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Reminders

* Homework 8: Reinforcement Learning
— Out: Fri, Apr 10
— Due: Wed, Apr 22 at 11:59pm
* Homework 9: Learning Paradigms
— Out: Wed, Apr. 22
— Due: Wed, Apr. 29 at 11:59pm

— Can only be submitted up to 3 days late,
so we can return grades before final exam

* Today’s In-Class Poll
— http://poll.mlcourse.org




ML Big Picture

Theoretical Foundations:
What principles guide learning?
probabilistic
information theoretic
evolutionary search
ML as optimization




Learning Paradigms

Paradigm Data
Supervised D = {x®), ¢y NV, x ~p*(-)andy = c*(+)
< Regression y® € R
— Classification y@ e {1,...,K}
< Binary classification y® € {+1,-1}
< Structured Prediction y () isavector

asupervised D={xW}¥  x~ p_*D
< Clustering ~predict {z®@}Y  wherez® € {1,...,K}
< Dimensionality Reduction  convert each x(¥ € RM to ul® € RX with K << M
Semi-supervised D = {x®,yO}1 U {xD}2
Online D = {(xM), yM), (x@),y2)) (x®) y3), ..}
Active Learning D = {x®}N | and can query y(¥) = ¢*(-) at a cost
Imitation Learning D = {(sM,aM), (5 ,a@),.. }

Reinforcement Learning D = {(sM,aD) r) (52 2 +2)) 1}



DIMENSIONALITY REDUCTION



PCA Outline

* Dimensionality Reduction

— High-dimensional data

— Learning (low dimensional) representations
* Principal Component Analysis (PCA)

— Examples: 2D and 3D

— Data for PCA

— PCA Definition

— Objective functions for PCA

— PCA, Eigenvectors, and Eigenvalues

— Algorithms for finding Eigenvectors /
Eigenvalues

* PCA Examples
— Face Recognition
— Image Compression



High Dimension Data

Examples of high dimensional data:
— High resolution images (millions of pixels)




High Dimension Data

Examples of high dimensional data:

— Multilingual News Stories
(vocabulary of hundreds of thousands of words)
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High Dimension Data

Examples of high dimensional data:
— Brain Imaging Data (100s of MBs per scan)

Image from (Wehbe et al., 2014)

1
Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/



High Dimension Data

Examples of high dimensional data:
— Customer Purchase Data

£
e “ NEW & INTERESTING FINDS ON AMAZON

amazon

e
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Matt's You could be secing useful stuff here! o
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Recommended for you, Matt
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Learning Representations

PCA, Kernel PCA, ICA: Powerful unsupervised learning techniques
for extracting hidden (potentially lower dimensional) structure

from high dimensional datasets.
Useful for:
* Visualization

* More efficient use of resources
(e.g., time, memory, communication)

* Statistical: fewer dimensions = better generalization

* Noise removal (improving data quality)

* Further processing by machine learning algorithms

Slide from Nina Balcan



Shortcut Example

17
Photo from https://www.springcarnival.org/booth.shtml



PRINCIPAL COMPONENT
ANALYSIS (PCA)



PCA Outline

* Dimensionality Reduction
— High-dimensional data
— Learning (low dimensional) representations

* Principal Component Analysis (PCA)

— Examples: 2D and 3D

— Data for PCA

— PCA Definition

— Objective functions for PCA

— PCA, Eigenvectors, and Eigenvalues

— Algorithms for finding Eigenvectors [ Eigenvalues
* PCA Examples

— Face Recognition

— Image Compression



Principal Component Analysis (PCA)

D
d

In case where data lies on or near a low d-dimensional linear subspace,
axes of this subspace are an effective representation of the data.

|dentifying the axes is known as Principal Components Analysis, and can be
obtained by using classic matrix computation tools (Eigen or Singular Value
Decomposition).

Slide from Nina Balcan



2D Gaussian dataset
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Slide from Barnabas Poczos
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15t PCA axis

!
g

Slide from Barnabas Poczos
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2nd PCA axis
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Data for PCA

D = {X(i)}£\7=1 X =
et

._—(X(l))—T’_
[(x2yr

Ly,

We assume the data is centered

Q: What if A: Subtract
your data is off the
not centered? sample mean




Sample Covariance Matrix

)(m QW\M
The sample covariance matrix is given by:
N
1 i i
Sie =~ (@) — ) ey — )
i=1 — -
Z QKMXM

Since the data matrix is centered, we rewrite as:

T

(x2)T

()T



Principal Component Analysis (PCA)

Whiteboard

— Strawman: random linear projection
— PCA Definition
— Objective functions for PCA



Maximizing the Variance
casr (7
Quiz: Consider the two projections below 5%
L.  Which maximizes the variance? Ll%A °
Q2. Which minimizes the reconstruction error? , 7% 1%

g% A

Option A Option B




Background:
Eigenvectors & Eigenvalues

For a square matrix A (n x n matrix), the
vector v (n x 1 matrix) is an eigenvector
iff there exists eigenvalue A (scalar)
such that:

Av = Av

Av = Av
The linear transformation A is only

stretching vectorv.

v
/ That is, Av is a scalar multiple of v.




Principal Component Analysis (PCA)

Whiteboard
— PCA, Eigenvectors, and Eigenvalues



PCA

Equivalence of Maximizing Variance and Minimizing Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximiz-
ing the variance.

Proof: First, note that:
[x% = (vxD)v|? = [|xP]|? = (vTxD)? (1)

T

since viv = [|v|]? = 1.

Substituting into the minimization problem, and removing the extra-
neous terms, we obtain the maximization problem.

N

1 . .
v' = argmin — Z |[x(D — (vIx®)v||? (2)
vi|[v[[?=1 Y 55
1 X . .
= argmin ) [ - (vVx)? G
v:||v||2=1 i—1
| N
= argmax — z:(vTx(i))2 (3)
v:||v||2=1 i=1
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PCA: the First Principal Component

To find the first principal component, we wish to solve the fol-
lowing constrained optimization problem (variance minimization).

Vi = argmax v: Xv (1)
v:||v]|?=1

So we turn to the method of Lagrange multipliers. The Lagrangian
is:

LV,\) =vIZv - Aviv-1) (2)
Taking the derivative of the Lagrangian and setting to zero gives:

d

o (VVEv -V 1)) =0 (3)
Sv—Av=0 (4)
v = \v (5)

Recall: For a square matrix A, the vector v is an eigenvector iff
there exists eigenvalue ) such that:

Av =)v (6)
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Algorithms for PCA

How do we find principal components (i.e. eigenvectors)?

* Power iteration (aka. Von Mises iteration)
— finds each principal component one at a time in order

* Singular Value Decomposition (SVD)
— finds all the principal components at once

— two options:
* Option A: run SVD on XX # Z
e Option B: run SVD on X
(not obvious why Option B should work...)
 Stochastic Methods (approximate)

— very efficient for high dimensional datasets with lots of
points

32



Background: SVD

Singular Value Decomposition (SVD)

For any arbitrary matrix A, SVD gives a decomposition:
A =UAV? (1)

where A is a diagonal matrix, and U and V are orthogonal matrices.



SVD for PCA

For any arbitrary matrix A, SVD gives a decomposition:
A =UAV* (1)

where A is a diagonal matrix, and U and V are orthogonal matrices.
We find that (A)? is a diag-
Suppose we obtain an SVD of our datar data matrix X so that: onal matrix whose entries are

A;; = A\? the squares of the
(1) elgenvalues of thaSMBTt X XTX
Further, both X and XTX

Now consider what happens when we rewrite & = 1 XTX terms

—n =
of this SVD. share the same eigenvectors

in their SVD.
> = i;gf X (2)
];7 Thus, we can run SVD on X
=% (UAVHZ(uAVY) (3) without everinstantiating the
) large X7 X to obtain the nec-
=~ (VATIU{L)'@LAVT) (4) essary principal components
1o more efficiently.
=y VA AV (5)
1 fy
— NV(A)2VT (6) X X

&/\,x

Above we used the fact that UTU = I since U is orthogonal by N
definition. - "; \/ M X
\ Colns

SQMM‘WS oW LY MXM



Principal Component Analysis (PCA)

Thus, the eigenvalue 4 denotes the amount of variability
captured along that dimension (aka amount of energy along that
dimension).

Slide from Nina Balcan



How Many PCs?

* For M original dimensions, sample covariance matrix is MxM, and has
up to M eigenvectors. So M PCs.

* Where does dimensionality reduction come from?
Can ignore the components of lesser significance.

o5 Variance (%) = ratio of variance along

- given principal component to total
0 | variance of all principal components
15 -

| W B
N A lnnaw

PC1__PC2 PC3 PC4 PC6 PC7 PC8 PC9 PC1
- f—N

_— ey

Variance (%)

* Youdo lose some information, but if the eigenvalues are small, you don’t lose

much
— M dimensions in original data
— calculate M eigenvectors and eigenvalues
— choose only the first D eigenvectors, based on their eigenvalues
— final data set has only D dimensions

© Eric Xing @ CMU, 2006-2011
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PCA EXAMPLES



Projecting MNIST digits
Task Setting: 2829 =78

1. Take 25x25 images of digits and project them down to K components
2. Report percent of variance explained for K components
3. Then project back up to 25x25 image to visualize how much information was preserved

Original Image

50% of Explained Variance
o

80% of Explained Variance
o

95% of Explained Variance
o

10
15
20
25

[} 5 10 15 20 25 0 5 10 15 20 25 [ 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
784 components 154 components 87 components 43 components 11 components

90% of Explained Variance
o

Original Image 50% of Explained Variance
o

80% of Explained Variance
o

90% of Explained Variance
o

95% of Explained Variance
o

| ;
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 0 5 10 15 20 25

784 components 154 components 87 components 43 components 11 components

Original Image

90% of Explained Variance 80% of Explained Variance 50% of Explained Variance
0o 0o o

95% of Explained Variance
o

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20

784 components 154 components 87 components 43 components 11 components

0 5 10 15 20



Projecting MNIST digits

Task Setting:

1. Take 25x25 images of digits and project them down to 2 components
2.  Plot the 2 dimensional points

3. Herewelook at all ten digits 0 -9

3 —T 9

-8
2_

-7
1 - 6

-5
0_

-4
-1 3

-2
-2

-1
-3 —-0




Projecting MNIST digits

Task Setting:

1. Take 25x25 images of digits and project them down to 2 components
2.  Plot the 2 dimensional points

3.  Here welook at just four digits o, 1, 2, 3

-2.5

- 2.0

- 1.5

- 1.0

- 0.5




Learning Objectives

Dimensionality Reduction /| PCA

You should be able to...

1.

W

Define the sample mean, sample variance, and sample
covariance of a vector-valued dataset

|dentify examples of high dimensional data and common use
cases for dimensionality reduction

Draw the principal components of a given toy dataset

Establish the equivalence of minimization of reconstruction
error with maximization of variance

Given a set of principal components, project from high to low
dimensional space and do the reverse to produce a
reconstruction

Explain the connection between PCA, eigenvectors,
eigenvalues, and covariance matrix

Use common methods in linear algebra to obtain the principal
components



