Recitation 1
Background

10-301/10-601: Introduction to Machine Learning
01/21/2022

1 NumPy and Workflow

NumPy Notebook
Workflow Presentation
Logging Notebook

2 Vectors, Matrices, and Geometry

1. Inner Product: \(\mathbf{u} = [6 \ 1 \ 2]^T, \mathbf{v} = [3 \ -10 \ -2]^T \), what is the inner product of \(\mathbf{u} \) and \(\mathbf{v} \)? What is the geometric interpretation?

The inner product (aka dot product) of the two vectors \(\mathbf{u} \cdot \mathbf{v} = 4 \). Geometrically, this value is proportional to the projection of \(\mathbf{u} \) on \(\mathbf{v} \).

2. Cauchy-Schwarz inequality (Optional): Given \(\mathbf{u} = [3 \ 1 \ 2]^T, \mathbf{v} = [3 \ -1 \ 4]^T \), what is \(||\mathbf{u}||_2 \) and \(||\mathbf{v}||_2 \)? What is \(\mathbf{u} \cdot \mathbf{v} \)? How do \(\mathbf{u} \cdot \mathbf{v} \) and \(||\mathbf{u}||_2||\mathbf{v}||_2 \) compare? Is this always true?

\[
||\mathbf{u}||_2 = \sqrt{3^2 + 1^2 + 2^2} = 3.74 \quad \text{and} \quad ||\mathbf{v}||_2 = \sqrt{3^2 + (-1)^2 + 4^2} = 5.10
\]

\(\mathbf{u} \cdot \mathbf{v} = 16 \). Since \(||\mathbf{u}||_2||\mathbf{v}||_2 = 19.074, ||\mathbf{u}||_2||\mathbf{v}||_2 > \mathbf{u} \cdot \mathbf{v} \).

In the general case, the Cauchy-Schwarz inequality states that \(\forall \mathbf{u}, \mathbf{v} : (\mathbf{u} \cdot \mathbf{v})^2 \geq (\mathbf{u} \cdot \mathbf{v})^2 \) where \(\cdot \) denotes a valid inner product operation.

3. Matrix algebra. Generally, if \(\mathbf{A} \in \mathbb{R}^{M \times N} \) and \(\mathbf{B} \in \mathbb{R}^{N \times P} \), then \(\mathbf{AB} \in \mathbb{R}^{M \times P} \) and \((AB)_{ij} = \sum_k A_{ik}B_{kj} \).

Given \(\mathbf{A} = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 2 & 2 \\ 0 & 0 & 4 \end{bmatrix} \), \(\mathbf{B} = \begin{bmatrix} 4 & -3 & 2 \\ 1 & 1 & -1 \\ 3 & -2 & 2 \end{bmatrix} \), \(\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} \), \(\mathbf{v} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \).
• What is \mathbf{AB}? Does $\mathbf{BA} = \mathbf{AB}$? What is \mathbf{Bu}?

• What is rank of \mathbf{A}?

• What is \mathbf{A}^T?

• Calculate \mathbf{uv}^T.

• What are the eigenvalues of \mathbf{A}?

\[
\begin{bmatrix}
21 & -11 & 10 \\
8 & -2 & 2 \\
12 & -8 & 8
\end{bmatrix},
\mathbf{AB} \neq \mathbf{BA},
\mathbf{Bu} = \begin{bmatrix}
8 \\
-2 \\
9
\end{bmatrix}
\]

• Rank of $\mathbf{A} = 3$

• $\mathbf{A}^T = \begin{bmatrix}
1 & 0 & 0 \\
2 & 2 & 0 \\
5 & 2 & 4
\end{bmatrix}$

• $\mathbf{uv}^T = \begin{bmatrix}
3 & 2 & 1 \\
6 & 4 & 2 \\
15 & 10 & 5
\end{bmatrix}$

• The eigenvalues of \mathbf{A} are 1, 2 and 4. In general, we find the eigenvalues for square matrices by finding the roots of the matrix's characteristic polynomial.

4. Geometry: Given a line $2x + y = 2$ in the two-dimensional plane,

• If a given point (α, β) satisfies $2\alpha + \beta > 2$, where does it lie relative to the line?

• What is the relationship of vector $\mathbf{v} = [2, 1]^T$ to this line?

• What is the distance from origin to this line?

• Above the line.

• This vector is orthogonal to the line.

• The distance is $\frac{2}{\sqrt{5}}$. Generally the distance from a point (α, β) to a line $Ax + By + C = 0$ is given by $\frac{|A\alpha + B\beta + C|}{\sqrt{A^2 + B^2}}$.
3 CS Fundamentals

1. For each \((f, g)\) functions below, is \(f(n) \in \mathcal{O}(g(n))\) or \(g(n) \in \mathcal{O}(f(n))\) or both?

- \(f(n) = \log_2(n), \ g(n) = \log_3(n)\)
- \(f(n) = 2^n, \ g(n) = 3^n\)
- \(f(n) = \frac{n}{50}, \ g(n) = \log_{10}(n)\)
- \(f(n) = n^2, \ g(n) = 2^n\)

If \(f(n) \in \mathcal{O}(g(n))\), then:

\[\exists c, n_0 : \forall n \geq n_0, f(n) \leq cg(n)\]

- both
- \(f(n) \in \mathcal{O}(g(n))\)
- \(g(n) \in \mathcal{O}(f(n))\)
- \(f(n) \in \mathcal{O}(g(n))\)

2. Find the DFS Pre-Order, In-Order, Post-Order and BFS traversal of the following binary tree. What are the time complexities of the traversals?

DFS (pre-order): 5, 3, 1, 4, 8, 7, 10
DFS (in-order): 1, 3, 4, 5, 7, 8, 10
DFS (post-order): 1, 4, 3, 7, 10, 8, 5
BFS: 5, 3, 8, 1, 4, 7, 10

Time complexities are all \(\mathcal{O}(n)\) where \(n\) is the number of nodes in the tree.
4 Calculus

1. If \(f(x) = x^3e^x \), find \(f'(x) \).
 \[f'(x) = 3x^2e^x + x^3e^x \] by product rule

2. If \(f(x) = e^x \), \(g(x) = 4x^2 + 2 \), find \(h'(x) \), where \(h(x) = f(g(x)) \).
 \[h'(x) = 8xe^{4x^2+2} \] by chain rule

3. If \(f(x,y) = y\log(1-x) + (1-y)\log(x) \), \(x \in (0,1) \), evaluate \(\frac{\partial f(x,y)}{\partial x} \) at the point \((\frac{1}{2}, \frac{1}{2}) \).
 \[\frac{\partial f(x,y)}{\partial x} = -\frac{y}{1-x} + \frac{1-y}{x} \]. Therefore, \(\frac{\partial f(x,y)}{\partial x} \mid_{x=\frac{1}{2},y=\frac{1}{2}} = 0. \)

4. Find \(\frac{\partial}{\partial w_j} x^T w \), where \(x \) and \(w \) are \(M \)-dimensional real-valued vectors and \(1 \leq j \leq M \).
 \[x^T w = \sum_{i=1}^{M} x_i w_i \] Therefore, \(\frac{\partial}{\partial w_j} x^T w = x_j \).

5 Probability and Statistics

You should be familiar with event notations for probabilities, i.e. \(P(A \cup B) \) and \(P(A \cap B) \), where \(A \) and \(B \) are binary events.

In this class, however, we will mainly be dealing with random variable notations, where \(A \) and \(B \) are random variables that can take on different states, i.e. \(a_1, a_2 \), and \(b_1, b_2 \), respectively. Below are some notation equivalents, as well as basic probability rules to keep in mind.

- \(P(A = a_1 \cap B = b_1) = P(A = a_1, B = b_1) = p(a_1, b_1) \)
- \(P(A = a_1 \cup B = b_1) = \sum_{b \in B} p(a_1, b) + \sum_{a \in A} p(a, b_1) - p(a_1, b_1) \)
- \(p(a_1 \mid b_1) = \frac{p(a_1, b_1)}{p(b_1)} \)
- \(p(a_1) = \sum_{b \in B} p(a_1, b) \)

1. Two random variables, \(A \) and \(B \), each can take on two values, \(a_1, a_2 \), and \(b_1, b_2 \), respectively. \(a_1 \) and \(b_2 \) are considered disjoint (mutually exclusive). \(P(A = a_1) = 0.5 \), \(P(B = b_2) = 0.5 \).
 - What is \(p(a_1, b_2) \)?
• What is $p(a_1, b_1)$?
• What is $p(a_1 \mid b_2)$?

• $P(A = a_1, B = b_2) = 0$
• $P(A = a_1, B = b_1) = p(b_1 \mid a_1)p(a_1) = 0.5$ since $p(b_1 \mid a_1) = 1$
• $P(A = a_1 \mid B = b_2) = 0$

2. Now, instead, a_1 and b_2 are not disjoint, but the two random variables A and B are independent.

• What is $p(a_1, b_2)$?
• What is $p(a_1, b_1)$?
• What is $p(a_1 \mid b_2)$?

• $p(a_1, b_2) = 0.25$
• $p(a_1, b_1) = 0.25$ since now $p(b_1 \mid a_1) = 0.5$
• $p(a_1 \mid b_2) = 0.5$

3. A student is looking at her activity tracker (Fitbit/Apple Watch) data and she notices that she seems to sleep better on days that she exercises. They observe the following:

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Good Sleep</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>0.3</td>
</tr>
<tr>
<td>yes</td>
<td>no</td>
<td>0.2</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>0.4</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
<td>0.1</td>
</tr>
</tbody>
</table>

• What is the $P(\text{GoodSleep} = \text{yes} \mid \text{Exercise} = \text{yes})$?

• Why doesn’t $P(\text{GoodSleep} = \text{yes}, \text{Exercise} = \text{yes}) = P(\text{GoodSleep} = \text{yes}) \cdot P(\text{Exercise} = \text{yes})$?

• The student merges her activity tracker data with her food logs and finds that the $P(\text{Eatwell} = \text{yes} \mid \text{Exercise} = \text{yes}, \text{GoodSleep} = \text{yes})$ is 0.25. What is the probability of all three happening on the same day?

• $P(\text{GoodSleep} = \text{yes} \mid \text{Exercise} = \text{yes}) = \frac{0.3}{0.3+0.2} = 0.6$

• Good Sleep and Exercise are not independent.

• $P(\text{Eatwell} = \text{yes}, \text{Exercise} = \text{yes}, \text{GoodSleep} = \text{yes}) = P(\text{Eatwell} = \text{yes} \mid \text{Exercise} = \text{yes}, \text{GoodSleep} = \text{yes}) \cdot P(\text{Exercise} = \text{yes}, \text{GoodSleep} = \text{yes}) = 0.075$
4. What is the expectation of X where X is a single roll of a fair 6-sided dice ($S = \{1, 2, 3, 4, 5, 6\}$)? What is the variance of X?

- $E[X] = 3.5$
- $Var[X] = 2.917$

For variance, we can do $E[(X - E[X])^2]$ or use the equivalent formulation $E[X^2] - E[X]^2$. In the first method, this gives $\frac{1}{6} \sum_{x \in \{1, 2, 3, 4, 5, 6\}} (x - 3.5)^2$

5. Imagine that we had a new dice where the sides were $S = \{3, 4, 5, 6, 7, 8\}$. How do the expectation and the variance compare to our original dice?

- $E[X] = 5.5$
- $Var[X] = 2.917$, note $Var[X + a] = Var[X]$ for scalar a