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Q&A
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Q: How can I get more one-on-one interaction with the 
course staff?

A: Attend office hours as soon after the homework release 
as possible!



Reminders

• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Wed, Feb. 05 (+ 1 day)
– Due: Wed, Feb. 12 at 11:59pm

• Today’s In-Class Poll
– http://p8.mlcourse.org
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LINEAR REGRESSION
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Regression Problems

Chalkboard
– Definition of Regression
– Linear functions
– Residuals
– Notation trick: fold in the intercept
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OPTIMIZATION FOR ML
The Big Picture
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Optimization for ML

Not quite the same setting as other fields…
– Function we are optimizing might not be the 

true goal 
(e.g. likelihood vs generalization error)

– Precision might not matter 
(e.g. data is noisy, so optimal up to 1e-16 might 
not help)

– Stopping early can help generalization error
(i.e. “early stopping” is a technique for 
regularization – discussed more next time)
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min vs. argmin
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y = f(x) =x2 + 1
1

2

3 v* = minx f(x)

x* = argminx f(x)

1. Q: What is v*?

2. Q: What is x*?
v* = 1, the minimum value of the function

x* = 0, the argument that yields the minimum value



Linear Regression as Function 
Approximation
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Contour Plots
Contour Plots
1. Each level curve labeled 

with value 
2. Value label indicates the 

value of the function for 
all points lying on that 
level curve

3. Just like a topographical 
map, but for a function
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J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2



Optimization by Random Guessing

Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)

3. Repeat steps 1 and 2 many 

times

4. Return θ that gives 

smallest J(θ)
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Optimization by Random Guessing

Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)

3. Repeat steps 1 and 2 many 

times

4. Return θ that gives 

smallest J(θ)
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For Linear Regression:
• objective function is Mean 

Squared Error (MSE)

• MSE = J(w, b) 

= J(θ1, θ2) =

• contour plot: each line labeled with 

MSE – lower means a better fit
• minimum corresponds to 

parameters (w,b) = (θ1, θ2) that 

best fit some training dataset



Linear Regression by Rand. Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)
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h(x; θ(3))

h(x; θ(4))

For Linear Regression:
• target function h*(x) is unknown
• only have access to h*(x) through 

training examples (x(i),y(i))

• want h(x; θ(t)) that best 
approximates h*(x)

• enable generalization w/inductive 
bias that restricts hypothesis class 
to linear functions



Linear Regression by Rand. Guessing

Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)

3. Repeat steps 1 and 2 many 

times

4. Return θ that gives 

smallest J(θ)
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OPTIMIZATION METHOD #1:
GRADIENT DESCENT
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Optimization for ML

Chalkboard
– Unconstrained optimization
– Derivatives
– Gradient
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Topographical Maps
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Topographical Maps



Gradients
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Gradients
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These are the gradients that 

Gradient Ascent would follow.



(Negative) Gradients
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These are the negative gradients that 

Gradient Descent would follow.



(Negative) Gradient Paths

24

Shown are the paths that Gradient Descent 
would follow if it were making infinitesimally 

small steps.



Pros and cons of gradient descent
• Simple and often quite effective on ML tasks
• Often very scalable 
• Only applies to smooth functions (differentiable)
• Might find a local minimum, rather than a global one
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Slide courtesy of William Cohen



Gradient Descent

Chalkboard
– Gradient Descent Algorithm
– Details: starting point, stopping criterion, line 

search
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Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

In order to apply GD to Linear 
Regression all we need is the 
gradient of the objective 
function (i.e. vector of partial 
derivatives). 

��J(�) =

�

����

d
d�1
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Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

There are many possible ways to detect convergence.  
For example, we could check whether the L2 norm of 
the gradient is below some small tolerance.

||��J(�)||2 � �
Alternatively we could check that the reduction in the 
objective function from one iteration to the next is small.

—



GRADIENT DESCENT FOR
LINEAR REGRESSION
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Linear Regression as Function 
Approximation

30



Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives 
smallest J(θ)
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Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives 
smallest J(θ)
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Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives 
smallest J(θ)
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Linear Regression by Gradient Desc.
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Linear Regression by Gradient Desc.

35

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2time

# 
to

ur
is

ts
 (t

ho
us

an
ds

)

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

iteration, t

m
ea

n 
sq

ua
re

d 
er

ro
r,

 
J(

θ
1, 

θ 2
)



Optimization for Linear Regression

Chalkboard
– Computing the gradient for Linear Regression
– Gradient Descent for Linear Regression
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Gradient Calculation for Linear Regression
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[used by Gradient Descent]



GD for Linear Regression
Gradient Descent for Linear Regression repeatedly takes 
steps opposite the gradient of the objective function
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CONVEXITY
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Convexity
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Convexity

Convex Function

• Each local minimum is a 
global minimum

Nonconvex Function

• A nonconvex function is not 
convex

• Each local minimum is not
necessarily a global minimum 41



Convexity
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Each local 
minimum of a 

convex function is 
also a global 

minimum.

A strictly convex 
function has a 
unique global 

minimum.



CONVEXITY AND LINEAR 
REGRESSION
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Convexity and Linear Regression

46

The Mean Squared Error function, 
which we minimize for learning 

the parameters of Linear 
Regression, is convex!

…but in the general case it is not 
strictly convex.



Regression Loss Functions

In-Class Exercise:

Which of the following 
could be used as loss 
functions for training 
a linear regression 
model? 

Select all that apply.
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Answer:

Solving Linear Regression
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Question:



OPTIMIZATION METHOD #2:
CLOSED FORM SOLUTION
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Calculus and Optimization

In-Class Exercise
Plot three functions:
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Answer Here:



Optimization: Closed form solutions

Chalkboard
– Zero Derivatives
– Example: 1-D function
– Example: higher dimensions
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CLOSED FORM SOLUTION FOR 
LINEAR REGRESSION
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Linear Regression as Function 
Approximation
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Linear Regression: Closed Form
Optimization Method #2: 
Closed Form
1. Evaluate 

2. Return θMLE
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Optimization for Linear Regression

Chalkboard
– Closed-form (Normal Equations)
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Computational Complexity of OLS:

Computational Complexity of OLS
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To solve the Ordinary Least Squares 
problem we compute:

The resulting shape of the matrices:

Linear in # of examples, N
Polynomial in # of features, M



Gradient Descent

Cases to consider gradient descent:
1. What if we can not find a closed-form 

solution?
2. What if we can, but it’s inefficient to 

compute?
3. What if we can, but it’s numerically 

unstable to compute?
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Convergence Curves

• SGD reduces MSE 
much more rapidly 
than GD

• For GD / SGD, training 
MSE is initially large 
due to uninformed 
initialization

59

Gradient Descent
SGD

Closed-form 
(normal eq.s)

Figure adapted from Eric P. Xing

• Def: an epoch is a 
single pass through 
the training data

1. For GD, only one 
update per epoch

2. For SGD, N updates 
per epoch 
N = (# train examples) 


