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This section:
• Artificial neural networks
• Backpropagation
• Representation learning

Reading:
• Goodfellow: Chapter 6
• optional: Mitchell: Chapter 4







We like logistic regression, but

• how would it perform when trying to learn
P(image contains Hillary Clinton | pixel values X1, X2 ... X10,000)



We like logistic regression, but

what Xi image features to use?  edges? color blotches? generic face? 
subwindows? lighting invariant properties? position independent?  SIFT 
features?



We like logistic regression, but

what Xi image features to use?  edges? color blotches? generic face? 
subwindows? lighting invariant properties? position independent?

Deep nets : learn the features automatically !



Computer Vision

Imagenet Visual Recognition Challenge 

human



AccuracyVision

Speech to Text

human

Robots

Strategic reasoning
human

Machine Translation



Artificial Neural Networks learn f: X à Y

• f might be complex, non-linear, real or discrete-valued
• X (vector of) continuous and/or discrete vars
• Y (vector of) continuous and/or discrete vars

– X = image,  Y = new image if you drive forward 1 meter
– X = microphone signal,  Y = which word was spoken

• we can also train the network to learn P(Y|X)
– Logistic regression is just a special case of a neural network

• Represent f by network of computational units
which may contain billions of trained parameters





ALVINN
[Pomerleau 1993]



Caption Generation

[from Russ Salakhutdinov]



Caption Generation

[from Russ Salakhutdinov]



Sigmoid units are exactly the form we use for logistic regression!



Many kinds of units

• Rectified linear unit : linear with thresholded output

• Sigmoid unit:

out = max(net,0)

= max(.        , 0)

out =



Units often constructed so that output is of the form f(g(x)).

• Rectified linear unit : linear with thresholded output

• g(x) = net = 
• f(g(x)) = max(        , 0)

out = max(net,0)

= max(.        , 0)



• Sigmoid unit : linear with thresholded output

• g(x) = net = 
• f(g(x)) =

Units often constructed so that output is of the form f(g(x)).



• Sigmoid unit : linear with thresholded output

• g(x) = net = 
• f(g(x)) =

• Use chain rule to compute gradients!

Units often constructed so that output is of the form f(g(x)).



Many types of parameterized units

• Sigmoid units

• ReLU

• Leaky ReLU (fixed non-zero slope for input<0)

• Parametric ReLU (trainable slope)

• Max Pool

• Inner Product

• GRU’s 

• LSTM’s

• Matrix multiply

• ….   no end in sight

Any unit h(X; W) whose output is differentiable w.r.t. X and W



Training Deep Nets
1. Choose loss function J(θ) to optimize

– sum of squared errors for y continuous:   Σ (y – h(x; θ))2

– maximize conditional log likelihood:    Σ log P(y|x; θ)
– MAP estimate: Σ log P(y|x; θ) P(θ)
– 0/1 loss.  Sum of classification errors: Σ δ(y = h(x; θ)
– ...

2. Design network architecture
– Network of layers (ReLU’s, sigmoid, convolutions, ...)
– Widths of layers
– Fully or partly interconnected
– ...

3. Training algorithm
– Derive gradient components
– Choose gradient descent method, including stopping condition
– (optional: Experiment with alternative network architectures)



Example



• Given boolean Y, X1, X2 learn P(Y|X1,X2), where

• Can we learn this with logistic regression?

Example: Learn probabilistic XOR

X1 X2 P(Y=1|X1,X2) P(Y=0|X1,X2)

0 0 0.1 0.9
1 0 0.9 0.1
0 1 0.9 0.1
1 1 0.1 0.9



Superscript denotes layer



Superscript denotes layer

Same as logistic 
regression



2 ReLU unitsSigmoid unit



Feed Forward



Derive the gradient using chain rule

simplify notation by considering just one training example



Derive the gradient we need

simplify notation by considering just one training example

Ytrue=1



Ytrue=1

already know this



Ytrue=1

=

already know this



= -0.47

Ytrue=1

already know this





Back propagation





Next training example.. next stochastic gradient step…



Given boolean Y, X1, X2 learn P(Y|X1,X2), where

Training: 
- stochastic gradient descent
- 20,000 iterations of gradient descent
- minibatch size 4
- no momentum, regularization, ...



Input: [0 1]          [1 1]          [1 0]           [0 0] 

20,000 training iterations



Learned representation for X2

How does the hidden layer representation X2 evolve over 
time during gradient descent training?



Input: [0 1]          [1 1] [1 0]           [0 0] 

Learned representation for X2

1.8

1.8
0

Small to large dots indicate
early to late learned representation of X2



Input X1: [0 1]          [1 1] [1 0]           [0 0] 

Final decision surface in terms of X2

1.8

1.8
0



xd = input
oi = observed ith

unit output
ti = target output
wij = wt from i to j
δk= error term 

backpropagated 
to unit k; that is:
dJ(θ) / dgk(Xk-1)  

for sigmoid netwk, minimizing Σd (td-od)2



Incremental (Stochastic) Gradient Descent



Many modifications to gradient descent

• Stochastic vs. Batch gradient descent (and mini-batches)
• Momentum
• Weight decay (MAP estimate with zero-mean prior)
• Gradient clipping
• Batch normalization
• Dropout
• Adagrad
• Adam 
• ….   no end in sight

See ML Department course on Optimization Methods



Gradient Descent and Backpropagation

• Updates every network parameter simultaneously, each iteration
• Because we repeatedly use the chain rule to calculate 

gradients, easily generalized to arbitrary directed acyclic graphs
• Finds local minimum in J(θ), not necessarily global min
• Minimizes J(θ) over training examples, not necessarily future…
• Training can require hours, days, weeks,  GPUs
• Applying network after training is relatively very fast



Overfitting in Neural Nets



Dealing with Overfitting

Deep net training involves a hyperparameter 
n=number of gradient descent iterations

How do we choose n to optimize future accuracy? 

• Separate available data into training and validation set
• Use training to perform gradient descent
• test validation error frequently, save network at each step
• n ß number of iterations that optimizes validation set error

àgives unbiased estimate of optimal n
(but still an optimistically biased estimate of true error)



Initializing neural net weights

Usually initialize weights to random values close to zero

Why?  Consider sigmoid unit…

Small w’s à small net=g(x)  à output f(g(x)) nearly linear function of inputs x

As we take more gradient steps, |w| grows à increasingly non-linear 

net=g(x) out =  f(g(x))

f



sig(t) approximately linear here

sig(t) very non-linear here

Second derivative of sig(t) = 0 here

Begin with small weights à Begin with ~linear function









Gradient descent steps à



Gradient descent steps à



Gradient descent steps à



What you should know: Artificial Neural Networks

• Highly non-linear regression/classification
• Vector-valued inputs and outputs
• Potentially billions of parameters to estimate
• Hidden layers learn intermediate representations

• Directed acyclic graph, trained by gradient descent
• Chain rule over this DAG allows computing all derivatives
• Can use any differentiable loss function

– we used neg. log likelihood in order to learn outputs P(Y|X)

• Gradient descent, local minima problems
• Overfitting and how to deal with it


