10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Hidden Markov Models

Matt Gormley
Lecture 20
Mar. 30, 2020



Reminders

Practice Problems for Exam 2
— Out: Fri, Mar 20

Midterm Exam 2

— Thu, Apr 2 - evening exam, details announced on
Piazza

Homework 7: HMMs
— Out: Thu, Apr 02
— Due: Fri, Apr 10 at 11:59pm

Today’s In-Class Poll
— http://poll.mlcourse.org




HMMs: History

« Markov chains: Andrey Markov (1906)
— Random walks and Brownian motion
« Used in Shannon’s work on information theory (1948)
 Baum-Welsh learning algorithm: late 60’s, early 70’s.
— Used mainly for speech in 60s-70s.

« Late 80’s and 90’s: David Haussler (major player in
learning theory in 80’s) began to use HMMs for
modeling biological sequences

« Mid-late 1990’s: Dayne Freitag/Andrew McCallum

— Freitag thesis with Tom Mitchell on IE from Web
using logic programs, grammar induction, etc.

— McCallum: multinomial Naive Bayes for text
— With McCallum, IE using HMMs on CORA
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Higher-order HMMs
bigramW

~ —_—

X X

e trigram HMM




Higher-order HMMs

* 1t-order HMM (i e. bigram HMM)

Hidden [
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HMM (i.e. trigram HMM)
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BACKGROUND: MESSAGE PASSING



Great Ideas in ML: Message Passing
Count the soldiers




Great Ideas in ML: Message Passing
Count the soldiers
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Great Ideas in ML: Message Passing
Count the soldiers

here's
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

1 0f me




Great Ideas in ML: Message Passing
Each soldier receives reports from all branches of tree
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

.




Great Ideas in ML: Message Passing
Each soldier receives reports from all branches of tree
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

-

dn't work correctly ~
with a 'loopy' (cyclic) graph

‘adapted from Mackay (2003) textbook ’




THE FORWARD-BACKWARD
ALGORITHM



® c Inference

Il A—.ca\lm\7
Q\,estio :

True or False: The joint probability of the observations
aftd the Rfdden states in an HMM is given by:

T T—1
PX=xY=y)=Cy H Ay, z, H Byt+1,yt]
’ = lt=1 =1 Lt=1 .
\] D@ (

Recall:

Emission matrix, A, where P(X; = k|Y: = j) = Ak, Vt, k
Transition matrix, B, where P(Y; = k’L}/t_l = j‘) = B, Vt, k
Initial probs, C, where P(Y; = k) = C, Vk *3




A:Qe‘(m
INnterence

3 C
<;Lesﬁogx
True or l\%‘f{%e: The probability of the observations
i 4h H is given by: < {.3: aﬁ(xg;,jﬁ\
i Yg I°
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Recall:

Emission matrix, A, where P(X; = k|Y: = j) = Ak, Vt, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, x, Vi, k
Initial probs, C, where P(Y; = k) = Ck,Vk



Inference

Question:

True or False: Suppose each hidden state takes K values. The
marginal probability of a hidden state y, given the
observations x is given by:

K

P(Y, =y|X=x) =) By,
j=1

Recall:

Emission matrix, A, where P(X; = k|Y: = j) = Ak, Vt, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, x, Vi, k
Initial probs, C, where P(Y; = k) = C, Vk



Inference for HMMs

Whiteboard

— Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {:B(n), y(n)},,]jzl
Sample 1: ‘ ‘ @ ‘ ‘
Sample 2: ' ‘ ‘ ‘ ‘
e @ @ @ @ @
& @
e @ @ @ @ @
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Inference for HMMs

Whiteboard
— Forward-backward search space



Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.

p(n, v, p, d, n, time, flies, like, an, arrow) — (.3 * 8% 2% .5 * )
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Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb
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Forward-Backward Algorithm
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Forward-Backward Algorithm

START

* Let’s show the possible values for each variable
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END



Forward-Backward Algorithm

* Let’s show the possible values for each variable
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Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment
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Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment

 And what the 7 transition / emission factors think of it ...
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Forward-Backward Algorithm
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* Let’s show the possible values for each variable

* One possible assignment
 And what the 7 transition / emission factors think of it ...
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Viterbi Algorithm: Most Probable Assignment

8 \ /"\\ / v
‘6(5&?33 é“ B(a,END)
rs N

A(pref., a)

* Sop(van)=(1/Z)* product of 7 numbers
* Numbers associated with edges and nodes of path
* Most probable assignment = path with highest product



Viterbi Algorithm: Most Probable Assignment

D \ /v\\ 7/
?)(5@?33 é“ B(a,END)
fons LN——\

A(pref., a)

* Sop(va nb*; (1/Z) * product weight of one path



Forward-Backward Algorithm: Finds Marginals

A\ A\

7\ v 2000
ye : \'
W

A

* Sop(van)=(1/Z2)* product weight of one path

* Marginal probability p(¥, = a} %)
> (1/Z) * total weight of VANE



Forward-Backward Algorithm: Finds Marginals

eSS =TSN

* Sop(van)=(1/Z2)* product weight of one path

* Marginal probability p(Y, =n)
> (1/2) * total weight of VANE



Forward-Backward Algorithm: Finds Marginals

* Sop(van)=(1/Z2)* product weight of one path

* Marginal probability p(Y, = v)
> (1/2) * total weight of ANE



Forward-Backward Algorithm: Finds Marginals

eSS =TSN

* Sop(van)=(1/Z2)* product weight of one path

* Marginal probability p(Y, =n)
> (1/2) * total weight of VANE



Forward-Backward Algorithm: Finds Marginals

0,(m) = total weight of these
path prefixes = ¢4btc

(found by dynamic programming: matrix-vector products) °



Forward-Backward Algorithm: Finds Marginals

By(m) = total weight of these
path suffixes = x+y2

(found by dynamic programming: matrix-vector products) v



Forward-Backward Algorithm: Finds Marginals

@’P&
= total weight of these = total Weight of these
\ path pre tgxes (@+b+c) - path suffixes (x + v +2)
F“(a) [q-(—bre.}(&u-v-fz\

os gx+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Forward-Backward Algorithm: Finds Marginals

. % o
A4 Alpref, )

total weight of o/l paths through A
- EE] e EE)
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Forward-Backward Algorithm: Finds Marginals

A “belief that ¥, =v"”

> n > “belief that ¥, =n"
R -
A(pref., v)

total weight of AN

— Exz_(\fl A(pref., v) @
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Forward-Backward Algorithm: Finds Marginals

“belief t@

“belief that ¥, =n"

{ “beheM

sum y4

of all paths)

total weight of
= 0@ Apref.a) fy(a)




Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb
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Inference for HMMs

Whiteboard

— Derivation of Forward algorithm
— Forward-backward algorithm
— Viterbi algorithm



Forward-Backward Algorithm
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Derivation of Forward Algorithm

Definition: D(,é(lc) 2 F(XU""Xt)Yt:"')

Derivation: Herein vs29 :: ‘/r"_"s )
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Viterbi Algorithm

E&: wt(k)"e' max P(xlr“)xtl71)“'/)’&!/%‘:“‘}
)’n)"'”)\/b’l

“b«elz.?’.-,\m"————v bt(")é QM ?(x"“"xt'7'1“'/7?'/%?“‘)

YooY
AM YO = STAW
@ Iui‘,'ﬂku wa(START) =1 wo(k)’o VIL*START

@ For £=/,.,7:

For k”/""/k"
zt(k): JE Dk P(X*'ytzk) gt Plyesk | per23)
(b= e Pebre) 0,6 plyek )
@ Cowu(»‘\’e Most Probeble A,ssf).awu%‘ [Deco J"b]
ZT 3 bT-H(E”D)
For £=T-1,..., | I NSRRI
;lt = btf\ (‘/tﬂ) *hucke Yu‘w\eﬂ"



Inference in HMMs

What is the computational complexity of
inference for HMMs?

* The naive (brute force) computations for
Evaluation, Decoding, and Marginals take
exponential time, O(K")

* The forward-backward algorithm and Viterbi
algorithm run in , O(T*K?)
— Thanks to dynamic programming!



Shortcomings of
Hidden Markov Models

HMM models capture dependences between each state and only its

corresponding observation

— NLP example: In a sentence segmentation task, each segmental state may depend
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white

space, etc.
Mismatch between learning objective function and prediction objective

function
— HMM learns a joint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 78



MBR DECODING



Inference for HMMs

o
— /hrélnference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations

4. MBR Decoding: Find the lowest loss sequence of
hidden states, given a sequence of observations
(Viterbi decoding is a special case)
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Minimum Bayes Risk Decoding

* Suppose we given a loss function /(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

* A minimum Bayes risk (MBR) decoder A(x) returns
the variable assignment with minimum expected loss
under the model’s distribution

he(a?)

arg:fllin 43y~p9(-|213) [é(@, y)]
Yy

argmin » pe(y | )Y, y)
& Yy



Minimum Bayes Risk Decoding

Consider some example loss functions:
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Minimum Bayes Risk Decoding

Consider some example loss functions:




Learning Objectives

Hidden Markov Models
You should be able to...

1. Show that structured prediction problems yield high-computation inference
problems

Define the first order Markov assumption
Draw a Finite State Machine depicting a first order Markov assumption
Derive the MLE parameters of an HMM

Define the three key problems for an HMM: evaluation, decoding, and
marginal computation

Derive a dynamic programming algorithm for computing the marginal
probabilities of an HMM

Interpret the forward-backward algorithm as a message passing algorithm
Implement supervised learning foran HMM

Implement the forward-backward algorithm for an HMM

Implement the Viterbi algorithm for an HMM

1. Implement a minimum Bayes risk decoder with Hamming loss for an HMM
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