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Reminders

Homework 3: KNN, Perceptron, Lin.Reg.
— Out: Wed, Feb. o5 (+ 1 day)
— Due:

Exam 1 Practice Problems
— problems + solutions released: Wed, Feb. 12

Midterm Exam 1

— Tue, Feb. 18, 7:00pm - 9:00pm
Today’s In-Class Poll

— http://p9.micourse.org




MIDTERM EXAM LOGISTICS



Midterm Exam

* Time [ Location
— Time: Evening Exam
Tue, Feb. 18, 7:00pm - 9:00pm
— Room: We will contact each student individually with your room
assignment. The rooms are not based on section.
— Seats: There will be assigned seats. Please arrive early.

— Please watch Piazza carefully for announcements regarding room / seat
assignments.
* Logistics
— Covered material: Lecture 1 - Lecture 8

— Format of questions:
* Multiple choice
* True/ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper

— No electronic devices
— You are allowed to bring one 8% x 11 sheet of notes (front and back)



Midterm Exam

* How to Prepare

— Attend the midterm review lecture
(right now!)

— Review exam practice problems
(we’ll post them)

— Review this year’s homework problems

— Consider whether you have achieved the
“learning objectives” for each lecture [ section



Midterm Exam

* Advice (for during the exam)

— Solve the easy problems first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated you’re likely
missing something

— Don’t leave any answer blank!
— If you make an assumption, write it down

— If you look at a question and don’t know the
answer:
* we probably haven’t told you the answer
* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it



Topics for Midterm 1

 Foundations e (Classification
— Probability, Linear — Decision Tree
Algebra, Geometry, — KNN
Calculus — Perceptron

— Optimization :
* Regression

— Linear Regression

- V,MN Rn]vcss'um

* Important Concepts
— Overfitting
— Experimental Design



SAMPLE QUESTIONS



Sample Questions

1.4 Probability

Assume we have a sample space ). Answer each question with T or F.

(a) [1 pts.] T or F: If events A, B, and C are disjoint then they are independent.

P(A)P(B|A)
P(A|B)

(b) [1 pts.] T or F: P(A|B) x . (The sign ‘o<’ means ‘is proportional to’)



Sample Questions
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Sample Questions

4.1 True or False

Answer each of the following questions with T or F and provide a one line justification.

(a) [2 pts.] Consider two datasets DV and D® where DO = {(z{", 4", . (", y")}
and D® = {( (12), yf)), oy (32, yfﬁ))} such that xl(-l) e R%, x§2) € R%. Suppose d; > d;
and n > m. Then the maximum number of mistakes a perceptron algorithm will make
is higher on dataset D™ than on dataset D®.



Sample Questions

(a) Old and new regression lines. (b) Old and new regression lnes. (¢) Ol and now regression lines.
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Sample Questions

(a) Old and new regression lines. (b) Old and new regression lnes. (¢) Ol and now regression lines.




Matching Game

Goal: Match the Algorithm to its Update Rule

1. SGD for Logistic Regression
he(x) = p(y = 1|x)

0 0, + (ho(xD) — y)

2. Least Mean Squares

he(x) = 0 x

5. 1

0, <+ 0 : .
§ b+ 1+ exp A(he(x(®)) — (@)

3. Perceptron
he(x) = sign(6” x)

6. . _ :
O < O + A(ho(x) — y@)zV

A. 1=5, 2=4, 3=6
B. 1=5, 2=6, 3=4
C°1:6)2=4)3:4
D. 1=5, 2=6, 3=6

E.1=6, 2=6, 3=6
F.1=6, 2=5, 3=5
G. 1=5, 2=5, 3=5
H. 1=4, 2=5, 3=6
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Q&A



Q:

A:

Q&A

Why did we focus mostly on the Perceptron mistake
bound for linearly separable data; isn’t that an
unrealistic setting?

Not at all! Even if your data isn’t linearly separable to
begin with, we can often add features to make it so.

mm t Exercise: Add

+1 +1 N ® |+ another featur.e to
transform this
+1 -1 < >

nonlinearly separable

-1 +1 - + O data into linearly
separable data.
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OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT



Gradient Descent
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Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

i procedure SGD(D, 6©)

2 6 — 61

52 while not converged do

4 47 i ~ Uniform({1,2,...,N}) &%
5 0+ 0 —7VeJ®(0)

6 return 6

We need a per-example objective:

Let J(0) = Zf\;l J(0)



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD(D, 0(0))

2z 0+ 09

3: while not converged do

4: for i € shuffle({1,2,...,N}) do
5 0+ 0 —-7VeJ(0)

6 return 6 %

In practice, it is common
to implement SGD using
sampling without
replacement (i.e.

We need a per-example objective: | shuffle({1,2,... N}), even
though most of the

N i i '
Let J(0) = 32,01 JW(0) | withreniacement (e
Uniform({1,2,... N}).




Convergence Curves

Def: an epoch is a
single pass through

— Gradient Descent | the training data
\ ——sGD |

— Closed-1|‘orm 1. For GD, only one
\ (normal eg.s) | update per epoch

\ 2. For SGD, N updates
per epoch
N = (# train examples)

4) \

10} ‘\ e SGD reduces MSE
much more rapidly
than GD

* For GD /SGD, training
0° 10°

Log-log plot of training MSE versus epochs
10 ~ |

w»

-
o
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Mean Square Error on training data

103 MSE is initially large
1 10 due to uninformed
Epochs initialization

Figure adapted from Eric P. Xing






Expectations of Gradients
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Convergence of Optimizers

gCQ“M}e-Aa A\«-*Iysc‘s . [-\-mc puleman  mais
D oo o wen | TB) ~T@H)| < €
pg;,&\ Methods Shos fo Conerse Comokbn o rhesicbo.
T Neshds Meftod O(ta ks €) V(&Y VI6)<00ur?)
sl Ok %) VI (8) — own)
>€D o( /6) V3:(0) < OM)
“a\was\i;):c: /o{') & covenls "J‘?_gé
o and Condibin, s Q“%{

’Fe’n.e, N SGD "L‘*S eoe QL)'-OQF &S m.jo_(_K ) '{g
GM7 )90‘\' (> ogfen ?«skr th QD(JK e

35



SGD FOR
LINEAR REGRESSION



Linear Regression as Function
Approximation

all linear functions in M-dimensional space

H = {ho : ho(x) = 67x,0 € R}




Gradient Calculation for Linear Regression

Derivative of J(*)(8):

d
do

=_j6)(6) = il(o'r G _
k

T (i)
2d0 = (67x

= (07x® — y

= (ng(i) (1)) (ZO x(,) = y )

= (ng(i) - y(i)) xg:)

Gradient of J(*)(8)

T 2-JD(6)]
. d J(t)(g)
VeID(O)= |, 7| =

(i)) a4 (ng(i)

-(OTx(")

L dBny J(z) (9)

= (gT (i) _ y(z))x(i)

y(i) )2

y(i) )2

_ y(i))

[used by SGD]

(OTX(i) - y(’))mg')

|(87x®) — y()z) |

Derivative of J(0):

Gradient of J() [used by Gradient Descent]
@J (6) 'Z}.’::l(o:x(z:) _ y(z))zg

VeJ(8) = T‘z‘.](o) _ [ 20 x‘i) — y Dz
ﬁ:](o) _Z?_’__l(oTx(;) . y(i))mﬁ)_

N
== Z(OTx(i) — y(z))x(")
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SGD for Linear Regression

SGD applied to Linear Regression is called the “Least
Mean Squares” algorithm

Algorithm 1 Least Mean Squares (LMS)

procedure LMS(D, 6?)

1.
2 6 «— 6 > Initialize parameters
3: while not converged do

4: fori € shuffle({1,2,...,N})do

5

6

7

g «— (07x® — y())x® > Compute gradient
606 —n~g > Update parameters
return 6




GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression
procedure GDLR(D, 6?)

1:

2 0 «— 6% > Initialize parameters
3 while not converged do

4: g — S (0Tx() — 4% () > Compute gradient
5 0<—0—~g > Update parameters
6 return 6




Optimization Objectives

You should be able to...
* Apply gradient descent to optimize a function

* Apply stochastic gradient descent (SGD) to
optimize a function

* Apply knowledge of zero derivatives to identify
a closed-form solution (if one exists) to an
optimization problem

* Distinguish between convex, concave, and
nonconvex functions

* Obtain the gradient (and Hessian) of a (twice)
differentiable function



Linear Regression Objectives

You should be able to...

Design k-NN Regression and Decision Tree
Regression

Implement learning for Linear Regression using three
optimization techniques: (1) closed form, (2) gradient
descent, (3) stochastic gradient descent

Choose a Linear Regression optimization technique
that is appropriate for a particular dataset by
analyzing the tradeoff of computational complexity
VsS. convergence speed



PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

x) ~ p* ()
y O = o* (x)

Our goal was to learn a
hypothesis h(x) that best
approximates c*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

x() ~ p* ()
y ~ p (- x1?)

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)



Robotic F?rming

/

> Deterministic Probabilistic
* L Classification s this a picture of | Is this plant
' - (binary output) a wheat kernel? drought resistant?
Regression How many wheat | What will the yield
(continuous kernels are in this | of this plant be?
picture?

------
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Bayes Optimal Classifier

Whiteboard

— Bayes Optimal Classifier
— Reducible / irreducible error
— Ex: Bayes Optimal Classifier for 0/1 Loss



Maximum Likelihood Estimation
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MLE

Suppose we have data D = {z(V1V

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood

of the data. 2 .
""" = argmax Hp(x(’) 0)

0 1=1
Maximum Likelihood Estimate (MLE)

A

/;\L(e)

>

1
1
eMLE



MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



Learning from Data (Frequentist)

Whiteboard

— Principle of Maximum Likelihood Estimation
(MLE)
— Strawmen:
* Example: Bernoulli
* Example: Gaussian

* Example: Conditional #1
(Bernoulli conditioned on Gaussian)

* Example: Conditional #2
(Gaussians conditioned on Bernoulli)



