

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Overfitting

╀

k-Nearest Neighbors

Matt Gormley Lecture 4 Jan. 27, 2020

David Xu

Kelly Shi

Ayushi Sood

Mike Chen

Eu Jing, Chua

Zola Liu

Sankalp Patro

Filipp Shelobolin

Scott Liu

Kyle Chin

Vishal Baskar

Yufei Wang

Shaotong

Quentin Cheng

Hongyi Zhang

Yiming Wen

Sana Lakdawala

Matt Gormley

Brynn Edmunds

Vinay Kadi

Hanyue Chai

Zee Almusa

David Xu

Kelly Shi

Ayushi Sood

Mike Chen

Eu Jing, Chua

Zola Liu

Sankalp Patro

Filipp Shelobolin

Scott Liu

Kyle Chin

Yufei Wang

Shaotong

Quentin Cheng

Hongyi Zhang

Yiming Wen

Sana Lakdawala

Ani Chowdhury

Matt Gormley

Brynn Edmunds

Zee Almusa

Team A

David Xu

Kelly Shi

Eu Jing, Chua

Zola Liu

Sankalp Patro

Filipp Shelobolin

Scott Liu

Kyle Chin

Vishal Baskar

Yufei Wang

Shaotong

Quentin Cheng

Hongyi Zhang

Yiming Wen

Sana Lakdawala

Matt Gormley

Brynn Edmunds

Vinay Kadi

Hanyue Chai

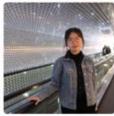
Team B

David Xu

Ayushi Sood

Mike Chen

Eu Jing, Chua



Sankalp Patro

Filipp Shelobolin

Kyle Chin

Vishal Baskar

Shaotong

Quentin Cheng

Hongyi Zhang

Sana Lakdawala

Ani Chowdhury

Matt Gormley

Brynn Edmunds

Vinay Kadi

Hanyue Chai

Zee Almusa

Team C

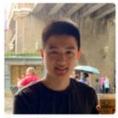
Kelly Shi

Ayushi Sood

Eu Jing, Chua

Sankalp Patro

Filipp Shelobolin



Scott Liu

Kyle Chin

Vishal Baskar

Yufei Wang

Quentin Cheng

Hongyi Zhang

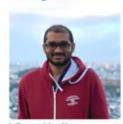
Yiming Wen

Sana Lakdawala

Ani Chowdhury

Matt Gormley

Brynn Edmunds



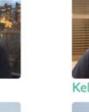
Vinay Kadi

Hanyue Chai

Zee Almusa

Team D

David Xu



Kelly Shi

Ayushi Sood

Mike Chen

Eu Jing, Chua

Zola Liu

Sankalp Patro

Filipp Shelobolin

Scott Liu

Kyle Chin

Vishal Baskar

Yufei Wang

Shaotong

Quentin Cheng

Hongyi Zhang

Yiming Wen

Sana Lakdawala

Ani Chowdhury

Matt Gormley

Brynn Edmunds

Vinay Kadi

Hanyue Chai

Zee Almusa

Q&A

- Q: When and how do we decide to stop growing trees? What if the set of values an attribute could take was really large or even infinite?
- A: We'll address this question for discrete attributes today. If an attribute is real-valued, there's a clever trick that only considers O(L) splits where L = # of values the attribute takes in the training set. Can you guess what it does?

Reminders

- Homework 2: Decision Trees
 - Out: Wed, Jan. 22
 - Due: Wed, Feb. 05 at 11:59pm
- Required Readings:
 - 10601 Notation Crib Sheet
 - Command Line and File I/O Tutorial (check out our colab.google.com template!)

SPLITTING CRITERIA FOR DECISION TREES

Decision Tree Learning

- Definition: a splitting criterion is a function that measures the effectiveness of splitting on a particular attribute
- Our decision tree learner selects the "best" attribute as the one that maximizes the splitting criterion
- Lots of options for a splitting criterion:
 - error rate (or accuracy if we want to pick the tree that maximizes the criterion)
 - Gini gain
 - Mutual information
 - random

– ...

Dataset:

Output Y, Attributes A and B

Y	А	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1
+	1	1

In-Class Exercise

Which attribute would **error rate** select for the next split?

- 1. A
- 2. B
- 3. A or B (tie)
- 4. Neither

Dataset:

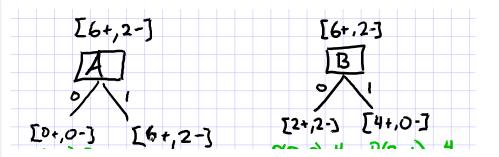
Output Y, Attributes A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

Dataset:

Output Y, Attributes A and B

Υ	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	Ī	1
+	1	1



M:	sc	LS	i5.	R	<u> </u>	د	
•	`(Δ)	7	2	/{	3
	٦(k `)	= ,	2/	8
	r() .	Į,	2 4.	5	
	4	4	di	vk Ne	?5	01 4t	کے ایم
	9	લ	a	114	1	グ	ed V

Gini Impurity

Chalkboard

- Expected Misclassification Rate:
 - Predicting a Weighted Coin with another Weighted Coin
 - Predicting a Weighted Dice Roll with another Weighted Dice Roll
- Gini Impurity
- Gini Impurity of a Bernoulli random variable
- Gini Gain as a splitting criterion

Dataset:

Output Y, Attributes A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

In-Class Exercise

Which attribute would **Gini gain** select for the next split?

- 1. A
- 2. B
- 3. A or B (tie)
- 4. Neither

Dataset:

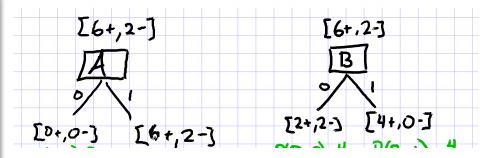
Output Y, Attributes A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

Dataset:

Output Y, Attributes A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1



1)
$$G(Y) = 1 - (6/8)^2 - (2/8)^2 = 0.375$$

2)
$$P(A=1) = 8/8 = 1$$

3)
$$P(A=o) = o/8 = o$$

4)
$$G(Y \mid A=1) = G(Y)$$

7)
$$P(B=1) = 4/8 = 0.5$$

8)
$$P(B=0) = 4/8 = 0.5$$

7)
$$P(B=1) = 4/8 = 0.5$$

8) $P(B=0) = 4/8 = 0.5$
9) $G(Y \mid B=1) = 1 - (4/4)^2 - (0/4)^2 = 0$

10)
$$G(Y \mid B=0) = 1 - (2/4)^2 - (2/4)^2 = 0.5$$

Mutual Information

Let X be a random variable with $X \in \mathcal{X}$. Let Y be a random variable with $Y \in \mathcal{Y}$.

Entropy:
$$H(Y) = -\sum_{y \in \mathcal{Y}} P(Y = y) \log_2 P(Y = y)$$

Specific Conditional Entropy:
$$H(Y \mid X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y \mid X = x) \log_2 P(Y = y \mid X = x)$$

Conditional Entropy:
$$H(Y \mid X) = \sum_{x \in \mathcal{X}} P(X = x) H(Y \mid X = x)$$

Mutual Information:
$$I(Y;X) = H(Y) - H(Y|X) = H(X) - H(X|Y)$$

- For a decision tree, we can use mutual information of the output class Y and some attribute X on which to split as a splitting criterion
- Given a dataset D of training examples, we can estimate the required probabilities as...

$$P(Y = y) = N_{Y=y}/N$$

$$P(X = x) = N_{X=x}/N$$

$$P(Y = y|X = x) = N_{Y=y,X=x}/N_{X=x}$$

where $N_{Y=y}$ is the number of examples for which Y=y and so on.

Mutual Information

Let X be a random variable with $X \in \mathcal{X}$.

Let Y be a random variable with $Y \in \mathcal{Y}$.

Entropy:
$$H(Y) = -\sum_{y \in \mathcal{Y}} P(Y = y) \log_2 P(Y = y)$$

Specific Conditional Entropy:
$$H(Y \mid X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y \mid X = x) \log_2 P(Y = y \mid X = x)$$

Conditional Entropy:
$$H(Y \mid X) = \sum_{x \in \mathcal{X}} P(X = x) H(Y \mid X = x)$$

Mutual Information: I(Y;X) = H(Y) - H(Y|X) = H(X) - H(X|Y)

- Entropy measures the expected # of bits to code one random draw from X.
- For a decision tree, we want to reduce the entropy of the random variable we are trying to predict!

Conditional entropy is the expected value of specific conditional entropy $E_{P(X=x)}[H(Y \mid X=x)]$

Informally, we say that **mutual information** is a measure of the following: If we know X, how much does this reduce our uncertainty about Y?

Dataset:

Output Y, Attributes A and B

Υ	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

In-Class Exercise

Which attribute would mutual information select for the next split?

- 1. A
- 2. B
- 3. A or B (tie)
- 4. Neither

Dataset:

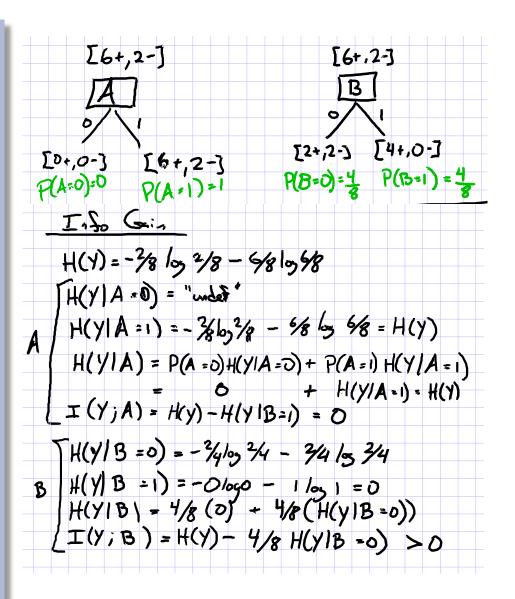
Output Y, Attributes A and B

Υ	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

Dataset:

Output Y, Attributes A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1



PlayTennis?
No

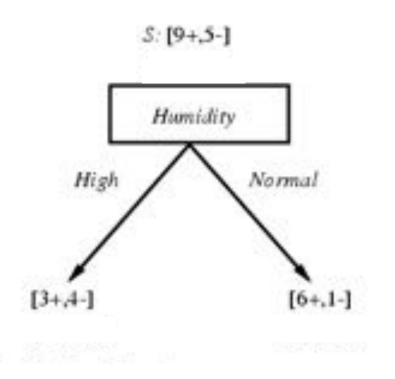
Dataset:

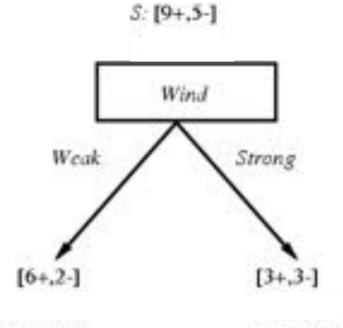
Day Outlook Temperature Humidity Wind PlayTennis?

D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Which attribute yields the best classifier?

Test your understanding.





sifier? rollingerstanding.

Which attribute yields the best classifier?

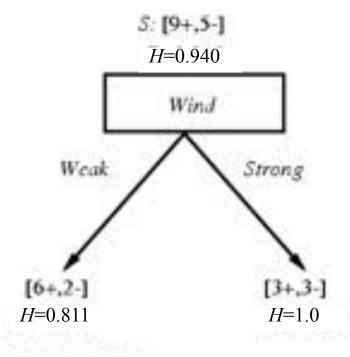
H=0.592

S: [9+,5-]
H=0.940

Humidity

Normal

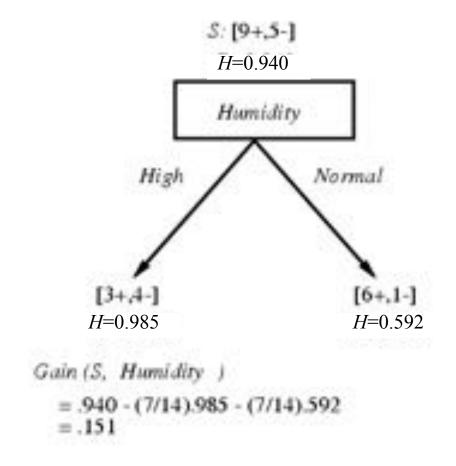
[3+,4-]

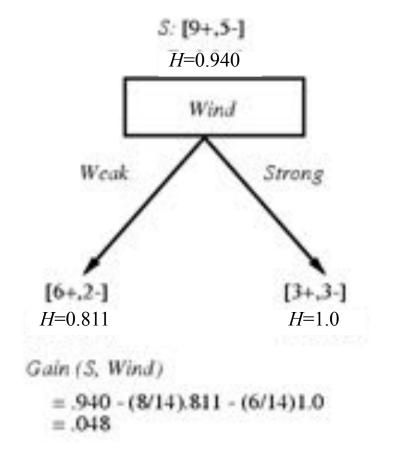


H=0.985

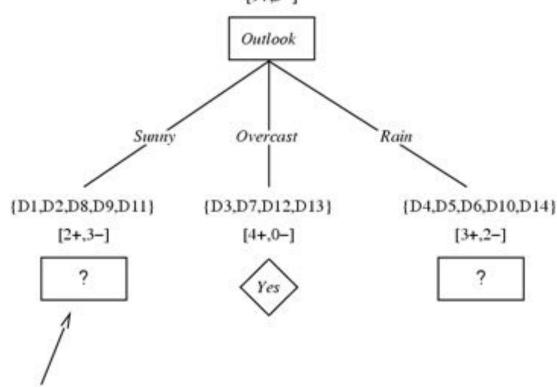
Which attribute yields the best classifier?

Test vour understanding.





Tèst vour understanding. (D1, D2, ..., D14) [9+,5-]



Which attribute should be tested here?

 $S_{sunnv} = \{D1,D2,D8,D9,D11\}$ $Gain(S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$ $Gain (S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$ $Gain(S_{sumny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

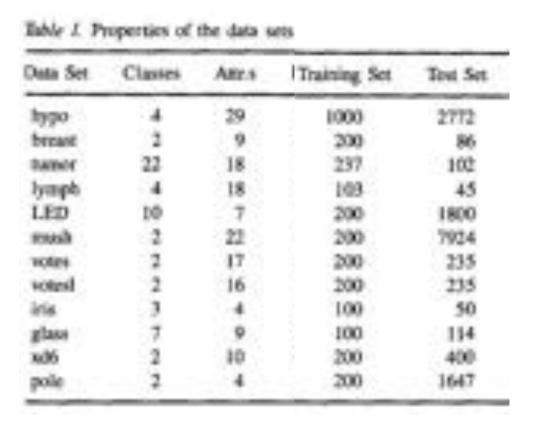
EMPIRICAL COMPARISON OF SPLITTING CRITERIA

Experiments: Splitting Criteria

Bluntine & Niblett (1992) compared 4 criteria (random, Gini, mutual information, Marshall) on 12 datasets

Medical Diagnosis Datasets: (4 of 12)

- hypo: data set of 3772 examples records expert opinion on possible hypo- thyroid conditions from 29 real and discrete attributes of the patient such as sex, age, taking of relevant drugs, and hormone readings taken from drug samples.
- **breast:** The classes are reoccurrence or non-reoccurrence of breast cancer sometime after an operation. There are nine attributes giving details about the original cancer nodes, position on the breast, and age, with multi-valued discrete and real values.
- tumor: examples of the location of a primary tumor
- lymph: from the lymphography domain in oncology. The classes are normal, metastases, malignant, and fibrosis, and there are nineteen attributes giving details about the lymphatics and lymph nodes

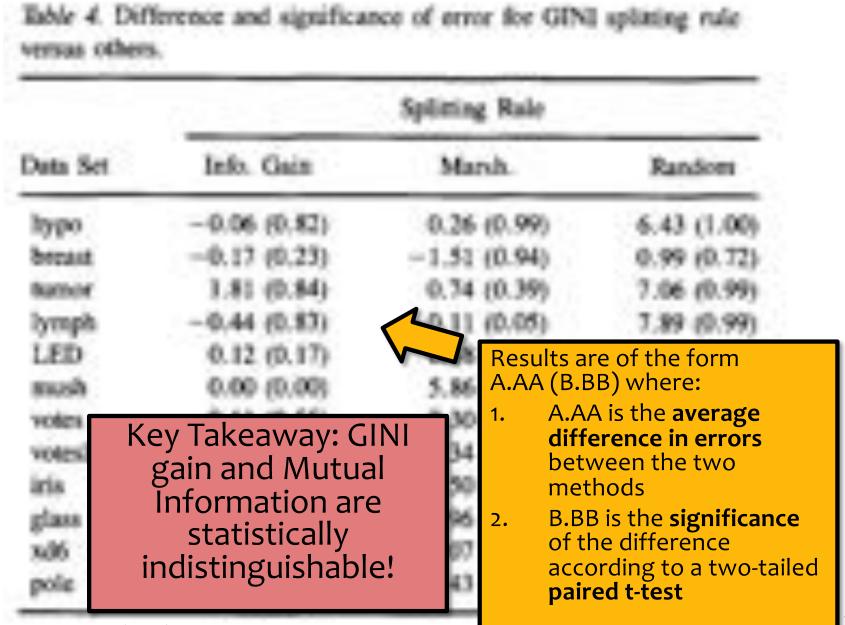


Experiments: Splitting Criteria

liable 3. Error for different splitting rules (pruned trees).

	Splitting Rule			
Data Sei	CENI	Info. Gain	Marsh.	Random
hypo	1.01 ± 0.29	0.95 ± 0.22	1.27 ± 0.47	7.44 ± 0.53
broad	28.66 ± 3.87	28.49 ± 4.28	27.15 ± 4.22	29.65 ± 4.97
unor	60.88 ± 5.44	62.70 ± 3.89	61.62 ± 3.98	67.94 ± 5.68
ymph	24.44 ± 6.92	24.00 ± 6.87	24.33 ± 5.51	32.33 ± 11.25
LED	33.77 ± 3.06	32.89 ± 2.59	33.15 ± 4.02	38.18 ± 4.57
mush	1.44 ± 0.47	1.44 ± 0.47	7.31 ± 2.25	8.77 ± 4.65
votics	4.47 ± 0.95	4.57 ± 0.87	11.77 ± 3.95	12.40 ± 4.56
sound.	12.79 ± 1.48	13.04 ± 1.65	15.13 ± 2.89	15.62 ± 2.73
iris	5.00 ± 3.08	4.90 ± 3.08	5.50 ± 2.59	14.20 ± 6.77
glass	19.56 ± 6.20	50.57 ± 6.73	40.55 ± 6.41	53.20 ± 5.01
sd6	22.14 ± 3.23	22.17 ± 3.36	22.06 ± 3.37	31.86 ± 3.62
ole	15.43 ± 1.51	15.47 ± 0.88	15.01 ± 1.15	26.38 ± 6.92
	Key Takea gain and Informa statist indisting	l Mutual tion are tically		Gain is anoth mutual inforr

Experiments: Splitting Criteria



INDUCTIVE BIAS (FOR DECISION TREES)

Dataset:

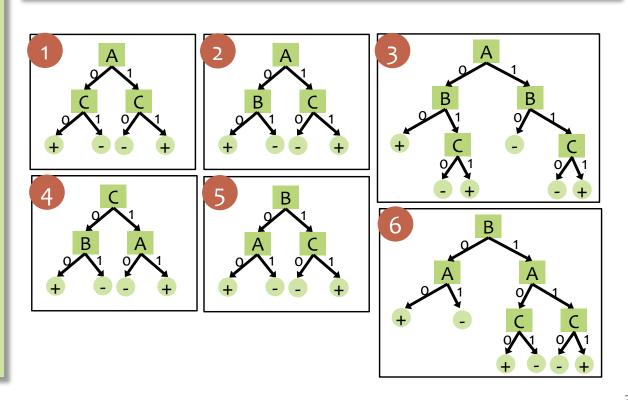
Output Y, Attributes A, B, C

Υ	Α	В	С
+	0	0	0
+	0	0	1
-	0	1	0
+	0	1	1
-	1	0	0
-	1	0	1
-	1	1	0
+	1	1	1

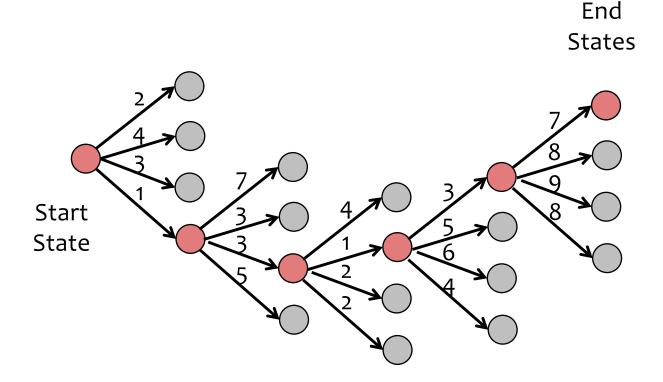
In-Class Exercise

Which of the following trees would be **learned by the the decision tree learning algorithm** using "error rate" as the splitting criterion?

(Assume ties are broken alphabetically.)



Background: Greedy Search



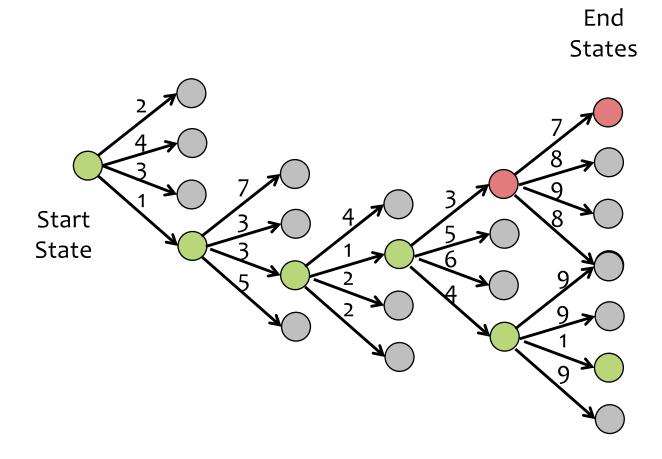
Goal:

- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

Greedy Search:

- At each node, selects the edge with lowest (immediate) weight
- Heuristic method of search (i.e. does not necessarily find the best path)

Background: Greedy Search



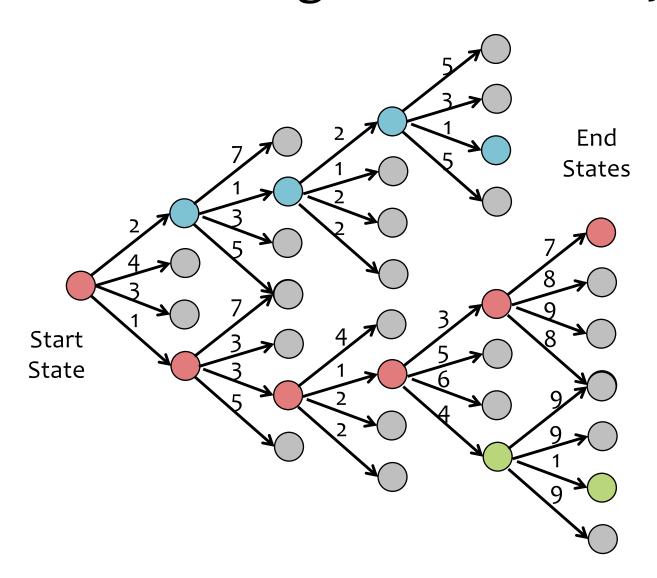
Goal:

- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

Greedy Search:

- At each node, selects the edge with lowest (immediate) weight
- Heuristic method of search (i.e. does not necessarily find the best path)

Background: Greedy Search



Goal:

- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

Greedy Search:

- At each node, selects the edge with lowest (immediate) weight
- Heuristic method of search (i.e. does not necessarily find the best path)

Decision Trees

Chalkboard

Decision Tree Learning as Search

DT: Remarks

ID3 = Decision Tree Learning with Mutual Information as the splitting criterion

Question: Which tree does ID3 find?

DT: Remarks

ID3 = Decision Tree Learning with Mutual Information as the splitting criterion

Question: Which tree does ID3 find?

Definition:

We say that the **inductive bias** of a machine learning algorithm is the principal by which it generalizes to unseen examples

Inductive Bias of ID3:

Smallest tree that matches the data with high mutual information attributes near the top

Occam's Razor: (restated for ML)

Prefer the simplest hypothesis that explains the data

Decision Tree Learning Example

Dataset:

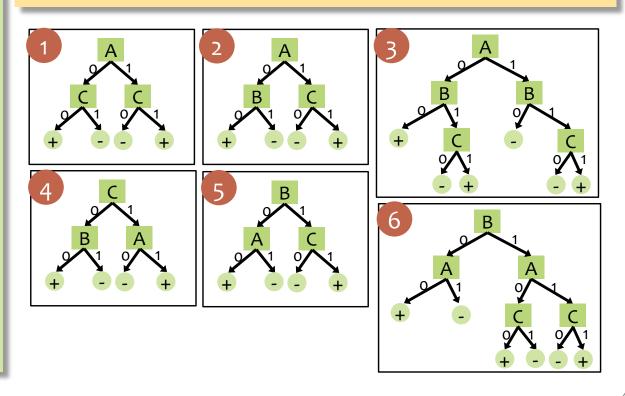
Output Y, Attributes A, B, C

Υ	Α	В	С
+	0	0	0
+	0	0	1
-	0	1	0
+	0	1	1
-	1	0	0
-	1	0	1
-	1	1	0
+	1	1	1

In-Class Exercise

Suppose you had an algorithm that found the tree with lowest training error that was as small as possible (i.e. exhaustive global search), which tree would it return?

(Assume ties are broken by choosing the smallest.)



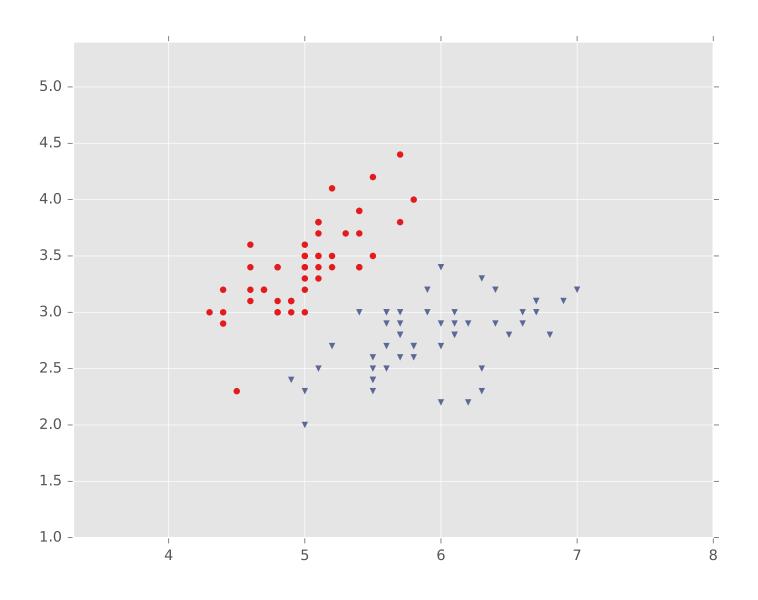
CLASSIFICATION

Fisher Iris Dataset

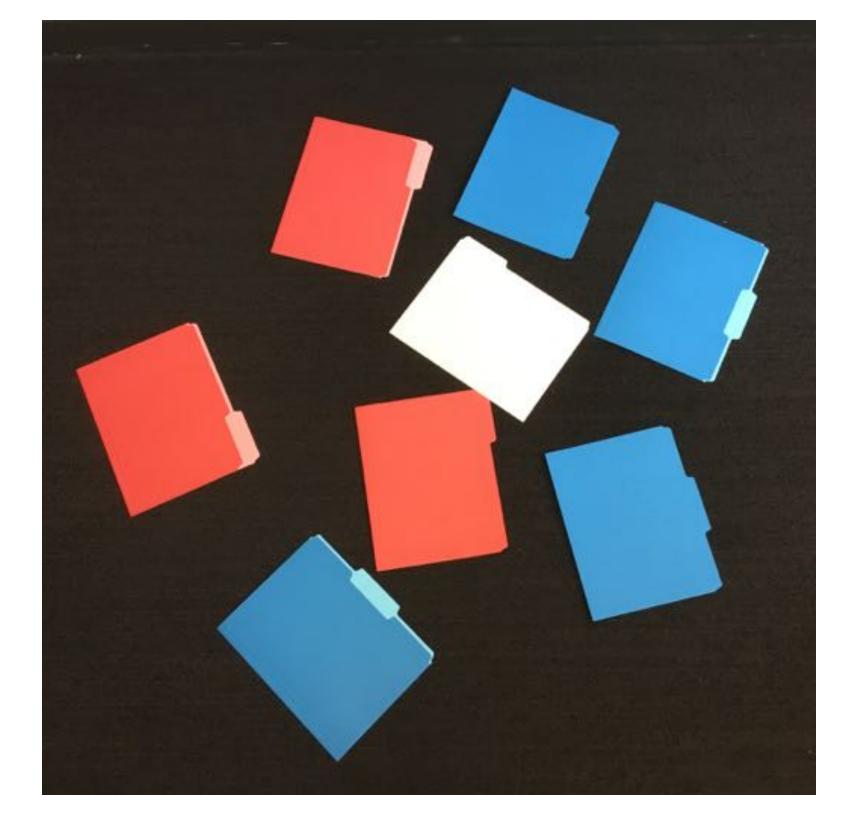
Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width	Petal Length	Petal Width
0	4.3	3.0	1.1	0.1
0	4.9	3.6	1.4	0.1
0	5.3	3.7	1.5	0.2
1	4.9	2.4	3.3	1.0
1	5.7	2.8	4.1	1.3
1	6.3	3.3	4.7	1.6
1	6.7	3.0	5.0	1.7

Fisher Iris Dataset



K-NEAREST NEIGHBORS



Classification

Chalkboard:

- Binary classification
- 2D examples
- Decision rules / hypotheses

k-Nearest Neighbors

Chalkboard:

- Nearest Neighbor classifier
- KNN for binary classification