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Reminders

Practice Problems for Exam 2
— Out: Fri, Mar 20

Midterm Exam 2

— Thu, Apr 2 - evening exam, details announced on
Piazza

Homework 7: HMMs
— Out: Thu, Apr 02
— Due: Fri, Apr 10 at 11:59pm

Today’s In-Class Poll
— http://poll.mlcourse.org




THE FORWARD-BACKWARD
ALGORITHM



Forward-Backward Algorithm
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Inference for HMMs

Whiteboard

— Forward-backward algorithm
(edge weights version)

— Viterbi algorithm
(edge weights version)



Forward-Backward Algorithm
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Derivation of Forward Algorithm
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Viterbi Algorithm
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Inference in HMMs

What is the computational complexity of
inference for HMMs?

* The naive (brute force) computations for
Evaluation, Decoding, and Marginals take
exponential time, O(K")

* The forward-backward algorithm and Viterbi
algorithm runin , O(T*K?)

— Thanks to dynamic programming!
—_— i




Shortcomings of
Hidden Markov Models

(o0
XX

HMM models capture dependences between each state and only its

corresponding observation

— NLP example: In a sentence segmentation task, each segmental state may depend
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white

space, etc.
Mismatch between learning objective function and prediction objective

function
— HMM learns a joint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X
p y P(YIX),

%“Q
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MBR DECODING



Inference for HMMs

o
— Ihfélnference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

{-% 3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations

4. MBR Decoding: Find the lowest loss sequence of
hidden states, given a sequence of observations
(Viterbi decoding is a special case)
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Minimum Bayes Risk Decoding

* Suppose we given a loss function /(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

* A minimum Bayes risk (MBR) decoder A(x) returns
the variable assignment with minimum expected loss
under the model’s distribution
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Minimum Bayes Risk Decodm
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Consider some example loss functions: A A A




Minimum Bayes Risk Decoding

T B (VAN

Consider some example loss functions: VAN




Learning Objectives

Hidden Markov Models
You should be able to...

1. Show that structured prediction problems yield high-computation inference
problems

Define the first order Markov assumption
Draw a Finite State Machine depicting a first order Markov assumption
Derive the MLE parameters of an HMM

Define the three key problems for an HMM: evaluation, decoding, and
marginal computation

Derive a dynamic programming algorithm for computing the marginal
probabilities of an HMM

Interpret the forward-backward algorithm as a message passing algorithm
Implement supervised learning for an HMM

Implement the forward-backward algorithm for an HMM

Implement the Viterbi algorithm for an HMM

11.  Implement a minimum Bayes risk decoder with Hamming loss for an HMM
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Bayes Nets Outline

Motivation

—  Structured Prediction
Background

— Conditional Independence

—  Chain Rule of Probability
Directed Graphical Models

—  Writing Joint Distributions

— Definition: Bayesian Network

— Qualitative Specification

— Quantitative Specification

— Familiar Models as Bayes Nets
Conditional Independence in Bayes Nets

— Three case studies

— D-separation

— Markov blanket
Learning

— Fully Observed Bayes Net

—  (Partially Observed Bayes Net)
Inference

— Background: Marginal Probability

— Sampling directly from the joint distribution
—  Gibbs Sampling



DIRECTED GRAPHICAL MODELS



Example: Ryan Reynolds’ Voicemail

From


https://www.adweek.com/brand-marketing/ryan-reynolds-left-voicemails-for-all-mint-mobile-subscribers/

Example: Ryan Reynolds Voicemail
DEADPOOL DEADPOUL

Images from imdb.com
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Example: Ryan Reynolds’ Voicemail

From


https://www.adweek.com/brand-marketing/ryan-reynolds-left-voicemails-for-all-mint-mobile-subscribers/

Directed Graphical Models

(Bayes Nets)
Whiteboard

— Example: Ryan Reynolds’ Voicemail

— Writing Joint Distributions
* Idea #1: Giant Table
* |dea #2: Rewrite using chain rule
* Idea #3: Assume full independence
* Idea #4: Drop variables from RHS of conditionals

— Definition: Bayesian Network



Bayesian Network

p(X1, X9, X3, Xy, X5) =
p(X5]X3)p(Xa| Xo, X3)
p(X3)p(X2| X1)p(X1)




Bayesian Network

Definition:

@ @ P(X .y X,,) = HP(X | parents(X.))
i=1 I__?_‘ — )
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* A Bayesian Network is a directed graphical model
* It consists of a grap @ d the conditional probabilities
* These two parts full specify~the distribution:

— Qualitative Specification: G
— Quantitative Specification: P 0\c7c_\ic A(&M
jﬂc?\'\ 04




Qualitative Specification

* Where does the qualitative specification
come from?

— Prior knowledge of causal relationships

— Prior knowledge of modular relationships
— Assessment from experts

— Learning from data (i.e. structure learning)

— We simply prefer a certain architecture (e.g. a
layered graph)



Quantitative Specification

Example: Conditional probability tables (CPTs)
for discrete random variables
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Quantitative Specification

Example: Conditional probability density functions (CPDs)
for continuous random variables
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Quantitative Specification

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables
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P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)




Observed Variables

* In a graphical model, shaded nodes are
“observed”, i.e. their values are given




Familiar Models as Bayesian

Networks
Question: Answer:

Match the model name to

the corresponding Bayesian \A) () P
Network
Logistic Regression "D () () = (x)

Linear Regression © B
Bernoulli Naive Bayes A () () = ()
Gaussian Naive Bayes A
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