
Linear Regression

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 7

Feb. 5, 2020

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 2: Decision Trees

– Out: Wed, Jan. 22

– Due: Wed, Feb. 05 at 11:59pm

• Homework 3: KNN, Perceptron, Lin.Reg.

– Out: Wed, Feb. 05 (+ 1 day)

– Due: Wed, Feb. 12 at 11:59pm

• Today’s In-Class Poll

– http://p7.mlcourse.org

5

THE PERCEPTRON ALGORITHM

6

Intercept Term
Q: Why do we need an
intercept term?

A: It shifts the decision
boundary off the origin

7

w

b < 0

b = 0

b > 0

Q: Why do we add / subtract 1.0
to the intercept term during
Perceptron training?
A: Two cases
1. Increasing b shifts the

decision boundary
towards the negative side

2. Decreasing b shifts the
decision boundary
towards the positive side

Perceptron Inductive Bias

1. Decision boundary should be linear
2. Most recent mistakes are most important

(and should be corrected)

8

Background: Hyperplanes

H = {x : wT x = b}
Hyperplane (Definition 1):

w

Hyperplane (Definition 2):

Half-spaces:

Notation Trick: fold the
bias b and the weights w
into a single vector θ by

prepending a constant to
x and increasing

dimensionality by one to
get x’!

1
’

’ ’

(Online) Perceptron Algorithm

10

Learning: Iterative procedure:
• initialize parameters to vector of all zeroes
• while not converged
• receive next example (x(i), y(i))
• predict y’ = h(x(i))
• if positive mistake: add x(i) to parameters
• if negative mistake: subtract x(i) from parameters

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

(Online) Perceptron Algorithm

11

Learning:

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

Implementation Trick: same
behavior as our “add on

positive mistake and
subtract on negative

mistake” version, because
y(i) takes care of the sign

(Batch) Perceptron Algorithm

12

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch” setting in contrast to the “online”
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PĊėĈĊĕęėĔē(D = {((1), y(1)), . . . , ((N), y(N))})
2: � � 0 � Initialize parameters
3: while not converged do
4: for i � {1, 2, . . . , N} do � For each example
5: ŷ � sign(�T (i)) � Predict
6: if ŷ �= y(i) then � If mistake
7: � � � + y(i) (i) � Update parameters
8: return �

(Batch) Perceptron Algorithm

13

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch” setting in contrast to the “online”
setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.

1. By extending the online Perceptron algorithm to the batch
setting (as mentioned above)

2. By applying Stochastic Gradient Descent (SGD) to minimize a
so-called Hinge Loss on a linear separator

Extensions of Perceptron
• Voted Perceptron

– generalizes better than (standard) perceptron
– memory intensive (keeps around every weight vector seen during

training, so each one can vote)
• Averaged Perceptron

– empirically similar performance to voted perceptron
– can be implemented in a memory efficient way

(running averages are efficient)
• Kernel Perceptron

– Choose a kernel K(x’, x)
– Apply the kernel trick to Perceptron
– Resulting algorithm is still very simple

• Structured Perceptron
– Basic idea can also be applied when y ranges over an exponentially

large set
– Mistake bound does not depend on the size of that set

14

Perceptron Exercises
Question:
The parameter vector w learned by the
Perceptron algorithm can be written as
a linear combination of the feature
vectors x(1), x(2),…, x(N).

A. True, if you replace “linear” with
“polynomial” above

B. True, for all datasets
C. False, for all datasets
D. True, but only for certain datasets
E. False, but only for certain datasets

15

ANALYSIS OF PERCEPTRON

16

Geometric Margin
Definition: The margin of example ! w.r.t. a linear sep." is the
distance from ! to the plane " ⋅ ! = 0 (or the negative if on wrong side)

!&
w

Margin of positive example !&

!'

Margin of negative example !'

Slide from Nina Balcan

Geometric Margin

Definition: The margin !" of a set of examples # wrt a linear
separator $ is the smallest margin over points % ∈ #.

+

+ +
+
+

+

-

-
-

-
-

!"
!"

+

--

-
-

+
w

Definition: The margin of example % w.r.t. a linear sep.$ is the
distance from % to the plane $ ⋅ % = 0 (or the negative if on wrong side)

Slide from Nina Balcan

+ +
+
+-

-
-

-
-

!
!

+

--

-
-

w

Definition: The margin ! of a set of examples " is the maximum !#
over all linear separators $.

Geometric Margin

Definition: The margin !# of a set of examples " wrt a linear
separator $ is the smallest margin over points % ∈ ".

Definition: The margin of example % w.r.t. a linear sep.$ is the
distance from % to the plane $ ⋅ % = 0 (or the negative if on wrong side)

Slide from Nina Balcan

Linear Separability

20

Def: For a binary classification problem, a set of examples !
is linearly separable if there exists a linear decision boundary
that can separate the points

+
+-

Case 1:

+ +
-

Case 2:

+
++

Case 3:

+
+-
-

Case 4:

Analysis: Perceptron

21
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound
Guarantee: If data has margin � and all points inside a ball of
radius R, then Perceptron makes � (R/�)2 mistakes.

++

+
+
+
+

+

-

-
-

-

-

g
g

--
-
-

+

R

��

Analysis: Perceptron

22
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound
Guarantee: If data has margin � and all points inside a ball of
radius R, then Perceptron makes � (R/�)2 mistakes.

++

+
+
+
+

+

-

-
-

-

-

g
g

--
-
-

+

R

��Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.

Analysis: Perceptron

23
Figure from Nina Balcan

Perceptron Mistake Bound

++

+
+

+
+

+

-

-
-

-

-

g
g

-
-
-

-

+

R

��

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {((i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · (i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2

Analysis: Perceptron

24
Figure from Nina Balcan

Perceptron Mistake Bound

++

+
+

+
+

+

-

-
-

-

-

g
g

-
-
-

-

+

R

��

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {((i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · (i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2

Common
Misunderstanding:

The radius is
centered at the

origin, not at the
center of the

points.

Analysis: Perceptron

25

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Analysis: Perceptron

26

++

+
+

+
+

+

-

-
-

-

-

g
g

-
-
-

-

+

R

��

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {((i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · (i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PĊėĈĊĕęėĔē(D = {((1), y(1)), ((2), y(2)), . . .})
2: � � 0, k = 1 � Initialize parameters
3: for i � {1, 2, . . .} do � For each example
4: if y(i)(�(k) · (i)) � 0 then � If mistake
5: �(k+1) � �(k) + y(i) (i) � Update parameters
6: k � k + 1
7: return �

Analysis: Perceptron

28

Proof of Perceptron Mistake Bound:
Part 1: for some A, Ak � ||�(k+1)|| � B

�
k

�(k+1) · �� = (�(k) + y(i) (i))��

by Perceptron algorithm update

= �(k) · �� + y(i)(�� · (i))

� �(k) · �� + �

by assumption

� �(k+1) · �� � k�

by induction on k since �(1) = 0

� ||�(k+1)|| � k�

since || || � || || � · and ||��|| = 1

Cauchy-Schwartz inequality

Analysis: Perceptron

29

Proof of Perceptron Mistake Bound:
Part 2: for some B, Ak � ||�(k+1)|| � B

�
k

||�(k+1)||2 = ||�(k) + y(i) (i)||2

by Perceptron algorithm update

= ||�(k)||2 + (y(i))2|| (i)||2 + 2y(i)(�(k) · (i))

� ||�(k)||2 + (y(i))2|| (i)||2

since kth mistake � y(i)(�(k) · (i)) � 0

= ||�(k)||2 + R2

since (y(i))2|| (i)||2 = || (i)||2 = R2 by assumption and (y(i))2 = 1

� ||�(k+1)||2 � kR2

by induction on k since (�(1))2 = 0

� ||�(k+1)|| �
�

kR

Analysis: Perceptron

30

Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

k� � ||�(k+1)|| �
�

kR

�k � (R/�)2

The total number of mistakes
must be less than this

Analysis: Perceptron
What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can’t!)
2. However, Freund & Schapire (1999) show that by projecting the

points (hypothetically) into a higher dimensional space, we can
achieve a similar bound on the number of mistakes made on
one pass through the sequence of examples

31

LARGE MARGIN CLASSIFICATION USING THE PERCEPTRON ALGORITHM 281

Similarly,

∥vk+1∥2 = ∥vk∥2 + 2yi (vk · xi) + ∥xi∥2 ≤ ∥vk∥2 + R2.

Therefore, ∥vk+1∥2 ≤ kR2.
Combining, gives

√
kR ≥ ∥vk+1∥ ≥ vk+1 · u ≥ kγ

which implies k ≤ (R/γ)2 proving the theorem. ✷

3.2. Analysis for the inseparable case

If the data are not linearly separable then the Theorem 1 cannot be used directly. However,
we now give a generalized version of the theorem which allows for some mistakes in the
training set. As far as we know, this theorem is new, although the proof technique is very
similar to that of Klasner and Simon (1995, Theorem 2.2). See also the recent work of
Shawe-Taylor and Cristianini (1998) who used this technique to derive generalization error
bounds for any large margin classifier.

Theorem2. Let ⟨(x1, y1), . . . , (xm, ym)⟩bea sequenceof labeled exampleswith∥xi∥ ≤ R.
Let u be any vector with ∥u∥ = 1 and let γ > 0. Define the deviation of each example as

di = max{0, γ − yi (u · xi)},

and define D =
√∑m

i=1 d
2
i . Then the number of mistakes of the online perceptron algorithm

on this sequence is bounded by

(
R + D

γ

)2
.

Proof: The case D = 0 follows from Theorem 1, so we can assume that D > 0.
The proof is based on a reduction of the inseparable case to a separable case in a higher

dimensional space. As we will see, the reduction does not change the algorithm.
We extend the instance space Rn to Rn+m by adding m new dimensions, one for each

example. Let x′
i ∈ Rn+m denote the extension of the instance xi .We set the first n coordinates

of x′
i equal to xi . We set the (n + i)’th coordinate to " where " is a positive real constant

whose value will be specified later. The rest of the coordinates of x′
i are set to zero.

Next we extend the comparison vector u ∈ Rn to u′ ∈ Rn+m . We use the constant Z ,
whichwe calculate shortly, to ensure that the length ofu′ is one.We set the first n coordinates
of u′ equal to u/Z . We set the (n+ i)’th coordinate to (yidi)/(Z"). It is easy to check that
the appropriate normalization is Z =

√
1+ D2/"2.

Perceptron Exercises

32

Question:
Unlike Decision Trees and K-
Nearest Neighbors, the Perceptron
algorithm does not suffer from
overfitting because it does not
have any hyperparameters that
could be over-tuned on the
training data.

A. True
B. False
C. True and False

Summary: Perceptron
• Perceptron is a linear classifier
• Simple learning algorithm: when a mistake is

made, add / subtract the features
• Perceptron will converge if the data are linearly

separable, it will not converge if the data are
linearly inseparable

• For linearly separable and inseparable data, we
can bound the number of mistakes (geometric
argument)

• Extensions support nonlinear separators and
structured prediction

33

Perceptron Learning Objectives
You should be able to…
• Explain the difference between online learning and

batch learning
• Implement the perceptron algorithm for binary

classification [CIML]
• Determine whether the perceptron algorithm will

converge based on properties of the dataset, and
the limitations of the convergence guarantees

• Describe the inductive bias of perceptron and the
limitations of linear models

• Draw the decision boundary of a linear model
• Identify whether a dataset is linearly separable or not
• Defend the use of a bias term in perceptron

34

REGRESSION

39

Regression
Goal:

– Given a training dataset of pairs
(x,y) where
• x is a vector
• y is a scalar

– Learn a function (aka. curve or line)
y’ = h(x) that best fits the training
data

Example Applications:
– Stock price prediction
– Forecasting epidemics
– Speech synthesis
– Generation of images (e.g. Deep

Dream)
– Predicting the number of tourists

on Machu Picchu on a given day

40

Week 49 (December 5) forecast, using wILI data through week 47. During the week of
the first forecast, all of the available wILI values are below the CDC onset threshold, as shown
in Fig 2A. Predictions for the onset are concentrated near the actual value, and the error in the
point prediction is fairly small (1.58 weeks). Much of this error can be attributed to the sudden
jump in wILI at the onset, which corresponds to Thanksgiving week. The number of patients
seen per reporting provider in ILINet drops noticeably every season on Thanksgiving week and
around winter holidays; at these times, there is a systematic bias towards higher wILI values.

In the 2013–2014 season, the number of total visits dropped from 869362 on the week
before Thanksgiving to 661282 on Thanksgiving week, and from 808701 on week 51 to 607611
on week 52. The number of ILI visits also dropped slightly on Thanksgiving week (from 14995
to 13909, not as significant as the drop in total visits), then increased continuously until it

Fig 2. 2013–2014 national forecast, retrospectively, using the final revisions of wILI values, using
revised wILI data through epidemiological weeks (A) 47, (B) 51, (C) 1, and (D) 7.

doi:10.1371/journal.pcbi.1004382.g002

Flexible Modeling of Epidemics with an Empirical Bayes Framework

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004382 August 28, 2015 8 / 18

Regression
Example Application:
Forecasting Epidemics
• Input features, x:

attributes of the
epidemic

• Output, y:
Weighted %ILI,
prevalence of the
disease

• Setting: observe
past prevalence to
predict future
prevalence

41
Figure from Brooks et al. (2015)

Week 49 (December 5) forecast, using wILI data through week 47. During the week of
the first forecast, all of the available wILI values are below the CDC onset threshold, as shown
in Fig 2A. Predictions for the onset are concentrated near the actual value, and the error in the
point prediction is fairly small (1.58 weeks). Much of this error can be attributed to the sudden
jump in wILI at the onset, which corresponds to Thanksgiving week. The number of patients
seen per reporting provider in ILINet drops noticeably every season on Thanksgiving week and
around winter holidays; at these times, there is a systematic bias towards higher wILI values.

In the 2013–2014 season, the number of total visits dropped from 869362 on the week
before Thanksgiving to 661282 on Thanksgiving week, and from 808701 on week 51 to 607611
on week 52. The number of ILI visits also dropped slightly on Thanksgiving week (from 14995
to 13909, not as significant as the drop in total visits), then increased continuously until it

Fig 2. 2013–2014 national forecast, retrospectively, using the final revisions of wILI values, using
revised wILI data through epidemiological weeks (A) 47, (B) 51, (C) 1, and (D) 7.

doi:10.1371/journal.pcbi.1004382.g002

Flexible Modeling of Epidemics with an Empirical Bayes Framework

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004382 August 28, 2015 8 / 18

Regression
Q: What is the function that
best fits these points?

43

x

y Example: Dataset with only
one feature x and one scalar
output y

k-NN Regression

k=2 Nearest Neighbor Distance
Weighted Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest

two instances x(n1) and x(n2)

in training data and return
the weighted average of
their y values

k=1 Nearest Neighbor
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x

in training data and return
its y

44

x

y Example: Dataset with only
one feature x and one scalar
output y

LINEAR REGRESSION

45

Regression Problems

Chalkboard
– Definition of Regression
– Linear functions
– Residuals
– Notation trick: fold in the intercept

46

