Today:

• Learning graphical models
 1. EM: learning from partially observed data
 2. Mixture models, clustering
 3. Structure learning

Readings:

• Bishop chapter 9-9.2 mixture models
• Kevin Murphy chapter 11.4 (optional)

EM : Learning from Partially Observed Training Data
EM algorithm

- Let X be all *observed* variable values (over all examples)
- Let Z be all *unobserved* variable values

EM algorithm:

- Iterate until convergence:
 - **E step:** use current Bayes net parameters θ to estimate unobserved Z values

\[
\theta_{K=1|S=i,A=j} = P(K = 1|S = i, A = j) = \frac{\sum_{m=1}^{M} P_\theta(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} P_\theta(s_m = i, a_m = j)}
\]

- **M step:** use estimated values of Z to retrain Bayes net params θ
EM algorithm

- Let \(X \) be all observed variable values (over all examples)
- Let \(Z \) be all unobserved variable values

EM algorithm:

- Iterate until convergence:
 - **E step:** use current Bayes net parameters \(\theta \) to estimate unobserved \(Z \) values
 - **M step:** use estimated values of \(Z \) to retrain Bayes net params \(\theta \)

\[
\theta_{K=1|S=i,A=j} = P(K = 1|S = i, A = j) = \frac{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j)}
\]

wait – how do we compute these probabilities??

m\(^{th}\) training example
Only One Unobserved Variable:

How do we calculate \(P(K=1 \mid S=s, A=a, E=e, H=h) \)?

\[
P(K = 1 \mid S = s, A = a, E = e, H = h) = \frac{P(S = s, A = a, K = 1, E = e, H = h)}{P(S = s, A = a, E = e, H = h)} \\
= \frac{P(S = s, A = a, K = 1, E = e, H = h)}{P(S = s, A = a, K = 1, E = e, H = h) + P(S = s, A = a, K = 0, E = e, H = h)}
\]

where:

\[
P(S = s, A = a, K = k, E = e, H = h) = P(S = s)P(A = a)P(K = k \mid S = s, A = a)P(E = e \mid K = k)P(H = 1 \mid K = k)
\]

Efficient: \(O(2^n) \) for \(n \) Boolean variables.
EM algorithm

- Let X be all *observed* variable values (over all examples)
- Let Z be all *unobserved* variable values

EM algorithm:

- Iterate until convergence:
 - **E step:** use current Bayes net parameters θ to estimate unobserved Z values
 - **M step:** use estimated values of Z to retrain Bayes net params θ

$$
\theta_{K=1|S=i,A=j} = P(K = 1|S = i, A = j) = \frac{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j)}
$$

m^{th} training example
EM Algorithm - Precisely

EM is a general procedure for learning from partly observed data.

Given observed training feature values X, unobserved Z, from all examples.

Iterate until convergence:

- **E Step**: Use X and current θ to calculate $P(Z|X, \theta)$
- **M Step**: Replace current θ by

$$
\theta \leftarrow \operatorname{arg \ max}_{\theta'} E_{P(Z|X, \theta)} \left[\log P(X, Z|\theta') \right]
$$

Guaranteed to find θ that is local maximum of $E_{P(Z|X, \theta)} \left[\log P(X, Z|\theta') \right]$
Using Unlabeled Data to Help Train Naïve Bayes Classifier

Learn $P(Y|X)$

<table>
<thead>
<tr>
<th></th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
EM for semi-supervised Naïve Bayes

Given observed set X, unobserved set Y of values (only missing values are labels Y for some examples)

E step: Calculate for each training example, k
the expected value of each unobserved value of variable Y

\[E_{P(Y|X_1,...,X_N)}[y(k)] = P(y(k) = 1|x_1(k),...,x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^{1} P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)} \]

M step: Calculate estimates similar to MLE, but replacing each count by its expected count
EM for semi-supervised Naïve Bayes

Given observed set X, unobserved set Y of values (only missing values are labels Y for some examples)

E step: Calculate for each training example, k
the expected value of each unobserved value of variable Y

\[
E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), \ldots x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}
\]

Why is expected value of Boolean-valued Y just P(Y=1)?

Answer: the definition of expected value:

\[
E_{P(Y)}[Y] = \sum_{y\in\{0,1\}} P(Y = y) \cdot y
\]

\[
= [P(Y = 1) \cdot 1] + [P(Y = 0) \cdot 0]
\]

\[
= P(Y = 1)
\]
EM for semi-supervised Naïve Bayes

Given observed set X, unobserved set Y of values (only missing values are labels Y for some examples)

E step: Calculate for each training example, k

the expected value of each unobserved value of variable Y

\[E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k),...x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)} \]

M step: Calculate estimates similar to MLE, but replacing each count by its expected count
Given observed set X, unobserved set Y of values (only missing values are labels Y for some examples)

E step: Calculate for each training example, k

the expected value of each unobserved variable Y

$$E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k),...x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$$

M step: Calculate estimates similar to MLE, but replacing each count by its expected count

$$\theta_{ij|m} = \hat{P}(X_i = j|Y = m) = \frac{\sum_k P(y(k) = m|x_1(k)\ldots x_N(k)) \delta(x_i(k) = j)}{\sum_k P(y(k) = m|x_1(k)\ldots x_N(k))}$$

MLE would be:

$$\hat{P}(X_i = j|Y = m) = \frac{\sum_k \delta((y(k) = m) \wedge (x_i(k) = j))}{\sum_k \delta(y(k) = m)}$$
20 Newsgroups
Question: What if our data provides no Y labels, but we believe $P(Y,X_1,X_2,X_3,X_4)$ is defined by this Naïve Bayes net structure?

Can we still use EM to learn $P(Y,X_1,X_2,X_3,X_4)$?
Question: What if our data provides no Y labels, but we believe \(P(Y,X1,X2,X3,X4) \) is defined by this Naïve Bayes net structure?

→ Unsupervised clustering
→ Y is the unobserved indicator of which cluster each X belongs to.
 \(P(Y=1|X) \), \(P(Y=0|X) \) indicate the prob. that X belongs to each cluster
→ Or, if we want to consider more clusters, we define Y to have more values (i.e., Y in \{0,1,2,…,N\})

Unobserved cluster label to be learned
Question: What if our data provides no Y labels, but we believe \(P(Y, X_1, X_2, X_3, X_4) \) is defined by this Naïve Bayes net structure?

→ Unsupervised clustering
→ \(Y \) is the unobserved indicator of which cluster each \(X \) belongs to. \(P(Y=1|X), P(Y=0|X) \) indicate the prob. that \(X \) belongs to each cluster

Suppose we assume \(P(X_1, X_2, X_3, X_4) \) is a mixture of two distributions (two clusters). Then:

\[
P(X_1, X_2, X_3, X_4) = P(Y=1) P(X_1, X_2, X_3, X_4 | Y=1) + P(Y=0) P(X_1, X_2, X_3, X_4 | Y=0)
\]
Question: What if our data provides no Y labels, but we believe \(P(Y,X_1,X_2,X_3,X_4) \) is defined by this Naïve Bayes net structure?

\[\rightarrow \text{Unsupervised clustering} \]
\[\rightarrow Y \text{ is the unobserved indicator of which cluster each } X \text{ belongs to.} \]
\[P(Y=1|X), P(Y=0|X) \text{ indicate the prob. that } X \text{ belongs to each cluster} \]

Suppose we assume \(P(X_1,X_2,X_3,X_4) \) is a mixture of two distributions (two clusters). Then:
\[
P(X_1,X_2,X_3,X_4) = P(Y=1)P(X_1,X_2,X_3,X_4 | Y=1) + P(Y=0)P(X_1,X_2,X_3,X_4 | Y=0)
\]

This form is called a “mixture distribution”
Question: What if our data provides no Y labels, but we believe $P(Y,X_1,X_2,X_3,X_4)$ is defined by this Naïve Bayes net structure?

→ Unsupervised clustering : EM

Learned probabilistic cluster label

<table>
<thead>
<tr>
<th>Pr</th>
<th>Y</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Question: What if our data provides no Y labels, but we believe $P(Y,X_1,X_2,X_3,X_4)$ is defined by this Naïve Bayes net structure?

→ Unsupervised clustering : EM

What if real-valued X_i’s?
Question: What if our data provides no Y labels, but we believe \(P(Y, X_1, X_2, X_3, X_4) \) is defined by this Naïve Bayes net structure?

\[Y \rightarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \]

→ Unsupervised clustering : EM

What if real-valued \(X_i \)'s?
Need different form of \(P(X_i|Y) \)
e.g., Gaussian

\[
P(X_i = x|Y = y) = \frac{1}{\sqrt{2\pi\sigma_{iy}^2}} \exp\left(-\frac{1}{2\sigma_{iy}^2} (x - \mu_{iy})^2\right)
\]

<table>
<thead>
<tr>
<th>Y</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>0.1</td>
<td>7.2</td>
<td>3.1</td>
<td>1.4</td>
</tr>
<tr>
<td>?</td>
<td>9.9</td>
<td>2.1</td>
<td>5.0</td>
<td>0.2</td>
</tr>
<tr>
<td>?</td>
<td>8.0</td>
<td>0.7</td>
<td>5.1</td>
<td>0.9</td>
</tr>
<tr>
<td>?</td>
<td>1.1</td>
<td>6.2</td>
<td>2.9</td>
<td>2.1</td>
</tr>
<tr>
<td>?</td>
<td>1.4</td>
<td>8.3</td>
<td>2.7</td>
<td>1.8</td>
</tr>
</tbody>
</table>

\[P(X) \rightarrow \]

\[X \rightarrow \]
Question: What if our data provides no Y labels, but we believe \(P(Y, X_1, X_2, X_3, X_4) \) is defined by this Naïve Bayes net structure?

→ Unsupervised clustering : EM

\[
\begin{array}{c|cccc}
Y & X_1 & X_2 & X_3 & X_4 \\
\hline
? & 0.1 & 7.2 & 3.1 & 1.4 \\
? & 9.9 & 2.1 & 5.0 & 0.2 \\
? & 8.0 & 0.7 & 5.1 & 0.9 \\
? & 1.1 & 6.2 & 2.9 & 2.1 \\
? & 1.4 & 8.3 & 2.7 & 1.8 \\
\end{array}
\]

\[
\begin{array}{c|ccccc}
Pr & Y & X_1 & X_2 & X_3 & X_4 \\
\hline
0.8 & 1 & 0.1 & 7.2 & 3.1 & 1.4 \\
0.2 & 0 & 0.1 & 7.2 & 3.1 & 1.4 \\
0.3 & 1 & 9.9 & 2.1 & 5.0 & 0.2 \\
0.7 & 0 & 9.9 & 2.1 & 5.0 & 0.2 \\
0.4 & 1 & 8.0 & 0.7 & 5.1 & 0.9 \\
0.6 & 0 & 8.0 & 0.7 & 5.1 & 0.9 \\
0.7 & 1 & 1.1 & 6.2 & 2.9 & 2.1 \\
0.3 & 0 & 1.1 & 6.2 & 2.9 & 2.1 \\
0.6 & 1 & 1.4 & 8.3 & 2.7 & 1.8 \\
0.4 & 0 & 1.4 & 8.3 & 2.7 & 1.8 \\
\end{array}
\]
EM for Mixture of Gaussians Clustering

Let's simplify to make this easier:

1. Assume $X = \langle X_1 \ldots X_n \rangle$, and the X_i are conditionally independent given Z. (the Naïve Bayes assumption).
 $P(X|Z = j) = \prod_i N(X_i|\mu_{ji}, \sigma_{ji})$

2. Assume only 2 clusters (Z in $\{0, 1\}$), and $\forall i, j, \sigma_{ji} = \sigma$
 $P(X) = \sum_{j=1}^{2} P(Z = j|\pi) \prod_i N(x_i|\mu_{ji}, \sigma)$

3. Assume σ known, $\pi_1 \ldots \pi_K, \mu_{li} \ldots \mu_{Ki}$ unknown

Observed: $X = \langle X_1 \ldots X_n \rangle$
Unobserved: Z
EM for Gaussian mixture model clustering

Given observed real-valued variables X_i, unobserved Z

where $\theta = \langle \pi, \mu_{ji} \rangle$

$\pi \equiv P(Z = 1)$

$\mu_{ji} \equiv \text{mean of Gaussian for } P(X_i | Z = j)$

Iterate until convergence:

- **E Step**: For each observed example $X(n)$, calculate $P(Z(n) \mid X(n), \theta)$

$$P(z(n) = k \mid x(n), \theta) = \frac{\prod_i N(x_i(n) \mid \mu_{k,i}, \sigma)}{\sum_j \prod_i N(x_i(n) \mid \mu_{j,i}, \sigma)} \left(\frac{\pi^k (1 - \pi)^{(1-k)}}{\pi^j (1 - \pi)^{(1-j)}} \right)$$

- **M Step**: Update

$$\pi \leftarrow \frac{1}{N} \sum_{n=1}^{N} E[z(n)]$$

$$\mu_{ji} \leftarrow \frac{\sum_{n=1}^{N} P(z(n) = j \mid x(n), \theta) \cdot x_i(n)}{\sum_{n=1}^{N} P(z(n) = j \mid x(n), \theta)}$$
Goal: Learn mixture distribution, interpreting Z as cluster label

Learn $P(X_1, X_2 | \theta) =$

$P(Z=1 | \theta) P(X_1, X_2 | Z=1, \theta) \]

$+ P(Z=0 | \theta) P(X_1, X_2 | Z=0, \theta)$

<table>
<thead>
<tr>
<th>Z</th>
<th>X_1</th>
<th>X_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>?</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>?</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Goal: Learn mixture distribution, interpreting Z as cluster label

Learn \(P(X_1, X_2 \mid \theta) = \)
\(P(Z=1 \mid \theta) P(X_1, X_2 \mid Z=1, \theta) \)
\(+ P(Z=0 \mid \theta) P(X_1, X_2 \mid Z=0, \theta) \)

EM Algorithm

1. Choose any initial \(\theta \)

2. Iterate until convergence:
 - E Step: Use \(X \) and current \(\theta \) to calculate \(P(Z \mid X, \theta) \)
 - M Step: Replace current \(\theta \) by
 \(\theta \leftarrow \arg \max_{\theta'} {E_{P(Z \mid X, \theta)}[\log P(X, Z \mid \theta')]} \)

<table>
<thead>
<tr>
<th>Z</th>
<th>X1</th>
<th>X2</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>?</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>?</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Observed data \(X_1, X_2 \), unknown cluster assignment \(Z \)
Observed data X_1, X_2, unknown cluster assignment Z

Goal: Learn mixture distribution, interpreting Z as cluster label

Learn $P(X_1, X_2 | \theta) =$

\[P(Z=1 | \theta) P(X_1, X_2 | Z=1, \theta) + P(Z=0 | \theta) P(X_1, X_2 | Z=0, \theta) \]

EM Algorithm
1. Choose any initial θ
2. Iterate until convergence:
 - **E Step:** Use X and current θ to calculate $P(Z|X, \theta)$
 - **M Step:** Replace current θ by
 \[\theta \leftarrow \arg \max_{\theta'} E_{P(Z|X, \theta)} \left[\log P(X, Z|\theta') \right] \]

<table>
<thead>
<tr>
<th>Z</th>
<th>X1</th>
<th>X2</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>?</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>?</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

E-Step

<table>
<thead>
<tr>
<th>Probability</th>
<th>Z</th>
<th>X1</th>
<th>X2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>1</td>
<td>0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

...
Observed data X_1, X_2, unknown cluster assignment Z

Goal: Learn mixture distribution, interpreting Z as cluster label

Learn $P(X_1, X_2 \mid \theta) =$
\[P(Z=1 \mid \theta) \ P(X_1, X_2 \mid Z=1, \theta) + P(Z=0 \mid \theta) \ P(X_1, X_2 \mid Z=0, \theta) \]

<table>
<thead>
<tr>
<th>Probability</th>
<th>Z</th>
<th>X1</th>
<th>X2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>1</td>
<td>0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

EM Algorithm
1. Choose any initial θ
2. Iterate until convergence:
 • E Step: Use X and current θ to calculate $P(Z \mid X, \theta)$
 • M Step: Replace current θ by
 \[\theta \leftarrow \text{arg max} \ E_{P(Z \mid X, \theta)}[\log P(X, Z \mid \theta')] \]

\[\theta_{Z=1} \equiv P(Z = 1) \leftarrow \frac{1}{N} \sum_{n=1}^{N} P_{Z \mid X, \theta}(Z_n = 1) \]
\[= \frac{0.8 + 0.3 + 0.6 + \ldots}{3 + \ldots} \]
Goal: Learn mixture distribution, interpreting Z as cluster label

Learn $P(X_1, X_2 | \theta) =$

$P(Z=1 | \theta) P(X_1, X_2 | Z=1, \theta)$
$+ P(Z=0 | \theta) P(X_1, X_2 | Z=0, \theta)$

EM Algorithm

1. Choose any initial θ
2. Iterate until convergence:

 - **E Step**: Use X and current θ to calculate $P(Z|X, \theta)$
 - **M Step**: Replace current θ by $\theta \leftarrow \arg \max_{\theta'} E_{P(Z|X, \theta)}[\log P(X, Z|\theta')]$

<table>
<thead>
<tr>
<th>Probability</th>
<th>Z</th>
<th>X1</th>
<th>X2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>1</td>
<td>0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

...

M-Step $\theta_{Z=1}$

$$\theta_{Z=1} \equiv P(Z = 1) \leftarrow \frac{1}{N} \sum_{n=1}^{N} P_{Z|X, \theta}(Z_n = 1)$$

$$= \frac{0.8 + 0.3 + 0.6 + \ldots}{3 + \ldots}$$

Note if Z observed, we would have

$$\theta_{Z=1} \equiv P(Z = 1) \leftarrow \frac{1}{N} \sum_{n=1}^{N} Z$$
Goal: Learn mixture distribution, interpreting Z as cluster label

Learn \(P(X_1, X_2 \mid \theta) = \)
\(P(Z=1 \mid \theta) P(X_1, X_2 \mid Z=1, \theta) \)
\(+ P(Z=0 \mid \theta) P(X_1, X_2 \mid Z=0, \theta) \)

<table>
<thead>
<tr>
<th>Probability</th>
<th>Z</th>
<th>X1</th>
<th>X2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>1</td>
<td>0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

\(\mu_{X_i \mid Z=j} \)

\[
\mu_{X_i \mid Z=j} \leftarrow \frac{\sum_{n=1}^{N} P(Z_n = j) X_{i,n}}{\sum_{n=1}^{N} P(Z_n = j)}
\]

e.g.,

\[
\mu_{x_2 \mid Z=1} = \frac{0.8(-1.3) + 0.3(1.2) + 0.6(-0.6) + \ldots}{0.8 + 0.3 + 0.6 + \ldots}
\]
Goal: Learn mixture distribution, interpreting Z as cluster label

Learn $P(X_1, X_2 | \theta) =$

\[P(Z=1 | \theta) \ P(X_1, X_2 | Z=1, \theta) \]
\[+ \ P(Z=0 | \theta) \ P(X_1, X_2 | Z=0, \theta) \]

<table>
<thead>
<tr>
<th>Probability</th>
<th>Z</th>
<th>X1</th>
<th>X2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>1</td>
<td>0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
<td>-1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

M-Step: $\mu_{X_i|Z=j}$

\[\mu_{X_i|Z=j} = \frac{\sum_{n=1}^{N} P(Z_n = j) X_{i,n}}{\sum_{n=1}^{N} P(Z_n = j)} \]

e.g.,

\[\mu_{X_2|Z=1} = \frac{0.8(-1.3) + 0.3(1.2) + 0.6(-0.6) + \ldots}{0.8 + 0.3 + 0.6 + \ldots} \]
Final $P(Z) = [0.4893 \ 0.5107]$
Example: Mixture of Three (Spherical) Gaussians
EM assuming mixture of 3 Gaussian components: no conditional indep assumptions, so non-spherical Gaussians

10 iterations

20 iterations

60 iterations
EM assuming mixture of 3 Gaussian components: no conditional indep assumptions, so non-spherical Gaussians

10 iterations

20 iterations

60 iterations

2 components
EM assuming mixture of 3 Gaussian components: no conditional indep assumptions, so non-spherical Gaussians.
EM assuming mixture of 3 Gaussian components: no conditional indep assumptions, so non-spherical Gaussians

How should we choose the number of clusters?
How to choose number k of clusters?

- We can try multiple values of k, evaluating each by the data likelihood $P(\text{Data} \mid k \text{ component mixture model})$.

- Note if we do this on the training data, the k that maximizes $P(\text{trainData} \mid k \text{ component mixture model})$ will be $k = \text{number of training examples}$!

- Use held-out test data to chose k $P(\text{testData} \mid k \text{ component mixture model})$.
Applications of GMM in computer vision

1- Image segmentation:

\[X = (R, G, B)^T \]
What you should know about EM mixture model clustering

- Another application of EM to learn from partially observed data
- Unobserved variable: cluster label
- Based on Bayes net that models mixture distribution
- Can use this for both discrete-valued, real-valued X_i
- Doesn’t answer the question of *how many* clusters to assume
 - But cross validation can reveal which choice is best on held-out data
Learning Bayes Net Structure
How can we learn Bayes Net graph structure?

In general case, open problem
• can require lots of data (else high risk of overfitting)
• can use Bayesian priors, or other kinds of prior assumptions about graph structure to constrain search

One key result:
• Chow-Liu algorithm: finds “best” tree-structured network
• What’s best?
 – suppose $P(X)$ is true distribution, $T(X)$ is distribution of our tree-structured network, where $X = <X_1, \ldots, X_n>$
 – Chow-Liu minimizes Kullback-Leibler divergence:

$$KL(P(X) \mid\mid T(X)) \equiv \sum_k P(X = k) \log \frac{P(X = k)}{T(X = k)}$$
Kullback-Leibler Divergence

- \(KL(P(X) \| T(X)) \) is a measure of the difference between probability distributions \(P(X) \) and \(T(X) \)

\[
KL(P(X) \| T(X)) \equiv \sum_k P(X = k) \log \frac{P(X = k)}{T(X = k)}
\]

- It is asymmetric, always greater or equal to 0
- It is 0 iff \(P(X) = T(X) \)
Chow-Liu Algorithm

Key result: To minimize \(KL(P \| T) \) over possible tree networks \(T \) approximating true \(P \), it suffices to find the tree network \(T \) that maximizes the sum of mutual informations over its edges.

Mutual information for an edge between variable \(A \) and \(B \):

\[
I(A, B) = \sum_a \sum_b P(a, b) \log \frac{P(a, b)}{P(a)P(b)}
\]

This works because for tree networks with nodes \(\mathbf{X} \equiv \langle X_1 \ldots X_n \rangle \)

\[
KL(P(\mathbf{X}) \| T(\mathbf{X})) \equiv \sum_k P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)}
\]

\[
= -\sum_i I(X_i, Pa(X_i)) + \sum_i H(X_i) - H(X_1 \ldots X_n)
\]
Chow-Liu Algorithm

1. for each pair of variables A, B, use training data to estimate \(P(A,B), \ P(A), \text{ and } P(B) \)

2. for each pair A, B calculate mutual information

\[
I(A, B) = \sum_a \sum_b P(a, b) \log \frac{P(a, b)}{P(a)P(b)}
\]

3. calculate the maximum spanning tree over the set of variables, using edge weights \(I(A, B) \)
 (given N vars, this costs only \(O(N^2) \) time)

4. add arrows to edges to form a directed-acyclic graph

5. learn the CPD’ss for this graph
Chow-Liu algorithm example
Greedy Algorithm to find Max-Spanning Tree

[courtesy A. Singh, C. Guestrin]
Bayes Nets – What You Should Know

• Representation
 – Bayes nets represent joint distribution as a DAG + Conditional Distributions
 – D-separation lets us decode conditional independence assumptions

• Inference
 – NP-hard in general
 – For some graphs, closed form inference is feasible
 – Approximate methods too, e.g., Monte Carlo methods, …

• Learning
 – Easy for known graph, fully observed data (MLE’s, MAP est.)
 – EM for partly observed data, known graph
 – Learning graph structure: Chow-Liu for tree-structured networks
 – Hardest when graph unknown, data incompletely observed