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Reminders

* Homework 6: Learning Theory [ Generative
Models
— Out: Fri, Mar 20
— Due: Fri, Mar 27 at 11:59pm

e Midterm Exam 2

— Thu, Apr 2 - evening exam, details announced
on Piazza

* Today’s In-Class Poll
— http://poll.mlcourse.org




Q&A

Q: Why would we use Naive Bayes? Isn’t it too
Naive?
A: Naive Bayes has one key advantage over

methods like Perceptron, Logistic
Regression, Neural Nets:

Training is lightning fast!
While other methods require slow iterative
training procedures that might require

hundreds of epochs, Naive Bayes computes
its parameters in closed form by counting.




NAIVE BAYES



Model 1: Bernoulli Naive Bayes

Flip weighted coin

Q@

If HEADS, flip If TAILS, flip

each red coin each blue coin
y X; Xy X3 e Xy

“" ol 1o 1 |.] 1 ““

1 o|1]0 1
1 111 | 1 1
0 oO| 0| 1 1
0 110 1 0
1 110 1 0




What’s wrong with the
Naive Bayes Assumption?

The features might not be independent!!

Trump Spends Entire Classified National

* Example 1:
Security Briefing Asking About Egyptian

— If a document contains the word o=
“Donald”, it’s extremely likely to
contain the word “Trump”’

— These are not independent!

* Example 2:

— If the petal width is very high,
the petal length is also likely to
be very high
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Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model

(i.e. write the generative story)
x®) ~ p(x|0)

Write log-likelihood
40) =log p(x"[0) + ... +log p(x(N]|0)

Compute partial derivatives
0((0)/00, = ...
0((0)/06, = ...

0((0)/00,, = ...
Set derivatives to zero and solve for 6
0((0)/06,, =0 forallme{y,..., M}

OMLE =

Compute the second derivative and check that {0) is concave down
at eMLE



Naive Bayes: Learning from Data

Whiteboard
— Data likelihood
— MLE for Naive Bayes <

— Example: MLE for Naive Bayes with Two
Features

— MAP for Naive Bayes




NAIVE BAYES: MODEL DETAILS



Model 1: Bernoulli Naive Bayes

Data: Binary feature vectors, Binarylabels
y< o)

Generative Story: Model:
y ~ Bernoulli(¢) poo(x,y) =pso(x1,...,2Mm,Y)
z1 ~ Bernoulli(6, 1) M
zo ~ Bernoulli(6, 2) = Py (y) H1 Po(zm|y)
= [(cb)y(l - 9) )
xpr ~ Bernoulli(6, ar) M

ym .’L’m(l . ym)(l—xm)

m=1




Model 1: Bernoulli Naive Bayes

Maximum Likelihood Estimation
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Model 1: Bernoulli Naive Bayes

Maximum Likelihood Estimation

Training: Find the class-conditional MLE
parameters

N
C(')Unt Ny:l _ Z]I(y(z) _ 1)
Variables: =]

N
Ny—o = Z ]I(y(i) =0)
i=1

N
Ny—0z,-1= Z I(y® =0 Az =1)
1=1

Maximum b =
Likelihood
Estimators: _ Ny=0,2,,=1

00 m —
Ny—o
0 Nyzl,xm—l
1m — N
y=1

Data:

e

Y X; Xy X3 eee Xy
| 0 110 | 1 |...|1
T 1 ol 1|0 |..]|1
Y\ 1 o 1| 1 1
4 | o L 0| 0| 1 1
6 |o 1o 1]...]o0
6 | 1 1lo|1]...]0

ca\“"“:v

Question 1:
What is the/MLE of ¢?
(A) 0f6 (B;\é(C) >/6(D)3/6”

(E) 4/6 (F)5/6 (G) 6/6 (H) yre,



Model 1: Bernoulli Naive Bayes

Maximum Likelihood Estimation Data:
Training: Find the class-conditional MLE [y Xy X3 .o Xy
parameters f
N —||l o o 1 |..| 1
Count Nyt =S Iy =1
=1l — Yy — )
Variables: Z L ofrTr{og-- |
yO_Z]Iy("')— 1 ol 1|1 |..|1
N -1l o ofl o | 1 1
Ny—o,0,,=1 =Y _ Iy® =0nzl) =1)
=1
| © 1% o | 1 0
| —
1 1] 0 | 1 0
Maximum

Likelihood

Esttmators ‘

Question 2: o L\ X
°l. What is the/MLE o

]—Vy,=1 - (A) 0/6 /6
Vm € {1,..., M} (E) 4/6 4F) 5/6 (G) 6/6 (H) 3.




Model 1: Bernoulli Naive Bayes

Maximum Likelihood Estimation

Training: Find the class-conditional MLE
parameters

N
C(?Uﬂt Ny:l _ Z]I(y(z) _ 1)
Variables: =]

N
Ny—o = Z H(y(i) =0)
i=1

N
Ny—tzm=1= > _Iy® =0A2}) =1)

=1

Maximum ¢ = Ny:l
Likelihood N
Estimators: Ny—o0,z,,=1
HO,m — N
y=0
0 Nyzl,mmzl
1m — N
y=1

MLE for Naive
Bayes is a splendid
learning algorithm
for when you have

say billions of
training examples

and hundreds of
millions of features!

You only need one
pass through the
data to perform
some counting.




MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



A Shortcoming of MLE

For Naive Bayes, suppose we never observe the word
“Unicorn’”in areal news article.

n thi is the MLE of the following quantity?
) p(xunlcorn I Y= real) O

SN Iy® =0zl =1)
S I(y® =0)

Now suppose we observe the word “unicorn” at test
time. What is the posterlor probability that the article

Recall: Oko =

was a real article? \v?‘ ww“ me\\ )
O J, "“
[ [
p(y A~ real|x) = x|y/zr6a p(y rea)
p

«,
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Recipe for Closed-form MAP
Estimation

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

6 ~ p(8) and then for all i: x ~ p(x|6)
Write loéﬁﬁod - —

ZMAP(G) = Iog p(e +!|0g p(x(1)le) + ... + IOg p(X(N)le)
Compult‘e partial éerlvatlves
0l ,p(0)/00, = ...

aéMAp(e)/aez — oo

aéMAp(e)/aeM — ceo .
Set derivatives to zero and solve for 6 ]

0lrp(0)/00,, =0 forallme{y, ..., M}

OMAP —

Compute the second derivative and check that {0) is concave down
at eMAP
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@ Ueform(10,1)
Model 1: Bernoulli Naive Bayes
Estimation (Beta Prior)
1. Generative Story: 2. Likelihood: }.\‘, i
The parameters are drawn Crapr(¢,0) ¥ :
once for the entire dataset. = loglp(¢, 0la, B)p(D|¢, 0)]
M N
Heation & {loeen LUl ]_\_J_ = log Kp(cma, 8) T »(6o.ml B) (Hp<x“>,y“>|¢, e))]

for (TS {O, 1}: o m=1 i=1
S P ~ Beta(a, 8)) L= gé"“‘m@

4 3. MAP Estimators: (¢MAP 9MAPY — argmax €3, 4p(0, 6)

foric {1,...,N}: 6,6
g ~ Bernoulli(¢) Take derivatives, set to zero and solve...

e L
forme {1,...,M}: \¢:Ny=1 ?7’1—
L x%) ~ Bernoulli(Hy(i),mb N
— =0, 2m=1
W [90"'" » N
Ny=1 =3 1% =1) y=0
N — ) Y ey |
=0 = @ = 9 — "y
Ny— ;H(y ) =0) [ 1,m — 1)+ Ny:l



Other NB Models

. . <)
1. Bernoulli Naive Bayes:

— for binary g\rws‘ va'-\

2. Multinomial Naive Bayes:
— for mteger eature

3. Gaussmn Nalve Bayes:
_ for continuous féﬁ@
4. Multi-class Naive Bayes:
— fmassiﬁcation problems with > 2 class@

— event model could be any of Bernoulli, Gaussian,

Multinomial, depending on features
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Model 2: Multinomial Naive Bayes

Support: Option 1: Integer vector (word IDs)K
Ol '121” o i

X = |r1,X2,...,2p ] Wherex,, € {1,..., K} awordid.
= - —_— e

Generative Story:
foric {1,...,N}:
y(9 ~ Bernoulli(¢) +—
forj < {L---;Mi}:

N~ Multinomial ()] 1)
,,

-

Model:

K

y) = pe(y) H o, (Tk|y)
=l k=1l 8

M; N
= (91— o) T](
I6.-)

Po.0(x,



Model 3: Gaussian Naive Bayes

Support: 2 = Rﬁl\'\

Model: Product of prior and the event model

p(x,y) =p(w‘1,--- «fvﬂr,y)

Hp Cli‘k\y

k=1l
T Gaossf“

Gaussian Naive Bayes assumes that p(xx|y) is given by
a Normal distribution.




Model 4: Multiclass Naive Bayes

Model:

The only change is that we permit y to range over C
classes.

p(wvy) :p(xh"'axK?y)

k
Now, y ~ Multinomial(¢,1) and we have a sepa-
rate conditional distribution p(x|y) for each of the C
classes.



Generic Nailve Bayes l\/\odel; e Jorw
r/NV oIS

JrL« =
oice of event model

Model: Product of prior and the event model,

Support: Depends on th

P(X.,Y) H P( Xk\Y)

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each
P(X;|Y) we condition on the data with the corresponding

Classification: Find the class that maximizes the posterior

y = argmax p(y|x
y




-\la'l've Bayes Model




VISUALIZING GAUSSIAN NAIVE
BAYES






Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

-

0

0 4.9
0 5.3
1 4.9
1 5.7
1 6.3
1 6.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data set

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3.3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7
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Slide from William Cohen



Slide from William Cohen



Naive Bayes has a linear decision boundary if
variance (sigma) is constant across classes

A

15

A ' S — " S -
S L L 5 i’ s

Slide from William Cohen (10-601B, Spring 2016)



Iris Data (2 classes)

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -
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Iris Data (2 classes)

Classification with Naive Bayes

W
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Iris Data (2 classes)

Classification with Naive Bayes
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Iris Data (3 classes)

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15 -

1.0 -
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Iris Data (3 classes)

Classification with Naive Bayes
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Iris Data (3 classes)

Classification with Naive Bayes

1.0 -

variance learned for each class
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One Pocket

Classification with Naive Bayes

52



One Pocket

Naive Bayes Distribution
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Summary

1. Naive Bayes provides a framework for
generative modeling

2. Choose p(x,,|y) appropriate to the data
(e.g. Bernoulli for binary features,

Gaussian for continuous features)
3. Train by MLE or MAP

4. Classify by maximizing the posterior



Learning Objectives

Naive Bayes

You should be able to...

1.
2.

Vi A

© N o

10.

Write the generative story for Naive Bayes

Create a new Naive Bayes classifier using your favorite probability distribution
as the event model

Apply the principle of maximum likelihood estimation (MLE) to learn the
parameters of Bernoulli Naive Bayes

Motivate the need for MAP estimation through the deficiencies of MLE

Apply the principle of maximum a posteriori (MAP) estimation to learn the
parameters of Bernoulli Naive Bayes

Select a suitable prior for a model parameter
Describe the tradeoffs of generative vs. discriminative models
Implement Bernoulli Naives Bayes

Employ the method of Lagrange multipliers to find the MLE parameters of
Multinomial Naive Bayes

Describe how the variance affects whether a Gaussian Naive Bayes model will
have a linear or nonlinear decision boundary



DISCRIMINATIVE AND
GENERATIVE CLASSIFIERS



Generative vs. Discriminative

* Generative Classifiers:
— Example: Naive Bayes

— Define a jainto deI of the observations x and the
abels <

— Learning maximizes (joint) likelihood
— Use Bayes’ Rule to classify based on the posterior:

p(y|x) = p(x|y)p(y)/p(x)
* Discriminative Classifiers:
— Example: Logistic Regression
— Directly model the conditional{ p(y|x)
— Learning maximizes conditionalfikelihood
T e




Generative vs. Discriminative

LhﬂLst
MLE Hp(x(",y")le) m%;“’ 0)
MAP p(x®,y(0|6) p(e)\I"[p (y @D [xD, )\
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Generative vs. Discriminative

Finite Sample Analysis (Ng & Jordan, 2002)

[Assume that we are learning from a finite
training dataset]

If model assumptions are correct: Naive Bayes is a more
__efficient learner (requires fewer samples) than Logistic

Regression S&Mrk :;cm_.\u.y

60
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Slide courtesy of William Cohen



solid: NB dashed: LR

romoters (discrete) lymphography (discrete)
0.5r— 0.5 —
04 04l .
_0.3 e I
L £0.3 |

0.2 >
0.1 T . oz

0 : 0.1

0 20 40 60 80 100 0 50 100 150

m m

Naive Bayes makes stronger assumptions about the data
but needs fewer examples to estimate the parameters

“On Discriminative vs Generative Classifiers: ....” Andrew Ng
and Michael Jordan, NIPS 2001.
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Slide courtesy of William Cohen



Generative vs. Discriminative

Learning (Parameter Estimation)
T e

—

e —

Naive Bayes:
Parameters are decoupled = Closed form solution for MLE

——

Logistic Regression:
'Parameters are coupled =2 No closed form solution — must
use iterative opti@ion techniques instead

c




Naive Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naive Bayes: 1/\ : +
Parameters areprobabilitieS > Beta prl&"{usuélly) pushes

probabilities awayfrom zero / one extremes

Logistic Regression: ,/Y\_/

Parameters aré not probabilities/> Gaussian prior

encourages parameters e close to zero
ges p e close to zero flu L2

(effectively pushes the probabilities away from zero [ one
extremes)




Naive Bayes vs. Logistic Reg.

Features

Naive Bayes:

Features x are a itionally independent
given y. (i.e..Naive Bayes Assumption

Logistic Regression:
No assumptions are made about the form of the features x.
They can be dependent and correlated in any fashion.

e ———




MOTIVATION: STRUCTURED
PREDICTION



Structured Prediction

e Most of the models we’ve seen so far were
for classification

— Given observations: X = (X7, X3 oeey Xg)
— Predict a (binary) Iabe@

* Many real-world problems require
structured prediction

— Given observations: X = (X}, X5 oo, Xg)
— Predict a structure: YO,V s V)

* So ification prob ems benefit from
@nt structur
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Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {x™ y™N_

Sample 1: é

—é—_ =
/

& =t
Sample 2: f ‘ } y(Z)
© 6 ©

Sample 3: ‘ ‘ ‘ } y(3)
Sample 4: ‘ ‘ ‘ } y(4)




Dataset for Supervised
Handwriting Recognition
Data: D = {x(™,y™}N

n=1

" 90000000 0d !

ANEEHEEEEN -
" 9000000 I
{11 4171 [C -

" 90000000 v

©
AENGEGEEE -

Figures from (Chatzis &



Dataset for Supervised
Phoneme (Speech) Recognition

Data: D = {x™ ¢y

“W000@§00000}w

Figures from (Jansen & Niyogi, 2013)



Word Alignment / Phrase Extraction

* Variables (boolean):
— For each (Chinese phrase,

English phrase) pair, (

are they linked?

* Interactions:
— Word fertilities
— Few “jumps” (discontinuities)
— Syntactic reorderings
— “ITG contraint” on alignment

— Phrases are disjoint (?)

| o

=y

Vv

1

o

4

In the past two years
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Congressional Voting

* Variables:
— Representative’s vote

— Text of all speeches of a
representative

— Local contexts of
references between two
representatives

 Interactions: o

— Words used by ¢
representative and their
vote

— Pairs of representatives
and their local context —




Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



|
{

Case Study: Object Recognition

X

leopard

Data consists of images x and labels y.

[lama

} Y&
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Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches” e

* Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
latent variables in
mind

e zisnotobserved at

: : leopard
train or test time



Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
latent variables in
mind

z is not observed at
train or test time
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Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
latent variables in
mind

z is not observed at
train or test time
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Structured Prediction




Machine Learning




Machine Learning

l"‘/’h ZANBERY



BACKGROUND



Background: Chain Rule
of Probability




Background:
Conditional Independence

Random variables A and B are conditionally
independent given C' if:

P(A, B|C) = P(A|C)P(B|C) (1)
or equivalently:
P(A|B,C) = P(A|C) (2)
We write this as:

All B|C Later we will also
write: I<A, {C}, B>



HIDDEN MARKOV MODEL (HMM)



From Mixture Model to HMM

“Naive Bayes”: HP Xi|Ye)p(Yz)

"

@@/

@ P(X,Y) = P(V}) (H P(Xtm) (Hpmm_1>>



