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Reminders

* Homework 7: HMMs
— Out: Thu, Apr 02
— Due: Fri, Apr 10 at 11:59pm

* Today’s In-Class Poll
— http://poll.mlcourse.org
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https://www.math.fsu.edu/~hoeijfissac2017.pdf

A. https://www.glynholton.com/notes/closed_form_solution/
o

https://math.stackexchange.com/questions/9199/what-does-closed-form-solution-usually-mean
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Q&A

Why not have just one midterm?

Because students in previous semesters (who had just one
midterm) wanted earlier and more frequent feedback.

Why not cover all lecture material in slides?

Lost of reasons...

* Agood teacher wouldn’t dare put important material in slides
where students are apt to forget it!

-A good teacher

* Research shows that notetaking enhances “ability to hold
and manipulate propositional knowledge” (Kiewra and
Benton, 1988) and improves exam scores.

* Slides are inflexible. Chalkboards enable learning to be
student lead, which yields better cognitive outcomes.

* Slides disappear too quickly.



Q&A

Q: Could you give us template code rather than
asking us to code the solutions from scratch?

Ac We tried that, but students came away without an
* understanding of the big picture.

A key outcome of this course if that you be able to build an end-
to-end working system. That includes understanding how to
process and store data as well as learn from it.

Q: | spend lots of time debugging, what can | do
to improve?

, Debugging is an important skill. An expert programmer is also an expert
A: debugger; the two are tightly coupled. In addition to the suggestions of the
course staff you could consider a short tutorial on the subject:

* “Debugging: The 9 Indispensable Rules...” (Agens, 2006)
*  “Why Programs Fail: A Guide to Systematic Debugging” (Zeller, 2009)



GRAPHICAL MODELS:
DETERMINING CONDITIONAL
INDEPENDENCIES



What Independencies does a Bayes Net Model?

* In order for a Bayesian network to model a probability
distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants
in the graph given the value of all its parents. -

e This follows from

POXSX,) = f[P()c. parents(X,))

@X&XH y

e But what else does it imply?
py $\’U"V\ I\,l/e

Slide from William Cohen



What Independencies does a Bayes Net Model?

Three cases of interest...
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What Independencies does a Bayes Net Model?

Three cases of interest...




Proof of
conditional
independence

Whiteboard

(The other two
cases can be
shown just as
easily.)
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The "Burglar Alarm” example

* Yourh has a twitchy burgl
our house has a twitchy burglar Earthquake
alarm that is also sometimes
triggered by earthquakes.
e Earth arguably doesn’t care w
whether your house is currently
Phone Call

being burgled

* While you are on vacation, one of
your neighbors calls and tells you
your home’s burglar alarm is
ringing. Uh oh!

oI ( : mlGrseo - (C[(,,...,.

Slide from William Cohen



Markov Blanket

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the
node’s parents, children, and
co-parents.

Thm: a node is conditionally
independent of every other
node in the graph given its
Markov blanket




Markov Blanket
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Def: the Markov Blanket of a
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Markov Blanket

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the
node’s parents, children, and
co-parents.

Theorem: a node is
conditionally independent of
every other node in the graph
given its Markov blanket

Example: The Markov

Blanket of X is
X X, X5’ Xg Xoo Xj0}

XIZ

Parents

&7

Co- parents

Children @



D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

Definition #1:
Variables X and Z are d-separated given a set of evidence variables E

iff every path from Xto Z is “blocked”.

A path is “blocked” whenever:
1. dYonpaths.t.YE€EandYisa ‘“common parent”

®-- o

2. 3dYonpaths.t.YEEandYisina“cascade”

o 0

3. 3Y onpaths.t. {Y, descendants(Y)} € Eand Yisin a “v-structure”

O - DO -0
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D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

Definition #2:
Variables X and Z are d-separated given a set of evidence variables E iff there does

not exist a path in the undirected moral graph

: keep only X, Z, E and their ancestors
2.  Moral graph: add undirected edge between all pairs of each node’s parents
3. Undirected graph: convert all directed edges to undirected
: delete any nodesin E

Example Query: A Il B|{D, E}
Original: Moral: Undirected:

T O T 0T 0T O e
= not d-separated
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SUPERVISED LEARNING FOR
BAYES NETS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x0 ~p(x|6)
Write log-likelihood

40) = log p(x(|@) + ... + log p(x(N)|©)
Compute partial derivatives

0((0)/06, = ...

0((0)/06, = ...

00(0)/08,, = ...
Set derivatives to zero and solve for ©
00(0)/06_, =0 forallme {1, ..., M}

OMLE —

Compute the second derivative and check that 40) is concave down
at OMLE



Machine Learning




Machine Learning




Learning Fully Observed BNs

@ @ p(X17X27X37X47X5> —
2 p(X5| X3)p(Xa| Xa, X3)
x) (x) p(X3)p(X2| X1)p(X1)



Learning Fully Observed BNs

@ @ p(X17X27X37X47X5> —
&g p(X5|X3)p(X4| X, X3)
x) (x) p(X3)p(Xa| X1)p(X1)



Learning Fully Observed BNs

@ @ p(X17X27X37X47X5) —
&g p(X5|X3)p(X4| X, X3)
x) (x) p(X3)p(Xa| X1)p(X1)

How do we learn these conditional and
marginal distributions for a Bayes Net?



Learning Fully Observed BNs

Learning this fully observed
Bayesian Network is
equivalent to learning five
(small / simple) independent
networks from the same data

p(X17 X27 X37 X47 X5) —

___________

_____________________________




Learning Fully Observed BNs
How do we learn these

[ %
conditional and marginal v
distributions for a Bayes Net? 0" = argimax log p(Xl, XQ, Xg, X4, Xz)
0 ~—

= argmax log p(X5|X3, 05) +log p(X4| X2, X3, 04)

e + log p(X3|03) + log p(X2| Xy, 02)
0 (x,) + log p(X1[01)

0] = argmaxlog p(X1|6;)

04 —
@ @ 0 = argmaxlog p(Xs| X1, 05)

05 = argmax log p(X3|63)
03

GZ — a’rgma’XIng(X4 X27X37 64)
04

(9; = argmax lng(X5 Xg, 95)

05 29



Example: Tornado Alarms

1.

Imagine that
you work at the
911 call center
in Dallas

You receive six
calls informing
you that the
Emergency
Weather Sirens
are going off
What do you
conclude?

30



Example: Tornado Alarms

Hacking Attack Woke Up Dallas 1. Imagine that
With Emergency Sirens, Officials Say you work at the
P FLROSABERG manaTA st Armia za 011 call center
o | in Dallas
"N 2. Youreceive six
1 calls informing
you that the
Emergency

Weather Sirens
are going oft
i =g . 3. What do you
e i e el e conclude?

Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html
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Learning Fully Observed BNs
Ex : Torass ALl‘wg
ans gl

A~ Bewolli (O‘M,'r / Mf

C ~ UaiSom(0), -, 63) + Ax U,,.-S?.,M({L..,e})
R inkges

[VLG; i Clowd Torw
Ao, %) ‘!jﬁ ?(é“j h© 4“1:.“”@& x) €
= é |°7 F(éa)/ v+ /9;“(0,,0

;“‘l’"y F(Q(i)/ tli; [,lﬁim ”lbr((uz9
/’\L)‘%,& =] O X /(("La ’\:/pg

s e e Loy plh"Tn) AT S

Beogpr & Loy F(t“’lvt)— #(4=N) /N
X

= orax & Loy (AP
o RED

ko
7

.r-w-ﬁ-]t'-“

A
Oy, = (A1, T4, H=b)
4 (T:'é, /}@h)




INFERENCE FOR BAYESIAN
NETWORKS



A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1.

How do we compute the probability of a specific assignment to the

variables?
P(T=t, H=h, A=a, C=c)
/

How do we draw a sample from the joint distribution?

t,h,a,c ~ P(T, H, A, C

How do we compute marginal probabilities?

P(A) = ... <_,

How do we draw samples from a conditional distribution?
t,h,a ~ P(T,H,A|C=c¢)

How do we compute conditional marginal probabilities?
PH|C=0)=...

Can we
use

samples
?




Gibbs Sampling

p(x)

p(ay|zy))

—_—




Gibbs Sampling




Gibbs Sampling




Gibbs Sampling

Question:

How do we draw samples from a conditional distribution?
Yor Yor ooes Y3~ PUYo Yoo o0 Yy | X Xp 00, X))

(Approximate) Solution:

— Initializq y, ),y ..,y (© to arbitrary values

— Fort=1,2,...: — {H cmt{ﬂ“""

o v S0~y [ y,O, ey O )X, X))

1 2)

‘ yz(tH) ~ p(yz I 2;(t+1)) y (t) °) YJ( )’ Kip Xyp ooy Xy )
° y3(t+1) ~ p(y3 IH”’W'” ) yJ(t)’ Xy Xy ooy X))
Em———1 e —

‘ yJ(t+1) ~ p(yJ l y1(t+1)) yz(t+1)r ey yJ (t+1), X1, Xz) XJ )
‘ = —

Properties:

— This will eventually yield samples from
P(Ys Yar -o Yo | X Xop o0y X))

— But it might take a long time - just like other Markov Chain Monte Carlo
methods
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Gibbs Sampling

Full conditionals
only need to

condition on the
Markov Blanket

* Must be “easy” to sample from
conditionals

* Many conditionals are log-concave
and are amenable to adaptive
rejection sampling

Inp(x)

44



Learning Objectives

Bayesian Networks

You should be able to...

1.

W

o ¥

11.

|dentify the conditional independence assumptions given by a generative
story or a specification of a joint distribution

Draw a Bayesian network given a set of conditional independence
assumptions

Define the joint distribution specified by a Bayesian network

User domain knowledge to construct a (simple) Bayesian network for a real-
world modeling problem

Depict familiar models as Bayesian networks

Use d-separation to prove the existence of conditional indenpendencies in a
Bayesian network

Employ a Markov blanket to identify conditional independence assumptions
of a graphical model

Develop a supervised learning algorithm for a Bayesian network

Use samples from a joint distribution to compute marginal probabilities
Sample from the joint distribution specified by a generative story
Implement a Gibbs sampler for a Bayesian network



LEARNING PARADIGMS



Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification

< Structured Prediction

y(®) is a vector

63



Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction

Unsupervised

D = {x",yW}L,

y(z) S {+17 _1}

y(®) is a vector

D= {X(i)}£1
-~

x ~p*(-)andy = c*(-)

x ~ p*(-)

64



Learning Paradigms

Paradigm Data

Supervised D = {x® yO}N x ~ p*(-)andy = ¢*(-)
— Regression y() € R

— Classification y@ e {l,...,K}

— Binary classification y® e {+1,-1}
< Structured Prediction  y(*) is a vector
Unsupervised D={xO}N  x~p*()

Semi-supervised D = {x(® y@OVYN1 15Nz
P { y' 12y Ud }2_1



Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

y) e {+1,-1}

y(®) is a vector

D= (xO),  x~p()

D = {x(®, y(z‘)}é\;ll 9 {X(j)}j-vil

D — {(X(l)’ y(l))7 (X(2)7 :(/(2))7 (){(3)7 y(3))7 )

66



Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning

y(9) is a vector

D={x"}L; x~p()

D = {x®, y(i)}f;iﬁ L {X(j)};\’:zl

D = {(x),yW), (x?), 4@ (xB) 4B, .}

D = {x®1NV  and can query y¥ = ¢*(-) at a cost
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Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning

Imitation Learning

D={x®D y@IN  x~p*()andy = c*()

y® e {+1,-1}

y(®) is a vector

D={x"}L,  x~p*()

D = {x®,y®@} U {xD};2)

D = {(xD),yMW), (x?, 4@ (xB) 4B, .}

D = {xW}N  and can query y(9) = c¢*(-) at a cost
D = (58,0, (42,0, . )
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Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

D = {X(i), y(")}i\[:l X ~ p*() and Yy = c*()

y® e {+1,-1}

y(®) is a vector

D={x"}L,  x~p*()

D = {x,yO}2 U {xW}72,

D = {(x),yW), (x?), 4@ (xB) 4B, .}

D = {x}X  and can query 4 = ¢*(-) at a cost
D = {(sW,aD), (s, a?) ..}

D — {(3(1),a(1),r(1)), (8(2)761(2)’7«(2))7 .
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REINFORCEMENT LEARNING



Examples of Reinforcement Learning

p &

* How should arobot behave so as @J’ @J\g

to optimize its “performance’?
(Robotics) vl

&
* How to automate the motionof = = ;
a helicopter? (Control Theory) '

* How to make a good chess-playing -y
program? (Artificial Intelligence) &=

© Eric Xing @ CMU, 2006-2011



Autonomous Helicopter

Video:



Robot in aroom

UP

807%
10%
10%

START

« reward +1 at [4,3], -1 at [4,2]
e reward -0.04 for each step

actions: UP, DOWN, LEFT, RIGHT

move UP '
move LEFT

move RIGHT

* what’s the strategy to achieve max reward?
* what if the actions were NOT deterministic?

© Eric Xing @ CMU, 2006-2011
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History of Reinforcement Learning

Roots in the psychology of animal learning
(Thorndike,1911).

Another independent thread was the problem of
optimal control, and its solution using dynamic
programming (Bellman, 1957).

ldea of temporal difference learning (on-line
method), e.g., playing board games (Samuel, 1959).

A major breakthrough was the discovery of Q-
learning (Watkins, 1989).

© Eric Xing @ CMU, 2006-2011 74



What is special about RL?

RL is learning how to map states to actions, so
as to maximize a numerical reward over time.

Unlike other forms of learning, it is a multistage
decision-making process (often Markovian).

An RL agent must learn by trial-and-error. (Not
entirely supervised, but interactive)

Actions may affect not only the immediate
reward but also subsequent rewards (Delayed
effect).



Elements of RL

* Apolicy
- A map from state space to action space.
- May be stochastic.
* Areward function
- It maps each state (or, state-action pair) to
a real number, called reward.
* Avalue function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that
state (or, state-action pair).

© Eric Xing @ CMU, 2006-2011
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3

-

Question: Answer: (Hint: both yes

Is this policy optimal: yes and no are acceptable

or no? Briefly justify your answers, I’m interested in
answer. your justification.)

© Eric Xing @ CMU, 2006-2011
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Reward for each step -2

?ﬁgfﬂ = - %
_3-1

@)

+
>

=

© Eric Xing @ CMU, 2006-2011
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Reward for each step: -0.1

5
?
@




The Precise Goal

To find a policy that maximizes the Value function.
— transitions and rewards usually not available

There are different approaches to achieve this goal in
various situations.

Value iteration and Policy iteration are two more
classic approaches to this problem. But essentially
both are dynamic programming.

Q-learning is a more recent approaches to this
problem. Essentially it is a temporal-difference
method.

© Eric Xing @ CMU, 2006-2011
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MARKOV DECISION PROCESSES



Markov Decision Process

* For supervised learning the PAC learning
framework provided assumptions about
where our data came from:

x ~p*()andy = c*(:)

* For reinforcement learning we assume our
data comes from a Markov decision process

(MDP)



Markov Decision Process

Whiteboard

— Components: states, actions, state transition
probabilities, reward function

— Markovian assumption

— MDP Model

— MDP Goal: Infinite-horizon Discounted Reward
— deterministic vs. nondeterministic MDP

— deterministic vs. stochastic policy



