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Reminders

Homework 6: Learning Theory / Generative
Models

— Out: Fri, Mar 20
— Due: Fri, Mar 27 at 11:59pm

Practice Problems for Exam 2
— Out: Fri, Mar 20

Midterm Exam 2

— Thu, Apr 2 - evening exam, details announced on
Piazza

Today’s In-Class Poll
— http://poll.mlcourse.org




MIDTERM EXAM LOGISTICS



Midterm Exam

* Time [ Location

Time: Evening Exam
Thu, Apr. 2 at 6:00pm - 9:00pm

Location: We will contact you with additional details about how to join the
appropriate Zoom meeting.

Seats: There will be assigned Zoom rooms. Please arrive online early.
Please watch Piazza carefully for announcements.

* Logistics

Covered material: Lecture 9 — Lecture 18 (95%), Lecture 1 - 8 (5%)

Format of questions:
* Multiple choice
* True/ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper
ronre-devi

— You are allowed to bring one 8% x 11 sheet of notes (front and back)



Midterm Exam

* How to Prepare

— Attend the midterm review lecture
(right now!)

— Review prior year’s exam and solutionj
(we’ll post them)

— Review this year’s homework problems

— Consider whether you have achieved the
“learning objectives” for each lecture [ section



Midterm Exam

* Advice (for during the exam)

— Solve the easy problems first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated you’re likely
missing something

— Don’t leave any answer blank! Q/

Y/— If you make an assumption, write it dﬂ

— If you look at a question and don’t know the
answer:
* we probably haven’t told you the answer
* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it

s




Topics for Midterm 1

 Foundations e (Classification
— Probability, Linear — Decision Tree
Algebra, Geometry, — KNN
Calculus — Perceptron

— Optimization :
* Regression

* Important Concepts — Linear Regression

— Overfitting
— Experimental Design



Topics for Midterm 2

* (lassification * Learning Theory
— Binary Logistic Regression — PAC Learning
— Multinomial Logistic e Generative Models
Regression — Generative vs.
* Important Concepts Discriminative
— Stochastic Gradient — MLE / MAP
Descent — Naive Bayes

— Regularization
— Feature Engineering
* Feature Learning
— Neural Networks
— Basic NN Architectures
— Backpropagation



SAMPLE QUESTIONS



Sample Questions

3.2 Logistic regression

Given a training set {(x;,y;),i = 1,...,n} where z; € R? is a feature vector and y; € {0,1}
is a binary label, we want to find the parameters w that maximize the likelihood for the
training set, assuming a para re-Trrodel ol the

1
1+ exp(—wTz)’

ply =z w) =

The conditional log likelihood of the training set is

l(w) = Zyi log p(yi, |7i;w) + (1 — y;) log(1 — p(yi, |74 w)),

i=1 A

and the gradient is

Vi(w) = Z(yi — p(yilzi; w))z;. \

(b) [5 pts.] What is the form of the classifier output by logistic regression? E
6): e ply1) e {13 P26 iy dioe-
K‘{ﬁ,‘ff*"t R, Yountasies

v
(c) [2 pts.] Extra Credit: Consid¥§ ‘(; e with binary featugs, 1e9r'e
where feature z; is rare and happens to appear in the training set with only label 1.
What is w;? Is the gradient ever zero for any finite w? Why is it important to include

a regularization term to control the norm of w?



Samples Questions

2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data D", and tested on a separate
test set D'*'. You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to 0.

1. [4 pts] Which of the following is expected to help? Select all that apply.

[ -

‘/(a) Increase the training data size. $°%
(b) Decrease the training data size.  20%,

(c) Increase model complexity (For example, if your classifier is an SVM, use a more
complex kernel. Or if it is a decision tree, increase the depth). 7%,

“/(d) Decrease model complexity.  10°/%

(e) Train on a combination of D" and D' and test on D' %

__(f)_Conelyde shatMachiTie-L egsrifip-doesnet Worke (_qlm;Jv



Samples Questions

2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data D", and tested on a separate
test set D'*'. You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to 0.

4. [1 pts] Say you plot the train and test errors as a function of the model complexity. Which
of the following two plots is your plot expected to look like?
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Sample Questions

5 Learning Theory [20 pts.]

(a) [3 pts.] T or It is possible to label 4 points in R? in all possible 2¢ ways via linear
separators in R=.

(d) [3 pts.] @ or F: The VC dimension of a concept class with infinite size is also infinite.

C%- e,l)‘ v

(f) [3 pts.] T or F: Given a realizable concept class and a set of training instances, a
consistent learner will output a concept that achieves()er')m‘m the training instances.
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Sample Questions




Sample Questions




Sample Questions

1.2 Maximum Likelihood Estimation (MLE)

Assume we have a random sample that is (éernou i distributed 1, ..., X,, ~ Bernoulli(6).
We are going to derive the MLE for . Recall that a Bernoulli random variable X takes

values in {0, 1} and has probability mass function given by

P(X;0) =6%(1—6)"*.

(a) [2 ptsljierive the likelihood, L(6; X1, ..., X,).

~ 1
(c) Extra Credit: [2 pts.] Derive the following formula for the MLE: 6 = — (3" | X;).
) n

— 1 S




Sample Questions

1.3 MAP vs MLE
Answer each question with T or F and provide a one sentence explanation of your

answer:
(a) [2 pts.]@ or F: In the limit, as n (the number of samples) increases, the MAP and
MLE estimates become the same.



Sample Questions




HIDDEN MARKOV MODEL (HMM)



HMM Outline

Motivation
— Time Series Data

Hidden Markov Model (HMM)

— Example: Squirrel Hill Tunnel Closures
[courtesy of Roni Rosenfeld]

— Background: Markov Models
— From Mixture Model to HMM
— History of HMMs
— Higher-order HMMs
Training HMMs
— (Supervised) Likelihood for HMM

— Maximum Likelihood Estimation (MLE) for HMM
— EM for HMM (aka. Baum-Welch algorithm)

Forward-Backward Algorithm
— Three Inference Problems for HMM
— Great Ideas in ML: Message Passing
— Example: Forward-Backward on 3-word Sentence
— Derivation of Forward Algorithm
— Forward-Backward Algorithm
— Viterbi algorithm



Markov Models

Whiteboard

— Example: Tunnel Closures
[courtesy of Roni Rosenfeld]

— First-order Markov assumption
— Conditional independence assumptions

21
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Totoro’s Tunnel







Mixture Model for Time Series Data

We could treat each (tunnel state, travel time) pair as independent. This
corresponds to a Naive Bayes model with a single feature (travel time).

= * * * *
p(lO,S,S,O,C,ﬁm,3m,18m,9m,27nl) (.8 F.2%.1%.03 ..)
“O
<(“\
O (8 0.8
S | .1 S (1]

" 1m1n

© IS \I\) me
o
° |9 W 3m1n

an \ g g((

Q v O
o

29



Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
tunnel states [ travel times with an assumption of dependence between
adjacent tunnel states.

p(0,5,5,0,C,2m, 3m, 18m, 9m, 27m) = (.8 * fﬁ*%il.*ﬁé *...)
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From Mixture Model to HMM




From Mixture Model to HMM




SUPERVISED LEARNING FOR
HMMS



G

Recipe ]‘or Closed-form MLE
i

Assumejéta was generated i.i.d. from some model
(i.e. writg the generative story)

’>_
x) ~ p(x|0) HMM
Write log-likelihood
40) = log p(x(|@) + ... + log p(x(N)|©)
Compute partiél derivatives ( -
00(0)/08, = ...
00(0)/08, = ...

00(0)/08,, = ...
Set derivatives to zero and solve for ©
00(0)/06_, =0 forallme {1, ..., M}

OMLE —

—

Compute the second derivative and check that 40) is concave down
at OMLE

38



MLE of Categorical Distribution

1. Suppose we have a dataset obtained by repeatedly rolling a
M-sided (weighted) die IV times. That is, we have data

D= {x(i)}ﬁvﬂ

where z(Y) € {1,..., M} and 2(*) ~ Categorical(¢).

2. Arandom variable is Categorical written X ~ Categorical(¢)

:p!x‘qu):?gh/ ¢M7O VM

wherez € {1,...,M}and >¥_. ¢,, = 1. The log-likelihood
of the data becomes:

N M

= 10g ¢cc 5 S.t. ¢m =1
s st

+*

3. Solving this‘constrained optimization problem ‘lields the maxi-
mum likelihood estimator (MLE):

¢MLE Zz_ x(z)_ m)

39



Hidden Markov Model
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Training HMMs

Whiteboard
— (Supervised) Likelihood for an HMM
— Maximum Likelihood Estimation (MLE) for HMM



Supervised Learning for HMMs

Learning an Dak . D - ‘i(;‘:‘,y“’ﬁi@- L= X, ]
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Supervised Learning for HMMs

Learning an Il a2 =@)3N
HMM g D" Z(x /)( )51.:0

N
decomposes Lidileod = (4 B\) = = by ?(;c>,7a>)

into solving two
(independent) Z | D © a) @
Mixture Models 2 Lé- \‘7?(7(* |/i.,,3)+ ‘> I’("(é e A

Y 5

«u
S

an 5 [é oy pOE 2]

= Clyw é:_' [%_ \o’?(;zlﬁ),,ﬁﬁ
&Cﬂr\ Sol»-c [ C-(m,eJ L:lw lo}z'l

«l

A o
Bl = H(yezk - Yerzj)

E(y2=50
A
pﬂ’ B (X sk <l %%5)
e LY RaR




Unsupervised Learning for HMMs

Unlike discriminative models p(y|x), generative models pgwx,y)
can maximize the likelihood of the data D = {x(, x(), ..., xN}}

where we don’t observe any y’s.
This unsupervised learning seW by finding
parameters that maximize the@marginal likelihood >

We optimize using the Expectation-Maximization algorithm
L

Since we don’t observe y, we define the marginal probability:

po(x) = 3" po(x,y)
yey |

The log-likelihood of the data is thus:

N
=) log » pe(x™,y)
1=1 gyey, , A




HMMs: History

« Markov chains: Andrey Markov (1906)
— Random walks and Brownian motion
« Used in Shannon’s work on information theory (1948)
 Baum-Welsh learning algorithm: late 60’s, early 70’s.
— Used mainly for speech in 60s-70s.

« Late 80’s and 90’s: David Haussler (major player in
learning theory in 80’s) began to use HMMs for
modeling biological sequences

« Mid-late 1990’s: Dayne Freitag/Andrew McCallum

— Freitag thesis with Tom Mitchell on IE from Web
using logic programs, grammar induction, etc.

— McCallum: multinomial Naive Bayes for text
— With McCallum, IE using HMMs on CORA

48

Slide from William Cohen



Higher-order HMMs

. 15t-order HMM (i.e. bigram HMM)

YRR N

« 2"-order HMM (i.e. trigram HMM)




Higher-order HMMs

* 1t-order HMM (i e. bigram HMM)

Hidden [
States, y |q

=4 5 o 6 4

HMM (i.e. trigram HMM)
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