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Q&A

Q: Why don’t my entropy calculations match
those on the slides?

A: H(Y)is conventionally reported in “bits” and
computed using log base 2.

e.g., H(Y) =-P(Y=0) log,P(Y=0) - P(Y=1) log,P(Y=1)

Q: Why is entropy based on a sum of p(.) log p(.)
terms?

A: We don’t have time for a full treatment of why
it has to be this, but we can develop the right
intuition with a few examples...



Q&A

: How do we deal with ties in k-Nearest
Neighbors (e.g. even k or equidistant points)?

: | would ask you all for a good solution!

- How do we define a distance function when
the features are categorical (e.g. weather
takes values {sunny, rainy, overcast})?

. Step 1: Convert from categorical attributes to
numeric features (e.g. binary)

Step 2: Select an appropriate distance function
(e.g. Hamming distance)



Reminders

* Homework 2: Decision Trees
— Out: Wed, Jan. 22
— Due: Wed, Feb. 05 at 11:59pm

* Today’s Poll:

— http://p5.mlcourse.org



http://p5.mlcourse.org/

Moss Cheat Checker



What is Moss?

* Moss (Measure Of Software Similarity): is an
automatic system for determining the similarity
of programs. To date, the main application of
Moss has been in detecting plagiarism in
programming classes.

* Moss reports:
— The Andrew IDs associated with the file submissions
— The number of lines matched
— The percent lines matched

— Color coded submissions where similarities are
found




What is Moss?

At first glance, the submissions may look different

continue
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What is Moss?

Moss can quickly find the similarities



OVERFITTING
(FOR DECISION TREES)



Decision Tree Generalization

Question:

Which of the following
would generalize best to
unseen examples?

A. Small tree with low
training accuracy

B. Large tree with low
training accuracy

C. Small tree with high
training accuracy

D. Large tree with high
training accuracy

Answer:

EIEIE(E



Overfitting and Underfitting

Underfitting

* The model...
— istoo simple
— is unable captures the trends
in the data
— exhibits too much bias
* Example: majority-vote
classifier (i.e. depth-zero
decision tree)

e Example: a toddler (that
has not attended medical
school) attempting to
carry out medical diagnosis

Overfitting

* The model...
— istoo complex
— is fitting the noise in the data

— or fitting random statistical
fluctuations inherent in the
“sample” of training data

— does not have enough bias

* Example: our “memorizer”
algorithm responding to an
“orange shirt” attribute

* Example: medical student
who simply memorizes
patient case studies, but does
not understand how to apply
knowledge to new patients



Overtitting

* Consider a hypothesis hits...
...error rate over all training data:  error(h, D;,.,)

...error rate over all test data: error(h, Dtest)

Slide adapted from Tom Mitchell



Overtitting

* Consider a hypothesis hits...

...error rate over all training data:  error(h, D;,.,)
...error rate over all test data: error(h, Dtest)
... true error over all data: error,.,.(h)

* We say h overfits the training data if... ﬁ

errOrtrue(h) > error(h, Dtrain) In practice,
* Amount of overfitting = e:g&;u;(xi's

errortrue(h) - error(h, Dtrain)

Slide adapted from Tom Mitchell



Overtfitting in Decision Tree Learning
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How to Avoid Overfitting?

For Decision Trees...

1.

Do not grow tree beyond some maximum
depth

Do not split if splitting criterion (e.g. mutual
information) is below some threshold

Stop growing when the split is not statistically
significant

Grow the entire tree, then prune



Reduced-Error Pruning

Split data into fraining and validation set

Create tree that classifies training set correctly
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning
each possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

e produces smallest version of most accurate
subtree

e What if data is limited?

Slide from Tom Mitchell
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Effect of Reduced-Error Pruning
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Effect of Reduced-Error Pruning
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Decision Trees (DTs) in the Wild

DTs are one of the most popular classification methods
for practical applications

— Reason #1: The learned representation is easy to explain a
non-ML person

— Reason #2: They are efficient in both computation and
memory

DTs can be applied to a wide variety of problems

including classification, regression, density estimation,

etc.

Applications of DTs include...

— medicine, molecular biology, text classification,
manufacturing, astronomy, agriculture, and many others
Decision Forests learn many DTs from random subsets of

features; the result is a very powerful example of an
ensemble method (discussed later in the course)



DT Learning Objectives

You should be able to...

1.
2.

VRN

SINe)

Implement Decision Tree training and prediction

Use effective splitting criteria for Decision Trees and be able to
define entropy, conditional entropy, and mutual information /
information gain

Explain the difference between memorization and
generalization [CIML]

Describe the inductive bias of a decision tree

Formalize a learning problem by identifying the input space,
output space, hypothesis space, and target function

Explain the difference between true error and training error
Judge whether a decision tree is ""underfitting" or "overfitting"

Implement a pruning or early stopping method to combat
overfitting in Decision Tree learning



K-NEAREST NEIGHBORS






Classification

Chalkboard:

— Binary classification
— 2D examples
— Decision rules [ hypotheses



k-Nearest Neighbors
Chalkboard:

— Nearest Neighbor classifier
— KNN for binary classification



KNN: Remarks

Distance Functions:
* KNN requires a distance function

g:RM xRM LR
e The most common choice is Euclidean distance
M

g(u,v) = (U — Um)z
\ )

m=1

* But other choices are just fine (e.g. Manhattan distance)

M
g(U,V) — Z |um — Uml
m=1



KNN: Remarks

In-Class Exercises

1. How can we handle ties
for even values of k?

2. Whatis the inductive bias
of KNN?




KNN: Remarks

In-Class Exercises

1.

2.

How can we handle ties
for even values of k?

What is the inductive bias
of KNN?

Answer(s) Here:
1)
— Consider another point

— Remove farthest of k
points

— Weight votes by
distance

— Consider another
distance metric
2)



KNN: Remarks

Inductive Bias:
1. Similar points should have similar labels
2. All dimensions are created equally!

Example: two features for KNN ,
big problem:

feature scale
A 4 I
cou

o0 o0 dramatically
— z influence
§ O S| @ classification

results

length
length

width (cm) width (m)




KNN: Remarks

Computational Efficiency:

* Suppose we have N training examples, and each one has M
features
* Computational complexity for the special case where k=1:

Train O(1) ~O(M N log N)
Predict O(MN) ~0(2Mlog N) on average

(one test example) @

Problem: Very fast for small M, but
very slow for large M

In practice: use stochastic
approximations (very fast, and
empirically often as good)
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KNN: Remarks

Theoretical Guarantees:

Cover & Hart (1967)

Let h(x) be a Nearest Neighbor (k=1) binary
classifier. As the number of training
examples N goes to infinity...

error.,.(h) < 2 x Bayes Error Rate

“In this sense, it may be said that half the
classification information in an infinite
sample set is contained in the nearest
neighbor.”

very
informally,
Bayes Error
Rate can be
thought of as:

‘the best you

could possibly
do’




Decision Boundary Example

Dataset: Outputs {+,-}; Features x, and x,

In-Class Exercise

Question 1:

A. Can a k-Nearest Neighbor classifier
with k=1 achieve zero training error

on this dataset?

B. If ‘Yes’, draw the learned decision

boundary. If ‘No’, why not?

A
= +++
- +
++--
+ - + 7T
--+
+ 7Ty
>
X

Question 2:

A. Can a Decision Tree classifier achieve
zero training error on this dataset?

B. If ‘Yes’, draw the learned decision
bound. If ‘No’, why not?

A
> + +
= +
+ + - -
+ - + 7
| | +
+ + +




KNN ON FISHER IRIS DATA



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

-

0

0 4.9
0 5.3
1 4.9
1 5.7
1 6.3
1 6.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data set

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3.3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7

40



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Sepal Sepal
Length Width

4.3
4.9
5-3
4.9
5.7
6.3
6.7

Deleted two of the
four features, so that
input space is 2D

¢

Full dataset: https://en.wikipedia.org/wiki/lris_flower data set
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4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15 -

1.0 -

KNN on Fisher Iris Data



KNN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification (k = 1, weights = 'uniform’)

46



KNN on Fisher Iris Data

3-Class classification (k = 2, weights = 'uniform’)

47



KNN on Fisher Iris Data

3-Class classification (k = 3, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 4, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 5, weights = 'uniform')
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KNN on Fisher Iris Data

3-Class classification (k = 10, weights = 'uniform")
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KNN on Fisher Iris Data

3-Class classification (k = 20, weights = 'uniform")
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KNN on Fisher Iris Data

3-Class classification (k = 30, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 40, weights = 'uniform")
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KNN on Fisher Iris Data

3-Class classification (k = 50, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 60, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 70, weights = 'uniform")
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KNN on Fisher Iris Data

3-Class classification (k = 80, weights = 'uniform®)
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KNN on Fisher Iris Data

3-Class classification (k = 90, weights = 'uniform’)
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5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 100, weights = 'uniform’)
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5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 110, weights = 'uniform’)
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5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 120, weights = 'uniform’)

62



5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 130, weights = 'uniform’)
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5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 140, weights = 'uniform’)
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5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 140, weights = 'uniform’)
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KNN on Fisher Iris Data

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform’)

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

10 - | | | | |
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KNN ON GAUSSIAN DATA



KNN on Gaussian Data
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KNN on Gaussian Data

‘uniform')

S

= 1, weight

K

(

Classification with KNN
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KNN on Gaussian Data

‘uniform')

S

= 2, weight

K

(

Classification with KNN
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KNN on Gaussian Data

‘uniform')

3, weights

k|=

(

Classification with KNN
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KNN on Gaussian Data

‘uniform')

4, weights

k|=

(

Classification with KNN
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KNN on Gaussian Data

‘uniform')

S

= 5, weight

K

(

Classification with KNN
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KNN on Gaussian Data

‘uniform')

9, weights

k|=

(

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

IS=

= 16, weight

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

IS=

= 25, weight

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

IS=

= 36, weight

(k

Classification with KNN

77



KNN on Gaussian Data

‘uniform’)

IS=

49, weight

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

IS=

64, weight

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

IS=

81, weight

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

= 100, weights

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

= 121, weights

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

= 144, weights

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

= 169, weights

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

ts

, weigh

= 196

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

= 225, weights

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

ts

, weigh

= 256

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

ts

, weigh

= 289

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

= 400, weights

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

ts

, weigh

= 529

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform’)

ts

, weigh

=576

(k

Classification with KNN
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K-NEAREST NEIGHBORS



Questions

* How could k-Nearest Neighbors (KNN) be
applied to regression?

» Can we do better than majority vote? (e.g.
distance-weighted KNN)

* Where does the Cover & Hart (1967) Bayes
error rate bound come from?



KNN Learning Objectives

You should be able to...

* Describe a dataset as points in a high dimensional space
[CIML]

* Implement k-Nearest Neighbors with O(N) prediction

 Describe the inductive bias of a k-NN classifier and relate
it to feature scale [ala. CIML]

* Sketch the decision boundary for a learning algorithm
(compare k-NN and DT)

* State Cover & Hart (1967)'s large sample analysis of a
nearest neighbor classifier

* Invent "new' k-NN learning algorithms capable of dealing
with even k



MODEL SELECTION



Model Selection

WARNING:

* In some sense, our discussion of model
selection is premature.

* The models we have considered thus far are
fairly simple.

* The models and the many decisions available
to the data scientist wielding them will grow
to be much more complex than what we’ve
seen so far.



Model Selection

Statistics

Def: a model defines the data
eneration process (i.e. a set or
amily of parametric probability

distributions)

Def: model parameters are the
values that give rise to a
particular probability
distribution in the model family

Def: learning gaka. estimation) is
the process of finding the
parameters that best fit the data

Def: hyperparameters are the
parameters of a prior
distribution over parameters

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select



