

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Decision Trees (Part II)

Matt Gormley Lecture 3 Jan. 22, 2020

Q&A

Q: In our medical diagnosis example, suppose two of our doctors (i.e. experts) disagree about whether (+) or not (-) the patient is sick. How would the decision tree represent this situation?

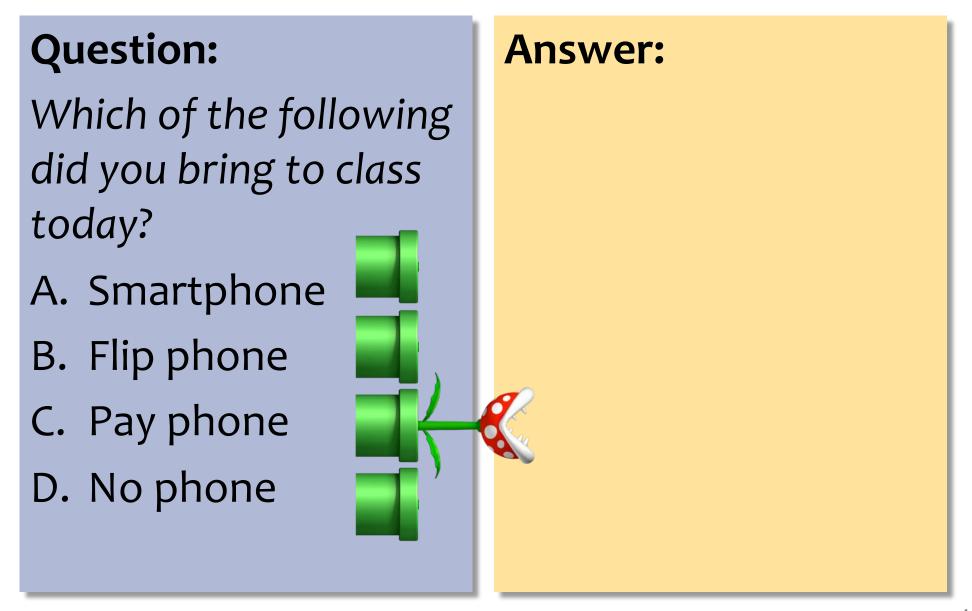
A: Today we will define decision trees that predict a single class by a majority vote at the leaf. More generally, the leaf could provide a probability distribution over output classes p(y|x)

Q&A

Q: How do these In-Class Polls work?

- A: Sign into Google Form (link from Schedule page) using Andrew Email (http://p3.mlcourse.org)
 - Answer during lecture for full credit, or the same day (i.e. before 11:59pm) for half credit
 - Avoid the calamity option which gives negative points!
 - 8 "free poll points" but can't use more than 3 free polls consecutively
 - Submit a poll card if and only if you do not have a smartphone/tablet

First In-Class Poll



Reminders

- Homework 1: Background
 - Out: Wed, Jan 15 (2nd lecture)
 - Due: Wed, Jan 22 at 11:59pm
 - unique policy for this assignment: we will grant (essentially) any and all extension requests
- Homework 2: Decision Trees
 - Out: Wed, Jan. 22
 - Due: Wed, Feb. 05 at 11:59pm

DECISION TREES

Decision Trees

Chalkboard

- Decision Tree as a hypothesis
- Function approximation for DTs

Tree to Predict C-Section Risk

Learned from medical records of 1000 women (Sims et al., 2000) Negative examples are C-sections [833+,167-] .83+ .17-Fetal_Presentation = 1: [822+,116-] .88+ .12-| Previous_Csection = 0: [767+,81-] .90+ .10-| Primiparous = 0: [399+,13-] .97+ .03-| | Primiparous = 1: [368+,68-] .84+ .16-| | Fetal_Distress = 0: [334+,47-] .88+ .12-| | | Birth_Weight < 3349: [201+,10.6-] .95+ . | | | Birth_Weight >= 3349: [133+,36.4-] .78+ | | Fetal_Distress = 1: [34+,21-] .62+ .38-| Previous_Csection = 1: [55+,35-] .61+ .39-Fetal_Presentation = 2: [3+,29-] .11+ .89-Fetal_Presentation = 3: [8+,22-] .27+ .73-

Decision Trees

Chalkboard

Decision Tree Learning

Dataset:

Output Y, Attributes A, B, C

,

In-Class Exercise

Using error rate as the splitting criterion, what decision tree would be learned?

SPLITTING CRITERIA FOR DECISION TREES

Decision Tree Learning

- Definition: a splitting criterion is a function that measures the effectiveness of splitting on a particular attribute
- Our decision tree learner selects the "best" attribute as the one that maximizes the splitting criterion
- Lots of options for a splitting criterion:
 - error rate (or accuracy if we want to pick the tree that maximizes the criterion)
 - Gini gain
 - Mutual information
 - random

– ...

Dataset:

Output Y, Attributes A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

In-Class Exercise

Which attribute would **error rate** select for the next split?

- 1. A
- 2. B
- 3. A or B (tie)
- 4. Neither

Dataset:

Output Y, Attributes A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

Gini Impurity

Chalkboard

- Expected Misclassification Rate:
 - Predicting a Weighted Coin with another Weighted Coin
 - Predicting a Weighted Dice Roll with another Weighted Dice Roll
- Gini Impurity
- Gini Impurity of a Bernoulli random variable
- Gini Gain as a splitting criterion

Dataset:

Output Y, Attributes A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

In-Class Exercise

Which attribute would **Gini gain** select for the next split?

- 1. A
- 2. B
- 3. A or B (tie)
- 4. Neither

Dataset:

Output Y, Attributes A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1