma v = \lambda v$$ \hspace{1cm} (5)

Recall: For a square matrix A, the vector v is an eigenvector iff there exists eigenvalue λ such that:

$$Av = \lambda v$$ \hspace{1cm} (6)

Rewriting the objective of the maximization shows that not only will the optimal vector v_1 be an eigenvector, it will be one with maximal eigenvalue:

$$v^T \Sigma v = v^T \lambda v$$ \hspace{1cm} (7)

$$= \lambda v^T v$$ \hspace{1cm} (8)

$$= \lambda ||v||^2$$ \hspace{1cm} (9)

$$= \lambda$$ \hspace{1cm} (10)
PCA: the First Principal Component

To find the first principal component, we wish to solve the following constrained optimization problem (variance minimization).

\[\mathbf{v}_1 = \arg\max_{\mathbf{v}: ||\mathbf{v}||^2 = 1} \mathbf{v}^T \Sigma \mathbf{v} \]

(1)

So we turn to the method of Lagrange multipliers. The Lagrangian is:

\[L(\mathbf{v}, \lambda) = \mathbf{v}^T \Sigma \mathbf{v} - \lambda (\mathbf{v}^T \mathbf{v} - 1) \]

(2)

Taking the derivative of the Lagrangian and setting to zero gives:

\[\frac{d}{d\mathbf{v}} \left(\mathbf{v}^T \Sigma \mathbf{v} - \lambda (\mathbf{v}^T \mathbf{v} - 1) \right) = 0 \]

(3)

\[\Sigma \mathbf{v} - \lambda \mathbf{v} = 0 \]

(4)

\[\Sigma \mathbf{v} = \lambda \mathbf{v} \]

(5)

Recall: For a square matrix \(\mathbf{A} \), the vector \(\mathbf{v} \) is an \textit{eigenvector} iff there exists an \textit{eigenvalue} \(\lambda \) such that:

\[\mathbf{A} \mathbf{v} = \lambda \mathbf{v} \]

(6)
Principal Component Analysis (PCA)

\[(X X^T) v = \lambda v\], so \(v\) (the first PC) is the eigenvector of sample correlation/covariance matrix \(X X^T\)

Sample variance of projection \(v^T X X^T v = \lambda v^T v = \lambda\)

Thus, the eigenvalue \(\lambda\) denotes the amount of variability captured along that dimension (aka amount of energy along that dimension).

Eigenvalues \(\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots\)

- The 1\(^{st}\) PC \(v_1\) is the the eigenvector of the sample covariance matrix \(X X^T\) associated with the largest eigenvalue
- The 2nd PC \(v_2\) is the the eigenvector of the sample covariance matrix \(X X^T\) associated with the second largest eigenvalue
- And so on ...

Slide from Nina Balcan
ALGORITHMS FOR PCA
Algorithms for PCA

How do we find principal components (i.e. eigenvectors)?

• Power iteration (aka. Von Mises iteration)
 – finds each principal component one at a time in order

• Singular Value Decomposition (SVD)
 – finds all the principal components at once
 – two options:
 • Option A: run SVD on $X^T X$
 • Option B: run SVD on X
 (not obvious why Option B should work…)

• Stochastic Methods (approximate)
 – very efficient for high dimensional datasets with lots of points
SVD

\[X = USV^T \]

Data \(X \), one row per data point

\(US \) gives coordinates of rows of \(X \) in the space of principle components

\(S \) is diagonal, \(S_k > S_{k+1} \), \(S_k^2 \) is kth largest eigenvalue

Rows of \(V^T \) are unit length eigenvectors of \(X^TX \)

If cols of \(X \) have zero mean, then \(X^TX = c \Sigma \) and eigenvects are the Principle Components

[from Wall et al., 2003]
Singular Value Decomposition

To generate principle components:

- Subtract mean $\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x^n$ from each data point, to create zero-centered data
- Create matrix X with one row vector per (zero centered) data point
- Solve SVD: $X = USV^T$
- Output Principle components: columns of V (= rows of V^T)
 - Eigenvectors in V are sorted from largest to smallest eigenvalues
 - S is diagonal, with s_k^2 giving eigenvalue for kth eigenvector
Singular Value Decomposition

To project a point (column vector x) into PC coordinates:

$$VTx$$

If x_i is i^{th} row of data matrix X, then

- $(i^{th}$ row of $US) = VT x_i^T$
- $(US)^T = VT X^T$

To project a column vector x to M dim Principle Components subspace, take just the first M coordinates of VTx
How Many PCs?

• For M original dimensions, sample covariance matrix is $M \times M$, and has up to M eigenvectors. So M PCs.

• Where does dimensionality reduction come from?
 Can ignore the components of lesser significance.

• You do lose some information, but if the eigenvalues are small, you don’t lose much
 – M dimensions in original data
 – calculate M eigenvectors and eigenvalues
 – choose only the first D eigenvectors, based on their eigenvalues
 – final data set has only D dimensions

Variance (%) = ratio of variance along given principal component to total variance of all principal components
PCA EXAMPLES
Projecting MNIST digits

Task Setting:
1. Take 25x25 images of digits and project them down to K components
2. Report percent of variance explained for K components
3. Then project back up to 25x25 image to visualize how much information was preserved
Projecting MNIST digits

Task Setting:
1. Take 25x25 images of digits and project them down to 2 components
2. Plot the 2 dimensional points
3. Here we look at all ten digits 0 - 9
Projecting MNIST digits

Task Setting:
1. Take 25x25 images of digits and project them down to 2 components
2. Plot the 2 dimensional points
3. Here we look at just four digits 0, 1, 2, 3
Learning Objectives

Dimensionality Reduction / PCA

You should be able to...

1. Define the sample mean, sample variance, and sample covariance of a vector-valued dataset
2. Identify examples of high dimensional data and common use cases for dimensionality reduction
3. Draw the principal components of a given toy dataset
4. Establish the equivalence of minimization of reconstruction error with maximization of variance
5. Given a set of principal components, project from high to low dimensional space and do the reverse to produce a reconstruction
6. Explain the connection between PCA, eigenvectors, eigenvalues, and covariance matrix
7. Use common methods in linear algebra to obtain the principal components