Machine Learning 10-601/301

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

March 8, 2021

This section:

- Artificial neural networks
- Backpropagation
- Representation learning

Reading:

- Goodfellow: Chapter 6
- optional: Mitchell: Chapter 4

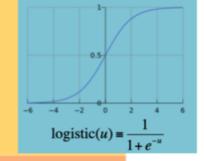
Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{0, 1\}$

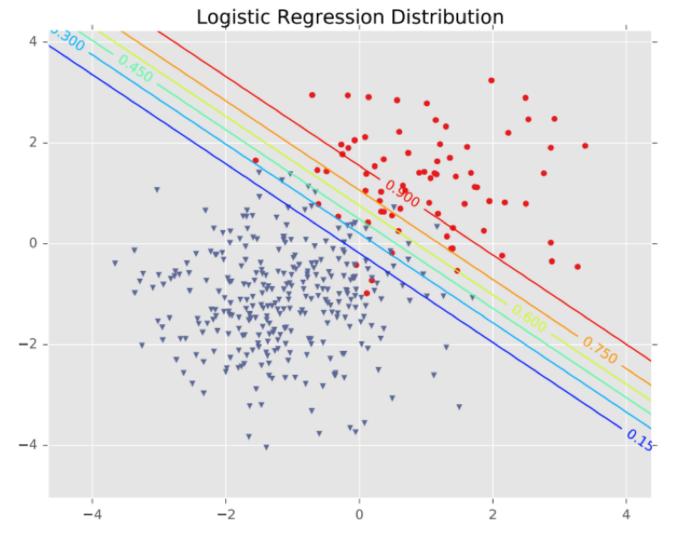
Model: Logistic function applied to dot product of parameters with input vector.

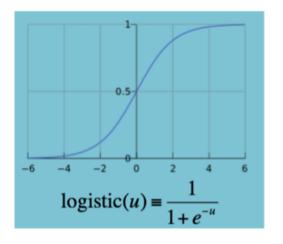
th input vector.
$$p_{m{ heta}}(y=1|\mathbf{x}) = rac{1}{1+\exp(-m{ heta}^T\mathbf{x})}$$



Learning: finds the parameters that minimize some objective function. $m{ heta}^* = rgmin J(m{ heta})$

Logistic Regression





$$P(Y = 1|X = \langle X_1, ...X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

We like logistic regression, but

$$P(Y = 1|X = \langle X_1, ...X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

how would it perform when trying to learn
 P(image contains Hillary Clinton | pixel values X₁, X₂ ... X_{10,000})

We like logistic regression, but

$$P(Y = 1|X = \langle X_1, ...X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

what X_i image features to use? edges? color blotches? generic face? subwindows? lighting invariant properties? position independent? SIFT features?

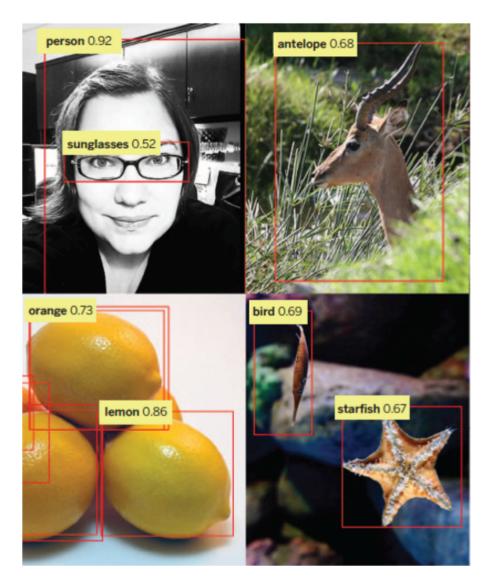
We like logistic regression, but

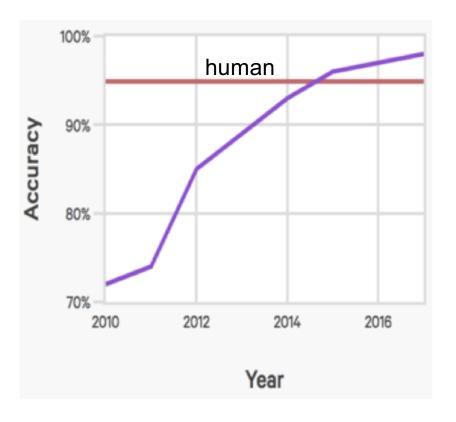
$$P(Y = 1|X = \langle X_1, ...X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

what X_i image features to use? edges? color blotches? generic face? subwindows? lighting invariant properties? position independent?

Deep nets: learn the features automatically!

Computer Vision

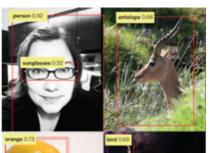




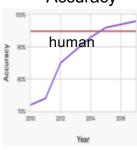
Imagenet Visual Recognition Challenge

Machine Translation

Vision



Accuracy



Strategic reasoning

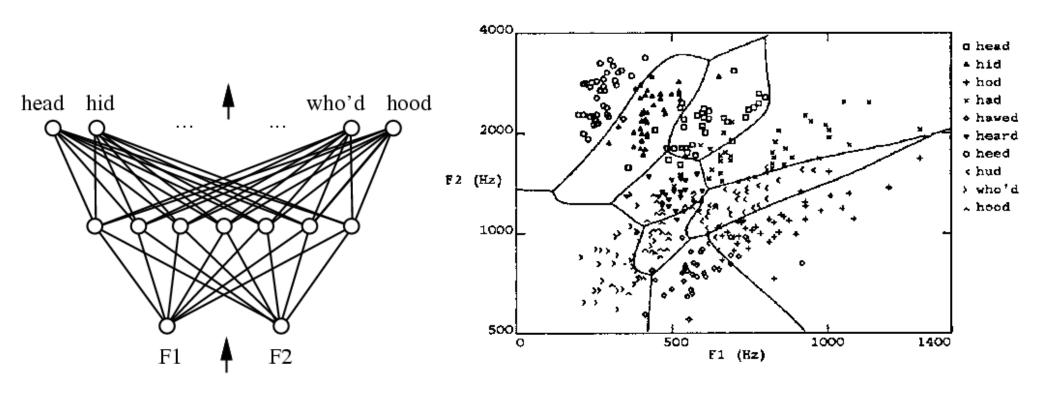
Speech to Text

Robots

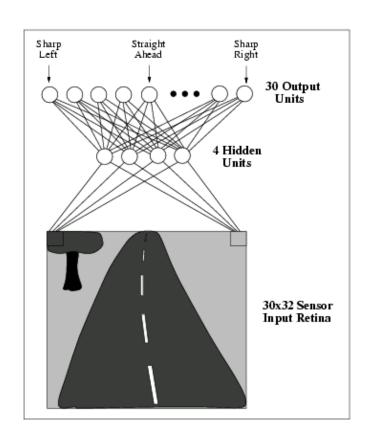
Artificial Neural Networks learn f: X -> Y

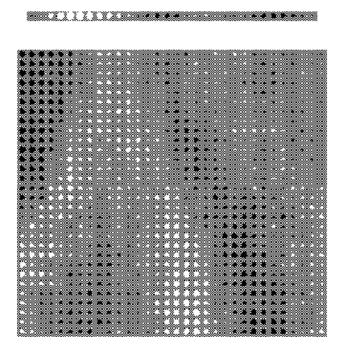
- f might be complex, non-linear, real or discrete-valued
- X (vector of) continuous and/or discrete vars
- Y (vector of) continuous and/or discrete vars
 - X = image, Y = new image if you drive forward 1 meter
 - X = microphone signal, Y = which word was spoken
- we can also train the network to learn P(Y|X)
 - Logistic regression is just a special case of a neural network
- Represent f by <u>network</u> of computational units which may contain billions of trained parameters

Multilayer Networks of Sigmoid Units



ALVINN [Pomerleau 1993]





Caption Generation

a car is parked in the middle of nowhere .

a ferry boat on a marina

a wooden table and chairs arranged in a room .

there is a cat sitting on a shelf.

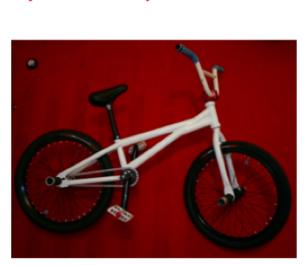
a little boy with a bunch of friends on the street.

with a group of people .

[from Russ Salakhutdinov]

Caption Generation

the two birds are trying to be seen in the water . (can't count)



the handlebars are trying to ride a bike rack . (nonsensical)

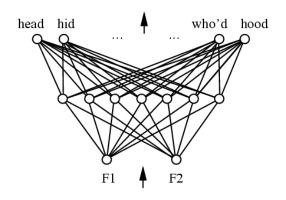
a giraffe is standing next to a fence in a field . (hallucination)

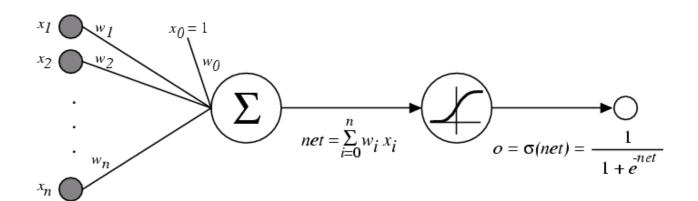
a parked car while driving down the road . (contradiction)

a woman and a bottle of wine in a garden . (gender)

[from Russ Salakhutdinov]

Sigmoid Unit





 $\sigma(x)$ is the sigmoid function

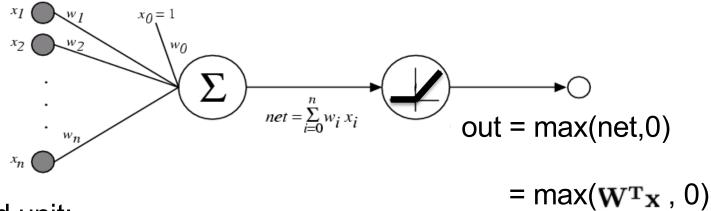
$$\frac{1}{1+e^{-x}}$$

Nice property:
$$\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$$

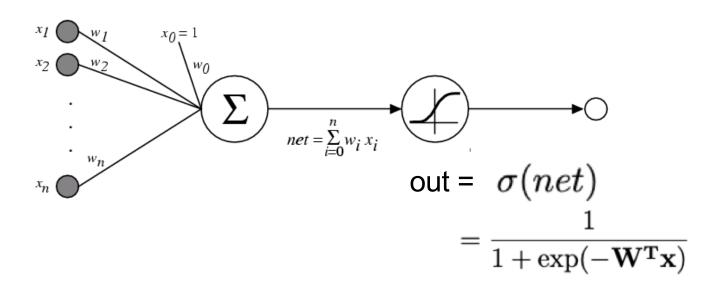
Sigmoid units are exactly the form we use for logistic regression!

Many kinds of units

Rectified linear unit: linear with thresholded output

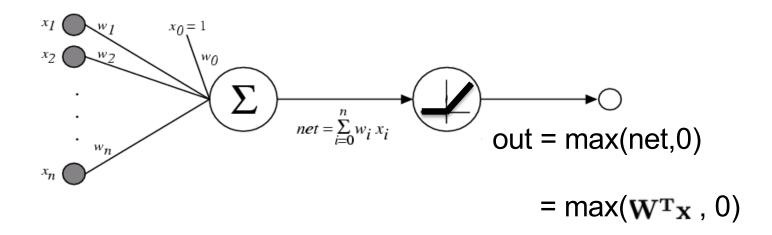


Sigmoid unit:



Units often constructed so that output is of the form f(g(x)).

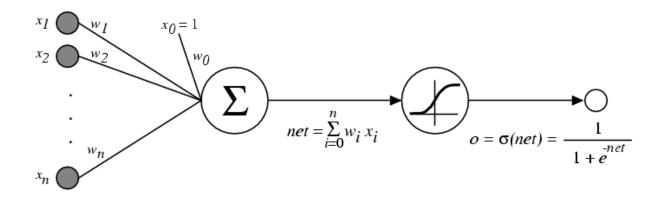
Rectified linear unit: linear with thresholded output



- $g(x) = net = W^Tx$
- $f(g(x)) = max(\mathbf{W}^{T}_{\mathbf{X}}, 0)$

Units often constructed so that output is of the form f(g(x)).

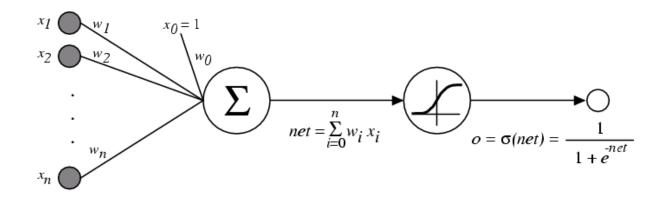
Sigmoid unit: linear with thresholded output



- $g(x) = net = W^Tx$
- $f(g(x)) = \frac{1}{1 + \exp(-\mathbf{W}^T\mathbf{x})}$

Units often constructed so that output is of the form f(g(x)).

Sigmoid unit: linear with thresholded output



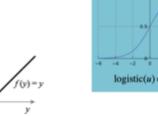
- $g(x) = net = W^Tx$
- $f(g(x)) = \frac{1}{1 + \exp(-\mathbf{W}^T\mathbf{x})}$
- Use chain rule to compute gradients!

$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g(x))}{\partial g(x)} \frac{\partial g(x)}{\partial x}$$

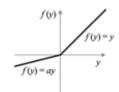
$$\frac{\partial f(g(x))}{\partial w_i} = \frac{\partial f(g(x))}{\partial g(x)} \ \frac{\partial g(x)}{\partial w_i}$$

Many types of parameterized units

Sigmoid units



- ReLU
- Leaky ReLU (fixed non-zero slope for input<0)
- Parametric ReLU (trainable slope)



- Max Pool
- Inner Product
- GRU's
- LSTM's
- Matrix multiply
- no end in sight

Any unit h(X; W) whose output is differentiable w.r.t. X and W

Training Deep Nets

1. Choose loss function $J(\theta)$ to optimize

- sum of squared errors for y continuous: $\Sigma (y h(x; \theta))^2$
- maximize conditional log likelihood: $\Sigma \log P(y|x;\theta)$
- MAP estimate: $\Sigma \log P(y|x; \theta) P(\theta)$
- 0/1 loss. Sum of classification errors: Σ δ(y = h(x; θ)

_ ...

2. Design network architecture

- Network of layers (ReLU's, sigmoid, convolutions, ...)
- Widths of layers
- Fully or partly interconnected

— ...

3. Training algorithm

- Derive gradient components $\frac{\partial J(\theta)}{\partial \theta_i}$
- Choose gradient descent method, including stopping condition
- (optional: Experiment with alternative network architectures)

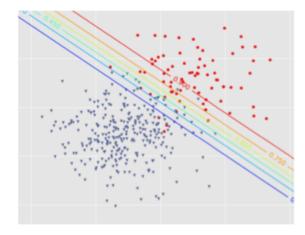
Example

Example: Learn probabilistic XOR

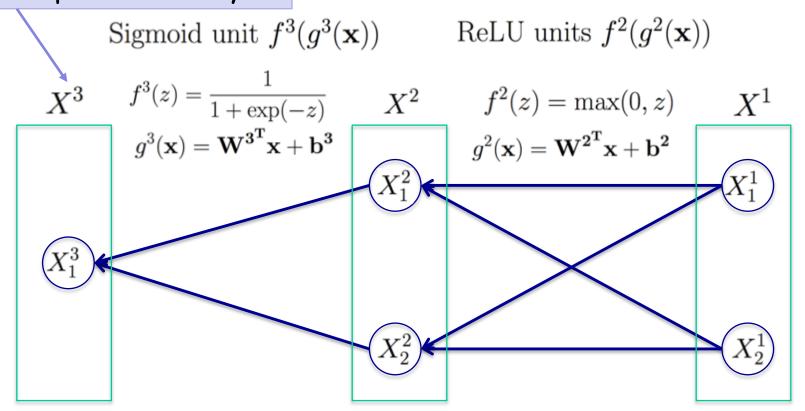
Given boolean Y, X₁, X₂ learn P(Y|X₁,X₂), where

X_1	X_2	$P(Y=1 X_1,X_2)$	$P(Y=0 X_1,X_2)$
0	0	0.1	0.9
1	0	0.9	0.1
0	1	0.9	0.1
1	1	0.1	0.9

Can we learn this with logistic regression?

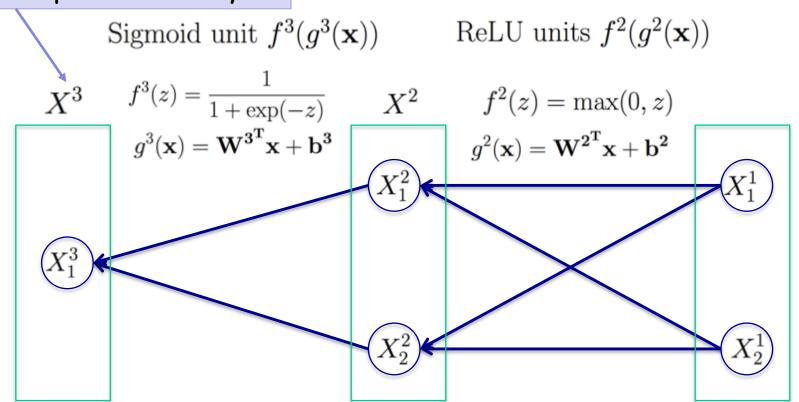


Superscript denotes layer



where
$$X_1^3 = P(Y = 1 | X = \mathbf{X^1})$$

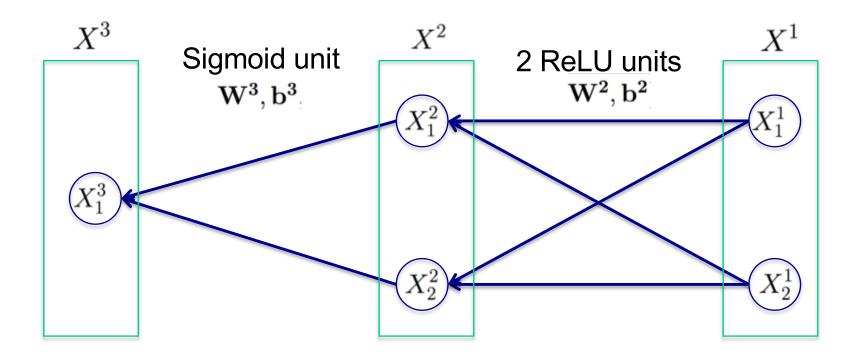
Superscript denotes layer



Loss function $J(\theta)$ to be minimized: negative log likelihood

 $J(\theta) = \sum -\log P(Y = y|X = \mathbf{x})$ Same as logistic $\langle \mathbf{x}, y \rangle \in D$

where
$$X_1^3 = P(Y = 1 | X = \mathbf{X^1}), \ \theta = \{\mathbf{W^3}, \mathbf{b^3}, \mathbf{W^2}, \mathbf{b^2}\}$$



Loss function $J(\theta)$ to be minimized: negative log likelihood of training data D

$$J(\theta) = \sum_{\langle x,y\rangle \in D} -\log P_{\theta}(Y = y|X = x; \ \theta)$$

where we define

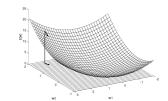
$$X_1^3 = P(Y = 1 | X^1; \theta), \quad \theta = \{ \mathbf{W^3}, \mathbf{b^3}, \mathbf{W^2}, \mathbf{b^2} \}$$

gradient

$$\nabla_{\theta} J(\theta) = \langle \frac{\partial J(\theta)}{\partial W_1^3}, \frac{\partial J(\theta)}{\partial W_2^3}, \frac{\partial J(\theta)}{\partial b^3}, \dots, \frac{\partial J(\theta)}{\partial b_1^2} \rangle$$

note by chain rule

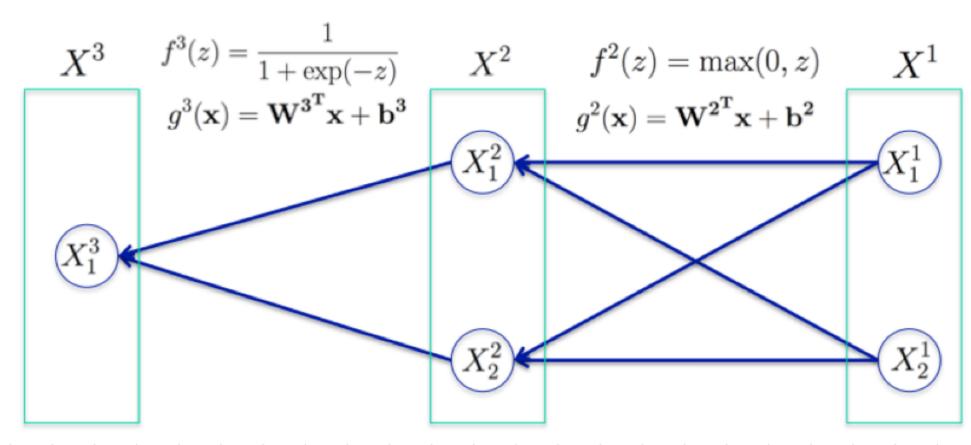
$$\frac{\partial J(\theta)}{\partial \theta_i} = \frac{\partial J(\theta)}{\partial X_1^3} \cdot \frac{\partial X_1^3}{\partial \theta_i}$$



Feed Forward

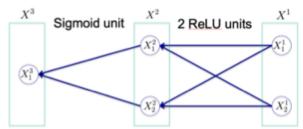
Sigmoid unit $f^3(g^3(\mathbf{x}))$

ReLU units $f^2(g^2(\mathbf{x}))$



X ³	$g^3(X^2)$	W _{3L}	b ³	X ²	$g^2(X^1)$	W ^{2T}	b ²	X1
0.53	0.12	0.10 -0.09	0.10	0.20	0.20	0.10 -0.10	0.10	1
				0.00	-0.15	-0.20 0.10	0.05	0
				1				1

Derive the gradient using chain rule



$$J(\theta) = -\sum_{k} \log P(Y = y_k | X = \mathbf{x}_k)$$

$$= -\sum_{k} y_k \log P(Y = 1 | X = x_k) + (1 - y_k) \log(1 - P(Y = 1 | X = x_k))$$

simplify notation by considering just one training example

$$\frac{\partial J(\theta)}{\partial X_{1}^{3}} = \frac{\partial \left(-Y \log P(Y=1|X) - (1-Y) \log(1-P(Y=1|X))\right)}{\partial X_{1}^{3}} \\
= \frac{\partial \left(-Y \log X_{1}^{3} - (1-Y) \log(1-X_{1}^{3})\right)}{\partial X_{1}^{3}} \\
= \frac{-Y}{X_{1}^{3}} - (1-Y) \frac{1}{1-X_{1}^{3}} (-1) \\
= \frac{-Y}{X_{1}^{3}} + \frac{(1-Y)}{1-X_{1}^{3}}$$
recall $\frac{\partial \ln z}{\partial z} = \frac{1}{z}$

Derive the gradient we need

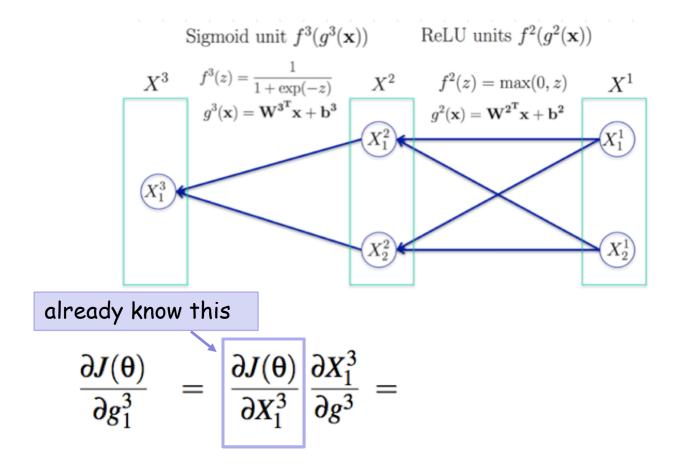
$$J(\theta) = -\sum_{k} \log P(Y = y_k | X = \mathbf{x}_k)$$

$$= -\sum_{k} y_k \log P(Y = 1 | X = x_k) + (1 - y_k) \log(1 - P(Y = 1 | X = x_k))$$

simplify notation by considering just one training example

$$\frac{\partial J(\theta)}{\partial X_{1}^{3}} = \frac{\partial \left(-Y \log P(Y=1|X) - (1-Y) \log(1-P(Y=1|X))\right)}{\partial X_{1}^{3}}
= \frac{\partial \left(-Y \log X_{1}^{3} - (1-Y) \log(1-X_{1}^{3})\right)}{\partial X_{1}^{3}}
= \frac{-Y}{X_{1}^{3}} - (1-Y) \frac{1}{1-X_{1}^{3}} (-1) \qquad \text{recall } \frac{\partial \ln z}{\partial z} = \frac{1}{z}
= \frac{-Y}{X_{1}^{3}} + \frac{(1-Y)}{1-X_{1}^{3}}$$

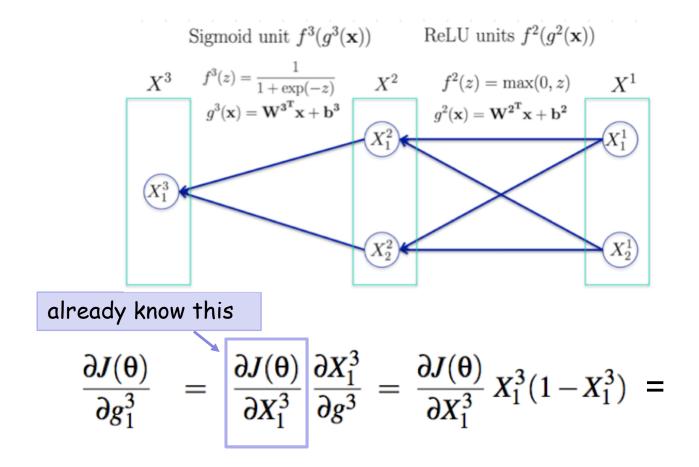
	Χ³	$g^3(X^2)$	W _{3L}	b ³	X ²	$g^2(X^1)$	$\mathbf{W}^{\mathbf{2T}} \mathbf{b}^{2}$	X1
Y _{true} =1	0.53	0.12	0.10 -0.09	0.10	0.20	0.20	0.10 -0.10 0.10	1
					0.00	-0.15	-0.20 0.10 0.05	0
					1			1



recall
$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z))$$

where $\sigma(z) = \frac{1}{1 + \exp(-z)}$

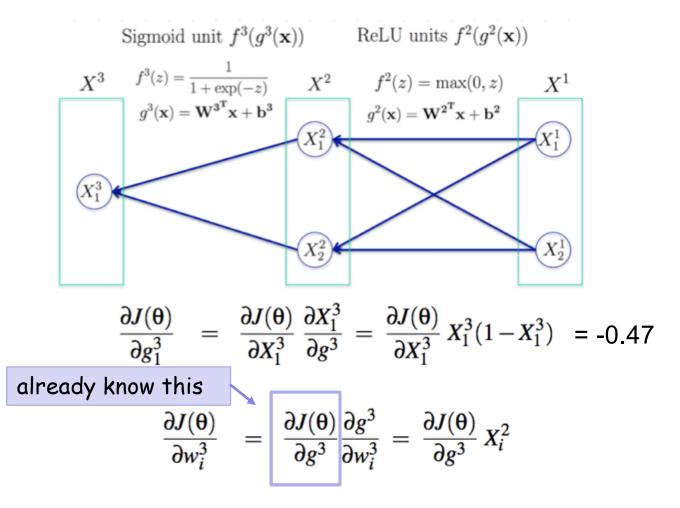
	X ³	$g^3(X^2)$	W ^{3T}	b ³	Χ²	$g^2(X^1)$	W ^{2T}	b ²	X1
Y _{true} =1	0.53	0.12	0.10 -0.09	0.10	0.20	0.20	0.10 -0.10	0.10	1
					0.00	-0.15	-0.20 0.10	0.05	0
					1				1



recall
$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z))$$

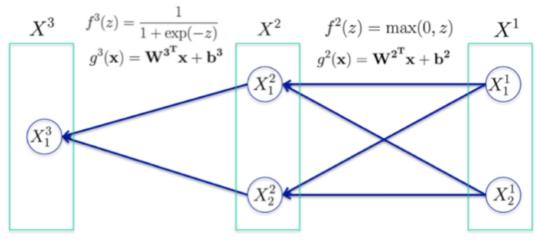
where $\sigma(z) = \frac{1}{1 + \exp(-z)}$

	Χ³	$g^3(X^2)$	W ^{3T}	b ³	X²	$g^2(X^1)$	W ^{2T}	b ²	X1
$Y_{true}=1$	0.53	0.12	0.10 -0.09	0.10	0.20	0.20	0.10 -0.10	0.10	1
					0.00	-0.15	-0.20 0.10	0.05	0
					1				1



2.12							
0.12	0.10 -0.09	0.10	0.20	0.20	0.10 -0.10	0.10	1
			0.00	-0.15	-0.20 0.10	0.05	0
			1				1

Sigmoid unit
$$f^3(g^3(\mathbf{x}))$$
 ReLU units $f^2(g^2(\mathbf{x}))$



$$\frac{\partial J(\theta)}{\partial g_1^3} = \frac{\partial J(\theta)}{\partial X_1^3} \frac{\partial X_1^3}{\partial g^3} = \frac{\partial J(\theta)}{\partial X_1^3} X_1^3 (1 - X_1^3)$$

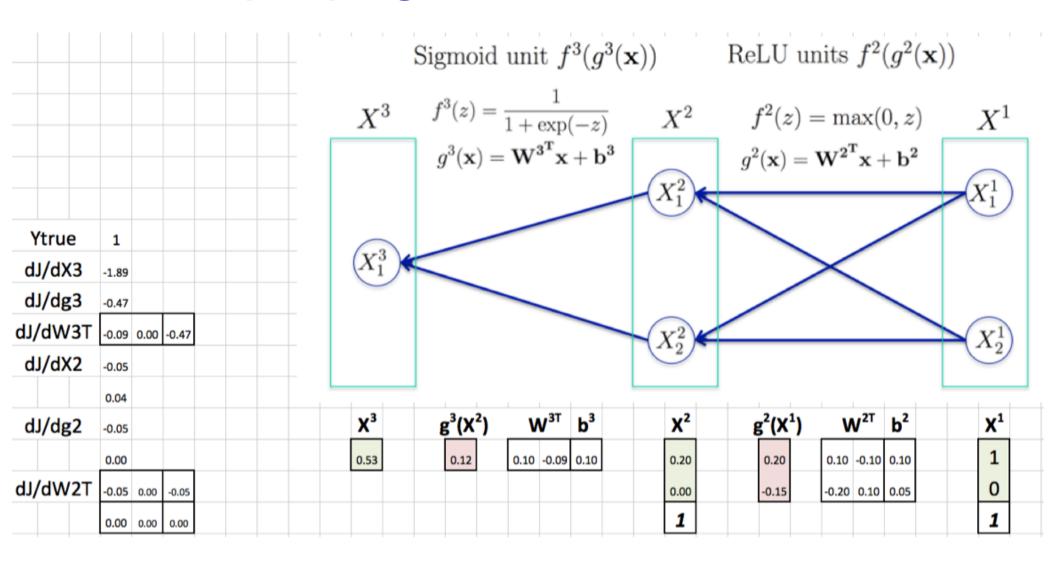
$$\frac{\partial J(\theta)}{\partial w_i^3} = \frac{\partial J(\theta)}{\partial g^3} \frac{\partial g^3}{\partial w_i^3} = \frac{\partial J(\theta)}{\partial g^3} X_i^2$$

$$\frac{\partial J(\theta)}{\partial X_i^2} = \frac{\partial J(\theta)}{\partial g^3} \frac{\partial g^3}{\partial X_i^2} = \frac{\partial J(\theta)}{\partial g^3} w_i^3$$

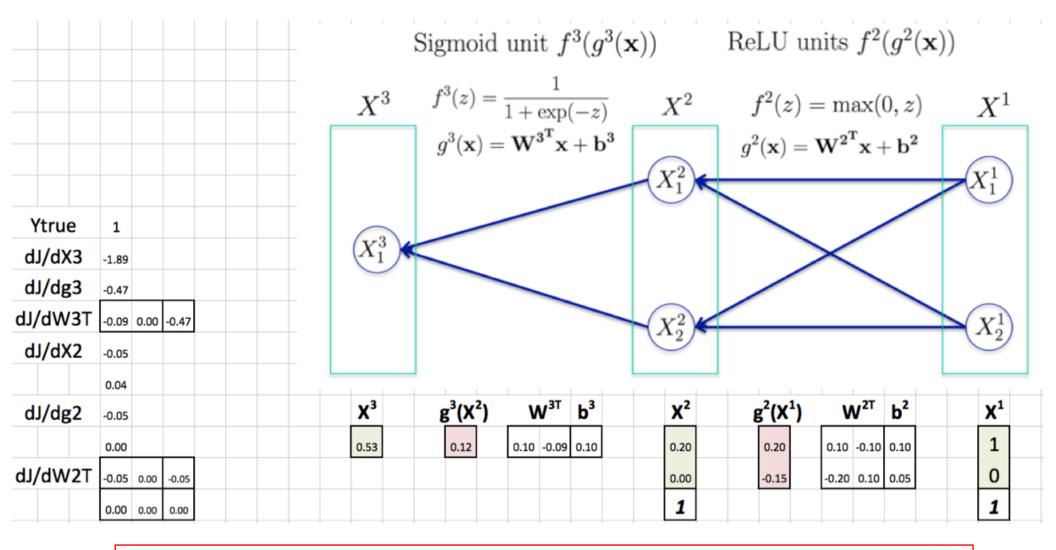
$$\frac{\partial J(\theta)}{\partial g_i^2} = \frac{\partial J(\theta)}{\partial X_i^2} \frac{\partial X_i^2}{\partial g_i^2} = \frac{\partial J(\theta)}{\partial X_i^2} \times [\text{if } g_i^2 > 0 \text{ then } 1 \text{ else } 0]$$

$$\frac{\partial J(\theta)}{\partial w_{ik}^2} = \frac{\partial J(\theta)}{\partial g_i^2} \frac{\partial g_i^2}{\partial w_{ik}^2} = \frac{\partial J(\theta)}{\partial g_i^2} X_k^1$$

Back propagation

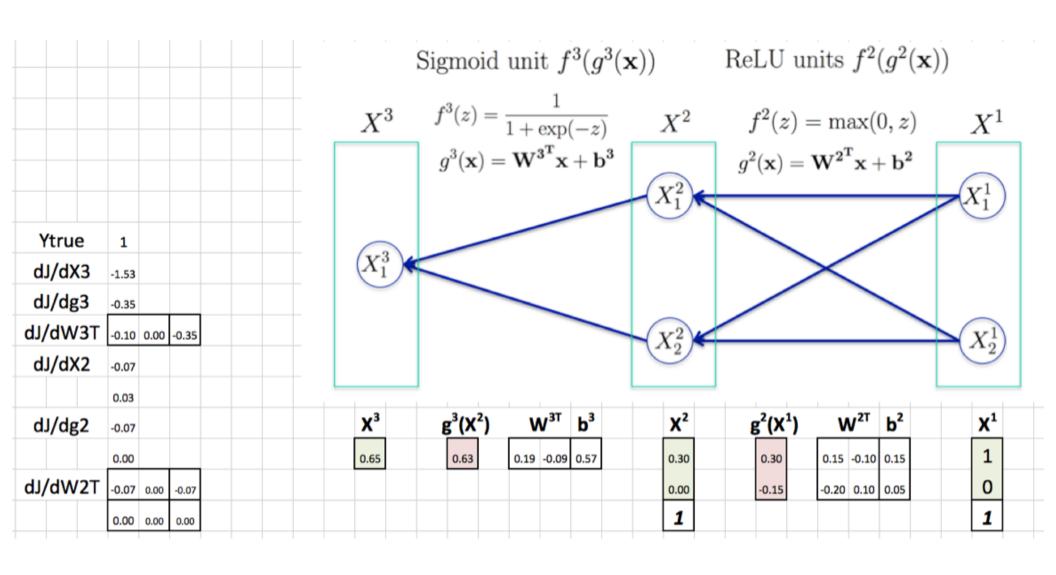


update each parameter according to $\theta_i \leftarrow \theta_i - \eta \frac{\partial J(\theta)}{\partial \theta_i}$

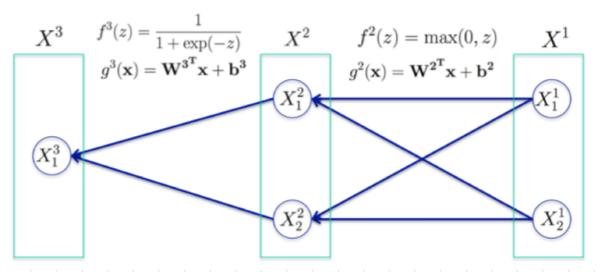


update each parameter according to $\theta_i \leftarrow \theta_i - \eta \frac{\partial J(\theta)}{\partial \theta_i}$

Next training example.. next stochastic gradient step...



Sigmoid unit $f^3(g^3(\mathbf{x}))$ ReLU units $f^2(g^2(\mathbf{x}))$



Given boolean Y, X_1 , X_2 learn $P(Y|X_1,X_2)$, where

$$P(Y = 0|X_1 = X_2) = 0.9$$

$$P(Y = 1 | X_1 \neq X_2) = 0.9$$

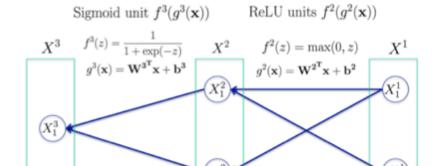
Training:

- stochastic gradient descent
- 20,000 iterations of gradient descent
- minibatch size 4
- no momentum, regularization, ...

Learned $P(Y = 1 | X_1^1, X_2^1; \theta)$

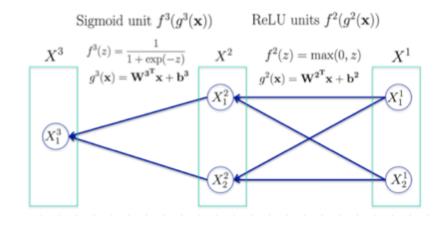
Input: [0 1] [1 1] [1 0] [0 0]

[0.5324]	[0.5343]	[0.5390]	[0.5348]
[0.5139]	[0.5145]	[0.5230]	[0.5149]
[0.5045]	[0.5048]	[0.5203]	[0.5046]
[0.5076]	[0.5073]	[0.5393]	[0.5075]
[0.4988]	[0.4976]	[0.5577]	[0.4987]
[0.4913]	[0.4883]	[0.5971]	[0.4895]
[0.4950]	[0.4877]	[0.6723]	[0.4898]
[0.4655]	[0.4541]	[0.7168]	[0.4553]
[0.4677]	[0.4527]	[0.7778]	[0.4422]
[0.4748]	[0.4093]	[0.8068]	[0.4093]
[0.5119]	[0.3754]	[0.8337]	[0.3752]
[0.5928]	[0.3440]	[0.8603]	[0.3450]
[0.6882]	[0.3108]	[0.8783]	[0.3083]
[0.7903]	[0.2789]	[0.8856]	[0.2789]
[0.8103]	[0.2315]	[0.8794]	[0.2315]
[0.8509]	[0.2062]	[0.8807]	[0.2062]
[0.8634]	[0.1860]	[0.8938]	[0.1860]
[0.8676]	[0.1626]	[0.8915]	[0.1626]
[0.8919]	[0.1511]	[0.8965]	[0.1511]
[0.8821]	[0.1392]	[0.8850]	[0.1392]
[0.8769]	[0.1294]	[0.9053]	[0.1292]



20,000 training iterations

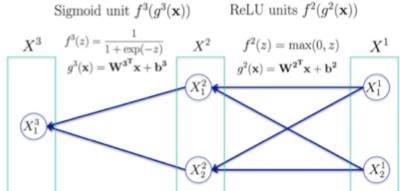
Learned representation for X²

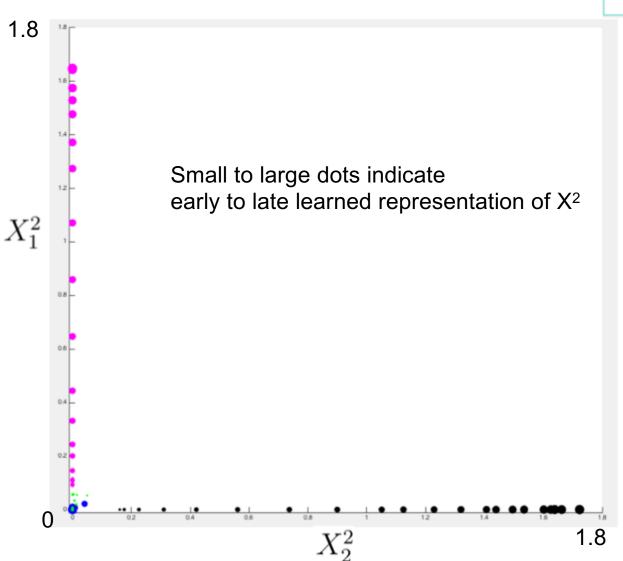


How does the hidden layer representation X² evolve over time during gradient descent training?

Input: [0 1] [1 1] [1 0]

[0 0]

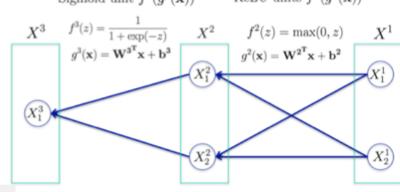


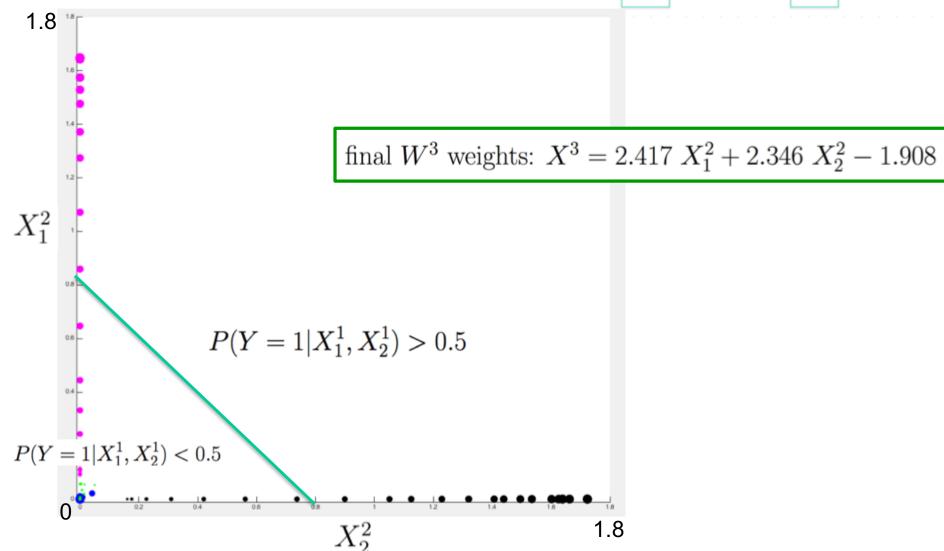


Final decision surface in terms of X²

Input X¹: [0 1] [1 1] [1 0]

 $[0\ 0]$





Backpropagation Algorithm for sigmoid netwk, minimizing Σ_d $(t_d-o_d)^2$

Initialize all weights to small random numbers. Until satisfied, Do

- For each training example, Do
 - 1. Input the training example to the network and compute the network outputs
 - 2. For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

3. For each hidden unit h

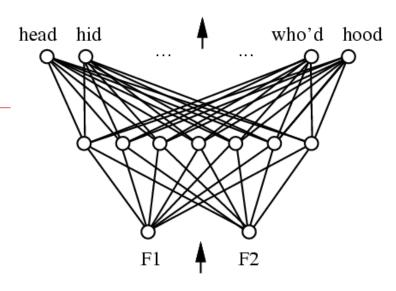
$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

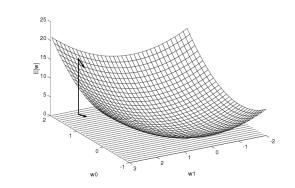
$$\Delta w_{i,j} = \eta \delta_j x_i$$



 x_d = input o_i = observed ith unit output t_i = target output w_{ij} = wt from i to j δ_k = error term backpropagated to unit k; that is: $dJ(\theta)$ / $dg^k(X^{k-1})$

Incremental (Stochastic) Gradient Descent

Given set D of training examples



Batch mode gradient descent:

Do until satisfied:

- 1. Compute the gradient $\nabla_{\theta} J_D(\theta)$
- 2. $\theta \leftarrow \theta \eta \nabla_{\theta} J_D(\theta)$

$$J_D(\theta) \equiv \sum_{d \in D} loss(d, \theta)$$

Incremental mode gradient descent Do until satisfied:

- For each training example d in D
 - 1. Compute the gradient $\nabla_{\theta} J_d(\theta)$
 - 2. $\theta \leftarrow \theta \eta \nabla_{\theta} J_d(\theta)$

$$J_d(\theta) \equiv loss(d, \theta)$$

Theory:

Incremental Gradient Descent (aka stochastic gradient descent) approximates Batch Gradient Descent arbitrarily closely as $\eta \to 0$.

Many modifications to gradient descent

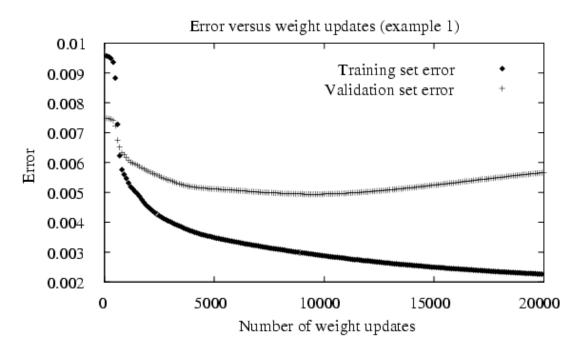
- Stochastic vs. Batch gradient descent (and mini-batches)
- Momentum
- Weight decay (MAP estimate with zero-mean prior)
- Gradient clipping
- Batch normalization
- Dropout
- Adagrad
- Adam
- no end in sight

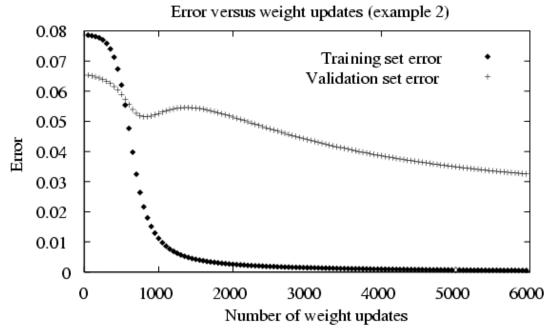
See ML Department course on Optimization Methods

Gradient Descent and Backpropagation

- Updates every network parameter simultaneously, each iteration
- Because we repeatedly use the chain rule to calculate gradients, easily generalized to arbitrary directed acyclic graphs
- Finds local minimum in $J(\theta)$, not necessarily global min
- Minimizes J(θ) over training examples, not necessarily future...
- Training can require hours, days, weeks, GPUs
- Applying network after training is relatively very fast

Overfitting in Neural Nets

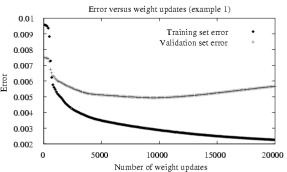




Dealing with Overfitting

Deep net training involves a hyperparameter n=number of gradient descent iterations

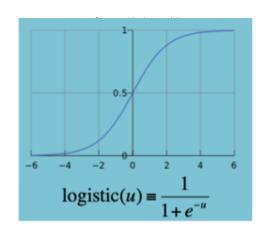
How do we choose n to optimize future accuracy?



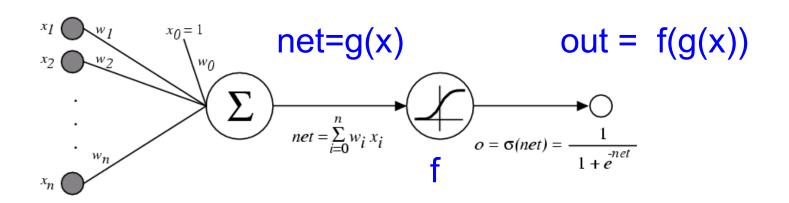
- Separate available data into <u>training</u> and <u>validation</u> set
- Use <u>training</u> to perform gradient descent
- test validation error frequently, save network at each step
- n ← number of iterations that optimizes <u>validation</u> set error
- → gives unbiased estimate of optimal n (but still an optimistically <u>biased</u> estimate of true error)

Initializing neural net weights

Usually initialize weights to random values close to zero



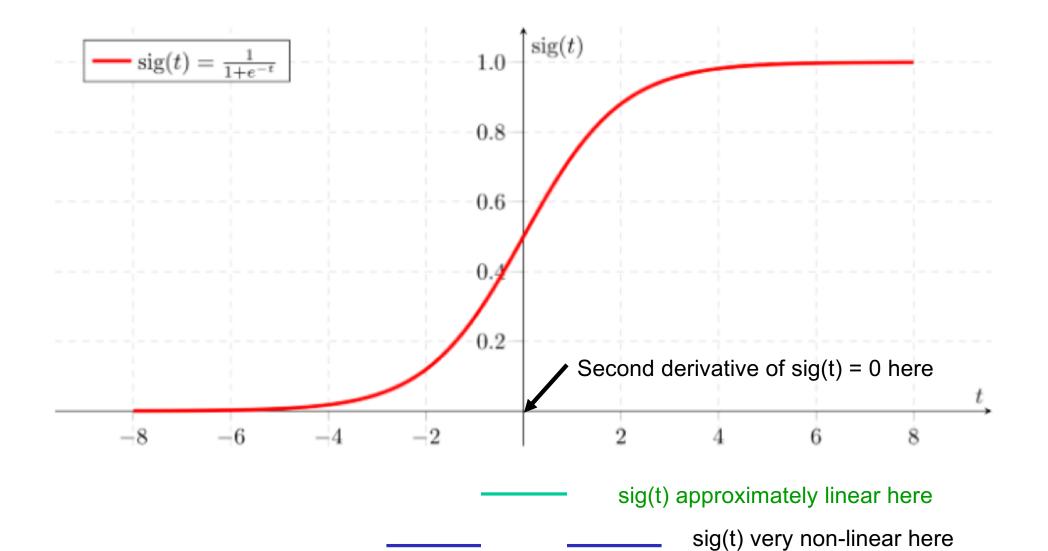
Why? Consider **sigmoid unit**...



Small w's \rightarrow small net=g(x) \rightarrow output f(g(x)) nearly linear function of inputs x

As we take more gradient steps, |w| grows → increasingly non-linear

Begin with small weights → Begin with ~linear function



Expressive Capabilities of ANNs

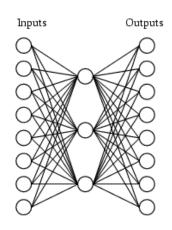
Boolean functions:

- Every boolean function can be represented by network with single hidden layer
- but might require exponential (in number of inputs) hidden units

Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

Learning Hidden Layer Representations



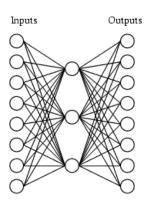
A target function:

Input	Output
$10000000 \rightarrow$	10000000
$01000000 \rightarrow$	01000000
$00100000 \rightarrow$	00100000
$00010000 \rightarrow$	00010000
$00001000 \rightarrow$	00001000
$00000100 \rightarrow$	00000100
$00000010 \rightarrow$	00000010
$00000001 \rightarrow$	00000001

Can this be learned??

Learning Hidden Layer Representations

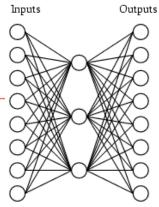
A network:

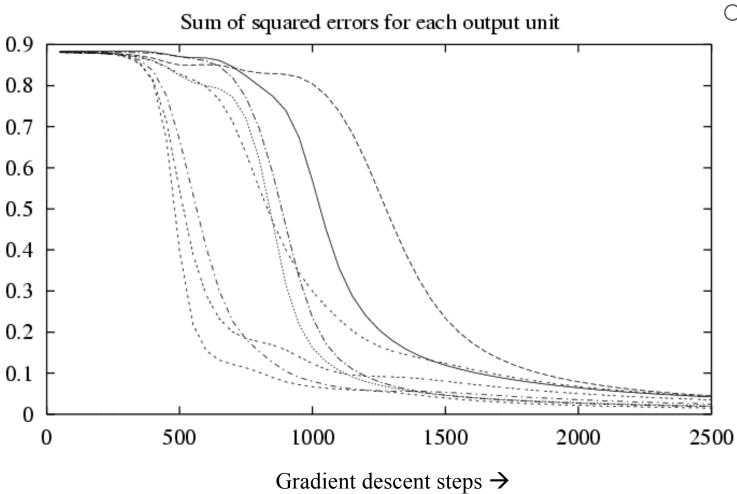


Learned hidden layer representation:

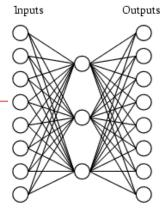
Input	ı	Hidden				Output			
Values									
1000000	$00 \rightarrow$.89	.04	.08	\rightarrow	10000000			
0100000	$00 \rightarrow$.01	.11	.88	\rightarrow	01000000			
0010000	$00 \rightarrow$.01	.97	.27	\rightarrow	00100000			
0001000	$00 \rightarrow$.99	.97	.71	\rightarrow	00010000			
0000100	$00 \rightarrow$.03	.05	.02	\rightarrow	00001000			
0000010	$00 \rightarrow$.22	.99	.99	\rightarrow	00000100			
000000	$10 \rightarrow$.80	.01	.98	\rightarrow	00000010			
0000000	$01 \rightarrow$.60	.94	.01	\rightarrow	00000001			

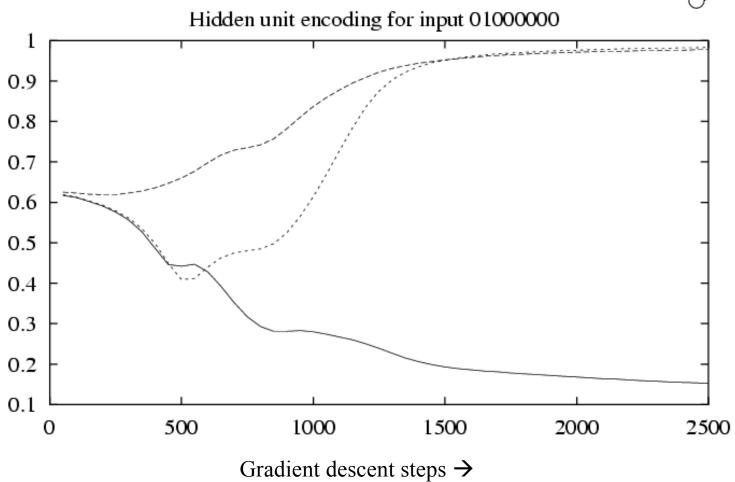
Training



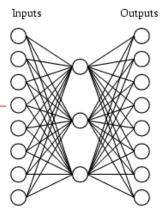


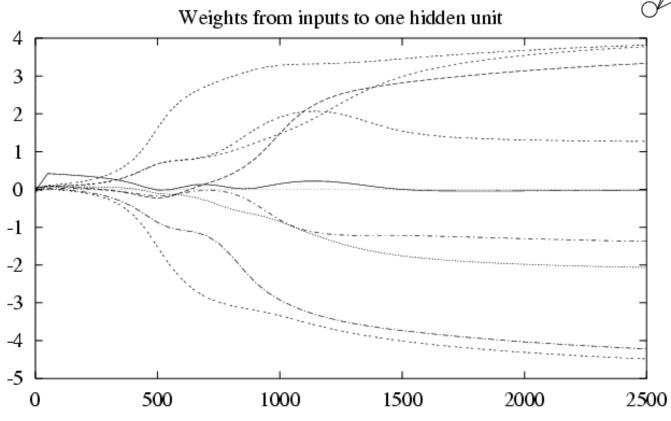
Training





Training





Gradient descent steps →

What you should know: Artificial Neural Networks

- Highly non-linear regression/classification
- Vector-valued inputs and outputs
- Potentially billions of parameters to estimate
- Hidden layers learn intermediate representations
- Directed acyclic graph, trained by gradient descent
- Chain rule over this DAG allows computing all derivatives
- Can use any differentiable loss function
 - we used neg. log likelihood in order to learn outputs P(Y|X)
- Gradient descent, local minima problems
- Overfitting and how to deal with it