Reinforcement Learning: Value Iteration + Q-Learning
Reminders

• Homework 5: Neural Networks
 – Out: Thu, Mar. 18
 – Due: Mon, Mar. 29 at 11:59pm

• Homework 6: Deep RL
 – Out: Mon, Mar. 29
 – Due: Wed, Apr. 07 at 11:59pm
VALUE ITERATION
Definitions for Value Iteration

Whiteboard
- State trajectory
- Value function
- Bellman equations
- Optimal policy
- Optimal value function
- Computing the optimal policy
- Ex: Path Planning
RL Terminology

Question: Match each term (on the left) to the corresponding statement or definition (on the right)

Terms:
A. a reward function
B. a transition probability
C. a policy
D. state/action/reward triples
E. a value function
F. transition function
G. an optimal policy
H. Matt’s favorite statement

Statements:
1. gives the expected future discounted reward of a state
2. maps from states to actions
3. quantifies immediate success of agent
4. is a deterministic map from state/action pairs to states
5. quantifies the likelihood of landing a new state, given a state/action pair
6. is the desired output of an RL algorithm
7. can be influenced by trading off between exploitation/exploration
Example: Path Planning
Example: Robot Localization

\[r(s, a) \text{ (immediate reward) values} \]

One optimal policy

\[V^*(s) \text{ values} \]
Value Iteration

Whiteboard

– Value Iteration Algorithm
– Synchronous vs. Asynchronous Updates
Value Iteration

Algorithm 1 Value Iteration

1: procedure VALUEITERATION($R(s, a)$ reward function, $p(\cdot|s, a)$ transition probabilities)
2: Initialize value function $V(s) = 0$ or randomly
3: while not converged do
4: for $s \in S$ do
5: $V(s) = \max_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')$
6: Let $\pi(s) = \arg\max_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')$, $\forall s$
7: return π

Variant 2: without Q(s,a) table
Algorithm 1 Value Iteration

1: procedure VALUEITERATION($R(s,a)$ reward function, $p(·|s,a)$ transition probabilities)
2: Initialize value function $V(s) = 0$ or randomly
3: while not converged do
4: for $s \in S$ do
5: for $a \in A$ do
6: \[Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s'|s,a)V(s')\]
7: $V(s) = \max_a Q(s,a)$
8: Let $\pi(s) = \arg\max_a Q(s,a)$, $\forall s$
9: return π

Variant 1: with $Q(s,a)$ table
Synchronous vs. Asynchronous Value Iteration

Algorithm 1 Asynchronous Value Iteration

1: procedure ASYNCHRONOUSVALUEITERATION($R(s,a), p(·|s,a)$)
2: Initialize value function $V(s)^{(0)} = 0$ or randomly
3: $t = 0$
4: while not converged do
5: for $s \in S$ do
6: $V(s)^{(t+1)} = \max_a R(s,a) + \gamma \sum_{s' \in S} p(s'|s,a)V(s')^{(t)}$
7: $t = t + 1$
8: return π (synchronous updates: compute and update $V(s)$ for each state one at a time)

Algorithm 1 Synchronous Value Iteration

1: procedure SYNCHRONOUSVALUEITERATION($R(s,a), p(·|s,a)$)
2: Initialize value function $V(s)^{(0)} = 0$ or randomly
3: $t = 0$
4: while not converged do
5: for $s \in S$ do
6: $V(s)^{(t+1)} = \max_a R(s,a) + \gamma \sum_{s' \in S} p(s'|s,a)V(s')^{(t)}$
7: $t = t + 1$
8: return π (synchronous updates: compute all the fresh values of $V(s)$ from all the stale values of $V(s)$, then update $V(s)$ with fresh values)
Value Iteration Convergence

very abridged

Theorem 1 (Bertsekas (1989))

V converges to V^*, if each state is visited infinitely often.

Theorem 2 (Williams & Baird (1993))

If $\max_s |V^{t+1}(s) - V^t(s)| < \epsilon$

then $\max_s |V^{t+1}(s) - V^*(s)| < \frac{2\epsilon \gamma}{1 - \gamma}, \forall s$

Theorem 3 (Bertsekas (1987))

Greedy policy will be optimal in a finite number of steps (even if not converged to optimal value function!)

Holds for both asynchronous and synchronous updates.

Provides reasonable stopping criterion for value iteration.

Often greedy policy converges well before the value function.
Question:
True or False: The value iteration algorithm shown below is an example of synchronous updates.
POLICY ITERATION
Policy Iteration

Algorithm 1 Policy Iteration
1: procedure POLICY_ITERATION($R(s, a)$ reward function, $p(·|s, a)$ transition probabilities)
2: Initialize policy π randomly
3: while not converged do
4: Solve Bellman equations for fixed policy π
 \[V^\pi(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s))V^\pi(s'), \forall s \]
5: Improve policy π using new value function
 \[\pi(s) = \arg\max_a R(s, a) + \gamma \sum_{a} \sum_{s' \in S} p(s'|s, a)V^\pi(s') \]
6: return π
Policy Iteration

Algorithm 1 Policy Iteration

1: procedure POLICY_ITERATION($R(s, a)$, transition probabilities)
2: Initialize policy π randomly
3: while not converged do
4: Solve Bellman equations for fixed policy π
 \[
 V^\pi(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s))V^\pi(s'), \quad \forall s
 \]
5: Improve policy π using new value function
 \[
 \pi(s) = \operatorname{argmax}_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V^\pi(s')
 \]
6: return π

Compute value function for fixed policy is easy
System of $|S|$ equations and $|S|$ variables
Greedy policy w.r.t. current value function
Greedy policy might remain the same for a particular state if there is no better action
Policy Iteration Convergence

In-Class Exercise:
How many policies are there for a finite sized state and action space?

In-Class Exercise:
Suppose policy iteration is shown to improve the policy at every iteration. Can you bound the number of iterations it will take to converge? If yes, what is the bound? If no, why not?
Value Iteration vs. Policy Iteration

- Value iteration requires $O(|A| |S|^2)$ computation per iteration
- Policy iteration requires $O(|A| |S|^2 + |S|^3)$ computation per iteration
- In practice, policy iteration converges in fewer iterations
Learning Objectives

Reinforcement Learning: Value and Policy Iteration

You should be able to...

1. Compare the reinforcement learning paradigm to other learning paradigms
2. Cast a real-world problem as a Markov Decision Process
3. Depict the exploration vs. exploitation tradeoff via MDP examples
4. Explain how to solve a system of equations using fixed point iteration
5. Define the Bellman Equations
6. Show how to compute the optimal policy in terms of the optimal value function
7. Explain the relationship between a value function mapping states to expected rewards and a value function mapping state-action pairs to expected rewards
8. Implement value iteration
9. Implement policy iteration
10. Contrast the computational complexity and empirical convergence of value iteration vs. policy iteration
11. Identify the conditions under which the value iteration algorithm will converge to the true value function
12. Describe properties of the policy iteration algorithm
Today’s lecture is brought you by the letter....
Q-LEARNING
Q-Learning

Whiteboard

– Motivation: What if we have zero knowledge of the environment?
– Q-Function: Expected Discounted Reward
Example: Robot Localization

Immediate rewards $r(s,a)$

State values $V^*(s)$

Immediate rewards $r(s,a)$

State values $V^*(s)$

Consider first the case where $P(s' | s, a)$ is deterministic.
Q-Learning

Whiteboard

- Q-Learning Algorithm
 - Case 1: Deterministic Environment
 - Case 2: Nondeterministic Environment

- Convergence Properties
- Exploration Insensitivity
- Ex: Re-ordering Experiences
- ϵ-greedy Strategy