Reinforcement Learning: Value Iteration + Q-Learning
Reminders

• Homework 7: HMMs
 – Out: Fri, Apr. 1
 – Due: Tue, Apr. 12 at 11:59pm
 – (Re-released handout on Monday.)

• Homework 8: Reinforcement Learning
 – Out: Tue, Apr. 12
 – Due: Thu, Apr. 21 at 11:59pm
VALUE ITERATION
Definitions for Value Iteration

Whiteboard

– State trajectory
– Value function
– Bellman equations
– Optimal policy
– Optimal value function
– Computing the optimal policy
– Ex: Path Planning
RL: Optimal Value Function & Policy

- Optimal value function:
 \[V^*(s) = \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a)V^*(s') \]
 - System of $|\mathcal{S}|$ equations and $|\mathcal{S}|$ variables

- Optimal policy:
 \[\pi^*(s) = \arg\max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a)V^*(s') \]
RL Terminology

Question: Match each term (on the left) to the corresponding statement or definition (on the right)

Terms:
A. a reward function
B. a transition probability
C. a policy
D. state/action/reward triples
E. a value function
F. transition function
G. an optimal policy
H. Matt’s favorite statement

Statements:
1. gives the expected future discounted reward of a state
2. maps from states to actions
3. quantifies immediate success of agent
4. is a deterministic map from state/action pairs to states
5. quantifies the likelihood of landing a new state, given a state/action pair
6. is the desired output of an RL algorithm
7. can be influenced by trading off between exploitation/exploration
Example: Path Planning
Example: Robot Localization

$\begin{align*}
\text{Immediate rewards } r(s,a) \text{ (immediate reward) values} \\
\text{One optimal policy} \\
\text{State values } V^*(s)
\end{align*}$
Value Iteration

Whiteboard

– Value Iteration Algorithm
Value Iteration

Algorithm 1 Value Iteration

1: procedure VALUE_ITERATION($R(s, a)$ reward function, $p(\cdot|s, a)$ transition probabilities)
2: Initialize value function $V(s) = 0$ or randomly
3: while not converged do
4: for $s \in S$ do
5: $V(s) = \max_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')$
6: Let $\pi(s) = \arg\max_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')$, $\forall s$
7: return π

Variant 1: without Q(s,a) table
Value Iteration

Algorithm 1 Value Iteration

1: **procedure** VALUE ITERATION($R(s, a)$ reward function, $p(\cdot | s, a)$ transition probabilities)
2: Initialize value function $V(s) = 0$ or randomly
3: while not converged do
4: for $s \in S$ do
5: for $a \in A$ do
6: $Q(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')$
7: $V(s) = \max_a Q(s, a)$
8: Let $\pi(s) = \arg\max_a Q(s, a)$, $\forall s$
9: **return** π

Variant 2: with $Q(s, a)$ table
Synchronous vs. Asynchronous Value Iteration

Algorithm 1 Asynchronous Value Iteration

1: **procedure** ASYNCHRONOUSVALUEITERATION($R(s, a), p(\cdot|s, a))$
2: Initialize value function $V(s) = 0$ or randomly
3: while not converged do
4: for $s \in S$ do
5: $V(s) = \max_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')$
6: Let $\pi(s) = \arg\max_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')$, $\forall s$
7: **return** π

Algorithm 1 Synchronous Value Iteration

1: **procedure** SYNCHRONOUSVALUEITERATION($R(s, a), p(\cdot|s, a))$
2: Initialize value function $V(s)^{(0)} = 0$ or randomly
3: $t = 0$
4: while not converged do
5: for $s \in S$ do
6: $V(s)^{(t+1)} = \max_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')^{(t)}$
7: $t = t + 1$
8: Let $\pi(s) = \arg\max_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')$, $\forall s$
9: **return** π

asynchronous updates: compute and update $V(s)$ for each state one at a time

synchronous updates: compute all the fresh values of $V(s)$ from all the stale values of $V(s)$, then update $V(s)$ with fresh values
Value Iteration Convergence

Theorem 1 (Bertsekas (1989))

\[V \text{ converges to } V^*, \text{ if each state is visited infinitely often} \]

Theorem 2 (Williams & Baird (1993))

\[
\text{if } \max_s |V^{t+1}(s) - V^t(s)| < \epsilon \\
\text{then } \max_s |V^{t+1}(s) - V^*(s)| < \frac{2\epsilon \gamma}{1 - \gamma}, \forall s
\]

Theorem 3 (Bertsekas (1987))

\[\text{greedy policy will be optimal in a finite number of steps (even if not converged to optimal value function!)} \]
Question:
True or False: The value iteration algorithm shown below is an example of **synchronous** updates

Algorithm 1 Value Iteration

1: procedure VALUE_ITERATION($R(s, a)$ reward function, $p(\cdot | s, a)$ transition probabilities)
2: Initialize value function $V(s) = 0$ or randomly
3: while not converged do
4: for $s \in S$ do
5: for $a \in A$ do
6: $Q(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) V(s')$
7: $V(s) = \max_a Q(s, a)$
8: Let $\pi(s) = \arg\max_a Q(s, a)$, $\forall s$
9: return π
POLICY ITERATION
Policy Iteration

Algorithm 1 Policy Iteration

1: **procedure** POLICYITERATION($R(s, a)$ reward function, $p(\cdot | s, a)$ transition probabilities)

2: Initialize policy π randomly

3: **while** not converged **do**

4: Solve Bellman equations for fixed policy π

\[
V^\pi(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s))V^\pi(s'), \; \forall s
\]

5: Improve policy π using new value function

\[
\pi(s) = \arg\max_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V^\pi(s')
\]

6: **return** π
Policy Iteration

Algorithm 1 Policy Iteration

1: **procedure** POLICYITERATION($R(s, a)$, transition probabilities)
2: Initialize policy π randomly
3: **while** not converged **do**
4: Solve Bellman equations for fixed policy π
 $$V^\pi(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s))V^\pi(s'), \ \forall s$$
5: Improve policy π using new value function
 $$\pi(s) = \arg\max_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V^\pi(s')$$
6: **return** π

- Compute value function for fixed policy is easy
- System of $|S|$ equations and $|S|$ variables
- Greedy policy might remain the same for a particular state if there is no better action
Policy Iteration Convergence

In-Class Exercise:
How many policies are there for a finite sized state and action space?

In-Class Exercise:
Suppose policy iteration is shown to improve the policy at every iteration. Can you bound the number of iterations it will take to converge? If yes, what is the bound? If no, why not?
Value Iteration vs. Policy Iteration

- Value iteration requires $O(|A||S|^2)$ computation per iteration
- Policy iteration requires $O(|A||S|^2 + |S|^3)$ computation per iteration
- In practice, policy iteration converges in fewer iterations

Algorithm 1 Value Iteration

```plaintext
1: procedure VALUEITERATION($R(s,a)$ reward function, $p(\cdot|s,a)$ transition probabilities)
2:   Initialize value function $V(s) = 0$ or randomly
3:   while not converged do
4:     for $s \in S$ do
5:       $V(s) = \max_a R(s,a) + \gamma \sum_{s'|s} p(s'|s,a)V(s')$
6:     end for
7:   end while
8:   Let $\pi(s) = \arg\max_a R(s,a) + \gamma \sum_{s'|s} p(s'|s,a)V(s')$, $\forall s$
9: return $\pi$
```

Algorithm 1 Policy Iteration

```plaintext
1: procedure POLICYITERATION($R(s,a)$ reward function, $p(\cdot|s,a)$ transition probabilities)
2:   Initialize policy $\pi$ randomly
3:   while not converged do
4:     Solve Bellman equations for fixed policy $\pi$
5:       $V^\pi(s) = R(s,\pi(s)) + \gamma \sum_{s'|s} p(s'|s,\pi(s))V^\pi(s')$, $\forall s$
6:     end while
7:   Improve policy $\pi$ using new value function
8:       $\pi(s) = \arg\max_a R(s,a) + \gamma \sum_{s'|s} p(s'|s,a)V^\pi(s')$
9: return $\pi$
```
Learning Objectives

Reinforcement Learning: Value and Policy Iteration

You should be able to...

1. Compare the reinforcement learning paradigm to other learning paradigms
2. Cast a real-world problem as a Markov Decision Process
3. Depict the exploration vs. exploitation tradeoff via MDP examples
4. Explain how to solve a system of equations using fixed point iteration
5. Define the Bellman Equations
6. Show how to compute the optimal policy in terms of the optimal value function
7. Explain the relationship between a value function mapping states to expected rewards and a value function mapping state-action pairs to expected rewards
8. Implement value iteration
9. Implement policy iteration
10. Contrast the computational complexity and empirical convergence of value iteration vs. policy iteration
11. Identify the conditions under which the value iteration algorithm will converge to the true value function
12. Describe properties of the policy iteration algorithm
Q-LEARNING
What can we do if we don’t know the reward function / transition probabilities?
Today’s lecture is brought to you by the letter Q

Source: https://en.wikipedia.org/wiki/Avenue_Q#/media/File:Image-AvenueQlogo.png
Today’s lecture is brought to you by the letter Q

Source: https://vignette1.wikia.nocookie.net/jamesbond/images/9/9a/The_Four_Qs_-_Profile_(2).png/revision/latest?cb=20121102195112
Today’s lecture is brought to you by the letter Q

Source: https://www.npr.org/2017/06/03/531044118/there-may-not-be-flying-but-quidditch-still-creates-magic
Value Iteration

Algorithm 1 Value Iteration

1: procedure VALUE ITERATION($R(s, a)$ reward function, $p(\cdot|s, a)$ transition probabilities)
2: Initialize value function $V(s) = 0$ or randomly
3: while not converged do
4: for $s \in S$ do
5: for $a \in A$ do
6: $Q(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')$
7: $V(s) = \max_a Q(s, a)$
8: Let $\pi(s) = \arg\max_a Q(s, a)$, $\forall s$
9: return π

Variant 1: with $Q(s, a)$ table
$Q^*(s, a)$

- $Q^*(s, a) = \mathbb{E}[\text{total discounted reward of taking action } a \text{ in state } s, \text{ assuming all future actions are optimal}]$

 $$= R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a)V^*(s')$$

- $V^*(s') = \max_{a' \in \mathcal{A}} Q^*(s', a')$

\[
Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) \left[\max_{a' \in \mathcal{A}} Q^*(s', a') \right]
\]

$\pi^*(s) = \arg\max_{a \in \mathcal{A}} Q^*(s, a)$

- Insight: if we know Q^*, we can compute an optimal policy π^*!
$Q^*(s, a)$ w/deterministic transitions

- $Q^*(s, a) = \mathbb{E}[$total discounted reward of taking action a in state s, assuming all future actions are optimal$]$

 $$= R(s, a) + \gamma V^*(\delta(s, a))$$

- $V^*(\delta(s, a)) = \max_{a' \in \mathcal{A}} Q^*(\delta(s, a), a')$

$$Q^*(s, a) = R(s, a) + \gamma \max_{a' \in \mathcal{A}} Q^*(\delta(s, a), a')$$

$$\pi^*(s) = \arg\max_{a \in \mathcal{A}} Q^*(s, a)$$

- Insight: if we know Q^*, we can compute an optimal policy π^*!
Q-Learning

Whiteboard

– Q-Learning Algorithm
 • Case 1: Deterministic Environment
 • Case 2: Nondeterministic Environment

– ϵ-greedy Strategy