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Reminders

• Practice Problems for Exam 2

– Out: Fri, Mar 20

• Midterm Exam 2

– Thu, Apr 2 – evening exam, details announced on
Piazza

• Homework 7: HMMs

– Out: Thu, Apr 02

– Due: Fri, Apr 10 at 11:59pm

• Today’s In-Class Poll

– http://poll.mlcourse.org
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THE FORWARD-BACKWARD 
ALGORITHM

6



Forward-Backward Algorithm
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O(K) O(K2T)

Brute force 
algorithm 
would be 

O(KT)



Inference for HMMs

Whiteboard
– Forward-backward algorithm 

(edge weights version)
– Viterbi algorithm 

(edge weights version)
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Forward-Backward Algorithm
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Derivation of Forward Algorithm
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Derivation:

Definition:



Viterbi Algorithm
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Inference in HMMs
What is the computational complexity of 
inference for HMMs?

• The naïve (brute force) computations for 
Evaluation, Decoding, and Marginals take 
exponential time, O(KT)

• The forward-backward algorithm and Viterbi
algorithm run in polynomial time, O(T*K2)
– Thanks to dynamic programming!
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Shortcomings of 
Hidden Markov Models

• HMM models capture dependences between each state and only its 
corresponding observation  
– NLP example: In a sentence segmentation task, each segmental state may depend 

not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white 
space, etc.

• Mismatch between learning objective function and prediction objective 
function
– HMM learns a joint distribution of states and observations P(Y, X), but in a prediction 

task, we need the conditional probability P(Y|X)
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MBR DECODING
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Inference for HMMs

– Three Inference Problems for an HMM
1. Evaluation: Compute the probability of a given 

sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of 
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a 
hidden state, given a sequence of observations

4. MBR Decoding: Find the lowest loss sequence of 
hidden states, given a sequence of observations 
(Viterbi decoding is a special case)
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Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are 

asked for a single tagging
• How should we choose just one from our probability 

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns 

the variable assignment with minimum expected loss 
under the model’s distribution
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h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



The 0-1 loss function returns 1 only if the two assignments 
are identical and 0 otherwise:

The MBR decoder is:

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:
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`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin
ŷ

X

y

p✓(y | x)(1� I(ŷ,y))

= argmax
ŷ

p✓(ŷ | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



The Hamming loss corresponds to accuracy and returns the number 
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable 
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:
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`(ŷ,y) =
VX

i=1

(1� I(ŷi, yi))

ŷi = h✓(x)i = argmax
ŷi

p✓(ŷi | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



Learning Objectives
Hidden Markov Models

You should be able to…
1. Show that structured prediction problems yield high-computation inference 

problems
2. Define the first order Markov assumption
3. Draw a Finite State Machine depicting a first order Markov assumption
4. Derive the MLE parameters of an HMM
5. Define the three key problems for an HMM: evaluation, decoding, and 

marginal computation

6. Derive a dynamic programming algorithm for computing the marginal 
probabilities of an HMM

7. Interpret the forward-backward algorithm as a message passing algorithm
8. Implement supervised learning for an HMM
9. Implement the forward-backward algorithm for an HMM
10. Implement the Viterbi algorithm for an HMM

11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM
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Bayes Nets Outline

• Motivation
– Structured Prediction

• Background
– Conditional Independence
– Chain Rule of Probability

• Directed Graphical Models
– Writing Joint Distributions

– Definition: Bayesian Network

– Qualitative Specification
– Quantitative Specification

– Familiar Models as Bayes Nets

• Conditional Independence in Bayes Nets
– Three case studies

– D-separation
– Markov blanket

• Learning
– Fully Observed Bayes Net

– (Partially Observed Bayes Net)

• Inference
– Background: Marginal Probability

– Sampling directly from the joint distribution
– Gibbs Sampling
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DIRECTED GRAPHICAL MODELS
Bayesian Networks
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Example: Ryan Reynolds’ Voicemail
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From https://www.adweek.com/brand-marketing/ryan-reynolds-left-voicemails-for-all-mint-mobile-subscribers/

https://www.adweek.com/brand-marketing/ryan-reynolds-left-voicemails-for-all-mint-mobile-subscribers/


Example: Ryan Reynolds Voicemail
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Images from imdb.com



Example: Ryan Reynolds’ Voicemail
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From https://www.adweek.com/brand-marketing/ryan-reynolds-left-voicemails-for-all-mint-mobile-subscribers/

https://www.adweek.com/brand-marketing/ryan-reynolds-left-voicemails-for-all-mint-mobile-subscribers/


Directed Graphical Models 
(Bayes Nets)

Whiteboard
– Example: Ryan Reynolds’ Voicemail

– Writing Joint Distributions
• Idea #1: Giant Table

• Idea #2: Rewrite using chain rule

• Idea #3: Assume full independence

• Idea #4: Drop variables from RHS of conditionals

– Definition: Bayesian Network
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Bayesian Network
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p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X3X2

X4 X5



Bayesian Network

• A Bayesian Network is a directed graphical model
• It consists of a graph G and the conditional probabilities P
• These two parts full specify the distribution:

– Qualitative Specification: G
– Quantitative Specification: P
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X1

X3X2

X4 X5

Definition:

P(X1…Xn ) = P(Xi | parents(Xi ))
i=1

n

∏



Qualitative Specification

• Where does the qualitative specification 
come from?

– Prior knowledge of causal relationships

– Prior knowledge of modular relationships

– Assessment from experts

– Learning from data (i.e. structure learning)

– We simply prefer a certain architecture (e.g. a 
layered graph) 

– …
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a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 

P(a)P(b)P(c|a,b)P(d|c)

D

c0 c1

d0 0.3 0.5
d1 07 0.5

Quantitative Specification
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Example: Conditional probability tables (CPTs)
for discrete random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C

P(
D|

 C
)

Quantitative Specification
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Example: Conditional probability density functions (CPDs)
for continuous random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

C~N(A+B, Σc)

D~N(μd+C, Σd)

Quantitative Specification
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Example: Combination of CPTs and CPDs 
for a mix of discrete and continuous variables

a0 0.75
a1 0.25

b0 0.33
b1 0.67



Example:

Observed Variables

• In a graphical model, shaded nodes are 
“observed”, i.e. their values are given
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X1

X3X2

X4 X5



Familiar Models as Bayesian 
Networks
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Question:
Match the model name to 
the corresponding Bayesian 
Network
1. Logistic Regression
2. Linear Regression
3. Bernoulli Naïve Bayes
4. Gaussian Naïve Bayes
5. 1D Gaussian 

Answer:
Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

X

µ σ2

X

A B

C D

E F


