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Q&A
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Q: Why don’t my entropy calculations match 
those on the slides?

A: H(Y) is conventionally reported in “bits” and 
computed using log base 2. 
e.g., H(Y) = - P(Y=0) log2P(Y=0) - P(Y=1) log2P(Y=1)

Q: Why is entropy based on a sum of p(.) log p(.) 
terms?

A: We don’t have time for a full treatment of why 
it has to be this, but we can develop the right 
intuition with a few examples…



Q&A
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Q: How do we deal with ties in k-Nearest 
Neighbors (e.g. even k or equidistant points)?

A: I would ask you all for a good solution!

Q: How do we define a distance function when 
the features are categorical (e.g. weather 
takes values {sunny, rainy, overcast})?

A: Step 1: Convert from categorical attributes to 
numeric features (e.g. binary)
Step 2: Select an appropriate distance function 
(e.g. Hamming distance)



Reminders

• Homework 2: Decision Trees
– Out: Wed, Jan. 22
– Due: Wed, Feb. 05 at 11:59pm

• Today’s Poll: 
– http://p5.mlcourse.org
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http://p5.mlcourse.org/


Moss Cheat Checker



What is Moss?
• Moss (Measure Of Software Similarity): is an 

automatic system for determining the similarity 
of programs.  To date, the main application of 
Moss has been in detecting plagiarism in 
programming classes.

• Moss reports:
– The Andrew IDs associated with the file submissions
– The number of lines matched
– The percent lines matched
– Color coded submissions where similarities are 

found



What is Moss?

At first glance, the submissions may look different



What is Moss?
Moss can quickly find the similarities



OVERFITTING
(FOR DECISION TREES)
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Decision Tree Generalization

Answer:
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Question: 
Which of the following 
would generalize best to 
unseen examples?
A. Small tree with low 

training accuracy
B. Large tree with low 

training accuracy
C. Small tree with high 

training accuracy
D. Large tree with high 

training accuracy



Overfitting and Underfitting

Underfitting
• The model…

– is too simple
– is unable captures the trends 

in the data
– exhibits too much bias

• Example: majority-vote 
classifier (i.e. depth-zero 
decision tree)

• Example: a toddler (that 
has not attended medical 
school) attempting to 
carry out medical diagnosis

Overfitting
• The model…

– is too complex
– is fitting the noise in the data
– or fitting random statistical 

fluctuations inherent in the 
“sample” of training data

– does not have enough bias
• Example: our “memorizer” 

algorithm responding to an 
“orange shirt” attribute

• Example: medical student 
who simply memorizes 
patient case studies, but does 
not understand how to apply 
knowledge to new patients
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Overfitting

• Consider a hypothesis h its…
…error rate over all training data: error(h, Dtrain)
…error rate over all test data: error(h, Dtest)
…true error over all data: errortrue(h)

• We say h overfits the training data if…

• Amount of overfitting =

13
Slide adapted from Tom Mitchell

errortrue(h) > error(h, Dtrain) 

errortrue(h) – error(h, Dtrain) 

In practice, 
errortrue(h) is 
unknown
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Overfitting in Decision Tree Learning
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Figure from Tom Mitchell



How to Avoid Overfitting?

For Decision Trees…
1. Do not grow tree beyond some maximum 

depth
2. Do not split if splitting criterion (e.g. mutual 

information) is below some threshold
3. Stop growing when the split is not statistically 

significant
4. Grow the entire tree, then prune
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18
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Split data into training and validation set

Create tree that classifies training set correctly

Slide from Tom Mitchell



19

25 

Split data into training and validation set

Create tree that classifies training set correctly

Slide from Tom Mitchell
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Split data into training and validation set

Create tree that classifies training set correctly

Slide from Tom Mitchell

IMPORTANT!

Later this lecture we’ll 
learn that doing 

pruning on test data is 
the wrong thing to do.

Instead, use a third 
“validation” dataset. 



Decision Trees (DTs) in the Wild
• DTs are one of the most popular classification methods 

for practical applications
– Reason #1: The learned representation is easy to explain a 

non-ML person
– Reason #2: They are efficient in both computation and 

memory
• DTs can be applied to a wide variety of problems 

including classification, regression, density estimation, 
etc.

• Applications of DTs include…
– medicine, molecular biology, text classification, 

manufacturing, astronomy, agriculture, and many others
• Decision Forests learn many DTs from random subsets of 

features; the result is a very powerful example of an 
ensemble method (discussed later in the course)
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DT Learning Objectives
You should be able to…
1. Implement Decision Tree training and prediction
2. Use effective splitting criteria for Decision Trees and be able to 

define entropy, conditional entropy, and mutual information / 
information gain

3. Explain the difference between memorization and 
generalization [CIML]

4. Describe the inductive bias of a decision tree
5. Formalize a learning problem by identifying the input space, 

output space, hypothesis space, and target function
6. Explain the difference between true error and training error
7. Judge whether a decision tree is "underfitting" or "overfitting"
8. Implement a pruning or early stopping method to combat 

overfitting in Decision Tree learning
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K-NEAREST NEIGHBORS
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Classification

Chalkboard:
– Binary classification
– 2D examples
– Decision rules / hypotheses
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k-Nearest Neighbors

Chalkboard:
– Nearest Neighbor classifier
– KNN for binary classification
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KNN: Remarks
Distance Functions:
• KNN requires a distance function

• The most common choice is Euclidean distance

• But other choices are just fine (e.g. Manhattan distance)
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KNN: Remarks
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In-Class Exercises
1. How can we handle ties 

for even values of k?

2. What is the inductive bias 
of KNN?

Answer(s) Here:



KNN: Remarks
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In-Class Exercises
1. How can we handle ties 

for even values of k?

2. What is the inductive bias 
of KNN?

Answer(s) Here:
1)
– Consider another point
– Remove farthest of k 

points
– Weight votes by 

distance
– Consider another 

distance metric

2)



KNN: Remarks

Inductive Bias:
1. Similar points should have similar labels
2. All dimensions are created equally!
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Example: two features for KNN
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KNN: Remarks

Computational Efficiency:

• Suppose we have N training examples, and each one has M 
features

• Computational complexity for the special case where k=1:
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Task Naive k-d Tree

Train O(1) ~ O(M N log N)

Predict 

(one test example)

O(MN) ~ O(2M log N) on average

Problem: Very fast for small M, but 
very slow for large M

In practice: use stochastic 
approximations (very fast, and 
empirically often as good)



KNN: Remarks

Theoretical Guarantees:
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Cover & Hart (1967)

Let h(x) be a Nearest Neighbor (k=1) binary 
classifier. As the number of training 
examples N goes to infinity…

errortrue(h) < 2 x Bayes Error Rate

“In this sense, it may be said that half the 
classification information in an infinite 
sample set is contained in the nearest 

neighbor.”

very 
informally, 
Bayes Error 
Rate can be 
thought of as:
‘the best you 
could possibly 
do’



Decision Boundary Example
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In-Class Exercise

Dataset: Outputs {+,-}; Features x1 and x2

Question 1:
A. Can a k-Nearest Neighbor classifier 

with k=1 achieve zero training error 
on this dataset?

B. If ‘Yes’, draw the learned decision 
boundary. If ‘No’, why not?

Question 2:
A. Can a Decision Tree classifier achieve 

zero training error on this dataset?
B. If ‘Yes’, draw the learned decision 

bound. If ‘No’, why not?

x1

x2

x1

x2



KNN ON FISHER IRIS DATA
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Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers 

from 3 different species: Iris setosa (0), Iris 
virginica (1), Iris versicolor (2) collected by 
Anderson (1936)
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Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers 

from 3 different species: Iris setosa (0), Iris 
virginica (1), Iris versicolor (2) collected by 
Anderson (1936)
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Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Deleted two of the 

four features, so that 

input space is 2D



KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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Special Case: Nearest Neighbor



KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data

59



KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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Special Case: Majority Vote



KNN ON GAUSSIAN DATA
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data

75



KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data

80



KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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K-NEAREST NEIGHBORS
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Questions

• How could k-Nearest Neighbors (KNN) be 
applied to regression?

• Can we do better than majority vote? (e.g. 
distance-weighted KNN)

• Where does the Cover & Hart (1967) Bayes 
error rate bound come from?
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KNN Learning Objectives

You should be able to…
• Describe a dataset as points in a high dimensional space 

[CIML]
• Implement k-Nearest Neighbors with O(N) prediction
• Describe the inductive bias of a k-NN classifier and relate 

it to feature scale [a la. CIML]
• Sketch the decision boundary for a learning algorithm 

(compare k-NN and DT)
• State Cover & Hart (1967)'s large sample analysis of a 

nearest neighbor classifier
• Invent "new" k-NN learning algorithms capable of dealing 

with even k
• Explain computational and geometric examples of the 

curse of dimensionality
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MODEL SELECTION
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Model Selection

WARNING: 
• In some sense, our discussion of model 

selection is premature. 
• The models we have considered thus far are 

fairly simple.
• The models and the many decisions available 

to the data scientist wielding them will grow 
to be much more complex than what we’ve 
seen so far.
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Model Selection

Statistics
• Def: a model defines the data 

generation process (i.e. a set or 
family of parametric probability 
distributions)

• Def: model parameters are the 
values that give rise to a 
particular probability 
distribution in the model family

• Def: learning (aka. estimation) is 
the process of finding the 
parameters that best fit the data

• Def: hyperparameters are the 
parameters of a prior 
distribution over parameters

Machine Learning
• Def: (loosely) a model defines the 

hypothesis space over which 
learning performs its search

• Def: model parameters are the 
numeric values or structure 
selected by the learning algorithm 
that give rise to a hypothesis

• Def: the learning algorithm 
defines the data-driven search 
over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the 
tunable aspects of the model, that 
the learning algorithm does not
select
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