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Reminders

• Homework 6: Learning Theory / Generative
Models
– Out: Fri, Mar 20
– Due: Fri, Mar 27 at 11:59pm

• Midterm Exam 2
– Thu, Apr 2 – evening exam, details announced

on Piazza

• Today’s In-Class Poll
– http://poll.mlcourse.org
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Q&A
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Q: Why would we use Naïve Bayes? Isn’t it too 
Naïve?

A: Naïve Bayes has one key advantage over 
methods like Perceptron, Logistic 
Regression, Neural Nets:

Training is lightning fast!
While other methods require slow iterative 
training procedures that might require 
hundreds of epochs, Naïve Bayes computes 
its parameters in closed form by counting.



NAÏVE BAYES
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Model 1: Bernoulli Naïve Bayes
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If HEADS, flip 
each red coin

Flip weighted coin

If TAILS, flip 
each blue coin

0 1 0 1 … 1

y x1 x2 x3 … xM

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0
Each red coin 

corresponds to 
an xm

… …

We can generate data in 
this fashion. Though in 

practice we never would 
since our data is given. 

Instead, this provides an 
explanation of how the 

data was generated 
(albeit a terrible one).



What’s wrong with the 
Naïve Bayes Assumption?

The features might not be independent!!

12

• Example 1:
– If a document contains the word 

“Donald”, it’s extremely likely to 
contain the word “Trump”

– These are not independent!

• Example 2:
– If the petal width is very high, 

the petal length is also likely to 
be very high



Recipe for Closed-form MLE
1. Assume data was generated i.i.d. from some model

(i.e. write the generative story)
x(i) ~ p(x|θ)

2. Write log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives (i.e. gradient)
!l(θ)/!θ1 = …
!l(θ)/!θ2 = …
…
!l(θ)/!θM = …

4. Set derivatives to zero and solve for θ
!l(θ)/!θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMLE
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Naïve Bayes: Learning from Data

Whiteboard
– Data likelihood
– MLE for Naive Bayes
– Example: MLE for Naïve Bayes with Two 

Features
– MAP for Naive Bayes

14



NAÏVE BAYES: MODEL DETAILS
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Model 1: Bernoulli Naïve Bayes
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Data: Binary feature vectors, Binary labels

Generative Story: Model:



Model 1: Bernoulli Naïve Bayes
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Maximum Likelihood Estimation
Training: Find the class-conditional MLE 
parameters

Count 
Variables:

Maximum 
Likelihood 

Estimators:



Model 1: Bernoulli Naïve Bayes
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Data:

0 1 0 1 … 1

y x1 x2 x3 … xM

1 0 1 0 … 1

1 0 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0

Maximum Likelihood Estimation

Question 1: 
What is the MLE of ɸ? 
(A) 0/6 (B) 1/6 (C) 2/6 (D) 3/6 
(E) 4/6 (F) 5/6 (G) 6/6 (H) None of 

the above

Training: Find the class-conditional MLE 
parameters

Count 
Variables:

Maximum 
Likelihood 

Estimators:



Model 1: Bernoulli Naïve Bayes
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Data:

0 1 0 1 … 1

y x1 x2 x3 … xM

1 0 1 0 … 1

1 0 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0

Maximum Likelihood Estimation

Question 2: 
What is the MLE of θ0,1? 
(A) 0/6 (B) 1/6 (C) 2/6 (D) 3/6 
(E) 4/6 (F) 5/6 (G) 6/6 (H) None of 

the above

Training: Find the class-conditional MLE 
parameters

Count 
Variables:

Maximum 
Likelihood 

Estimators:



Model 1: Bernoulli Naïve Bayes
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Maximum Likelihood Estimation
Training: Find the class-conditional MLE 
parameters

Count 
Variables:

Maximum 
Likelihood 

Estimators:

MLE for Naïve 
Bayes is a splendid 
learning algorithm 
for when you have 

say billions of 
training examples 
and hundreds of 

millions of features!

You only need one 
pass through the 
data to perform 
some counting.



MLE

What does maximizing likelihood accomplish?
• There is only a finite amount of probability 

mass (i.e. sum-to-one constraint)
• MLE tries to allocate as much probability 

mass as possible to the things we have 
observed…

…at the expense of the things we have not
observed
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A Shortcoming of MLE

For Naïve Bayes, suppose we never observe the word 
“unicorn” in a real news article.

In this case, what is the MLE of the following quantity?

p(xunicorn | y=real) = 

Recall:

23

�k,0 =

�N
i=1 I(y(i) = 0 � x(i)

k = 1)
�N

i=1 I(y(i) = 0)

Now suppose we observe the word “unicorn” at test 

time. What is the posterior probability that the article 
was a real article?



Recipe for Closed-form MAP 

Estimation
1. Assume data was generated i.i.d. from some model

(i.e. write the generative story)
θ ~ p(θ) and then for all i: x(i) ~ p(x|θ) 

2. Write log-likelihood
lMAP(θ) = log p(θ) + log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives (i.e. gradient)
!lMAP(θ)/!θ1 = …

!lMAP(θ)/!θ2 = …
…
!lMAP(θ)/!θM = …

4. Set derivatives to zero and solve for θ
!lMAP(θ)/!θm = 0 for all m ∈ {1, …, M}
θMAP = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMAP
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Model 1: Bernoulli Naïve Bayes
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1. Generative Story:
The parameters are drawn 
once for the entire dataset.

3. MAP Estimators:

Take derivatives, set to zero and solve…

MAP Estimation (Beta Prior)
2. Likelihood:



Other NB Models
1. Bernoulli Naïve Bayes:
– for binary features

2. Multinomial Naïve Bayes:
– for integer features

3. Gaussian Naïve Bayes: 
– for continuous features

4. Multi-class Naïve Bayes:
– for classification problems with > 2 classes
– event model could be any of Bernoulli, Gaussian, 

Multinomial, depending on features
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Model 2: Multinomial Naïve Bayes
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Option 1: Integer vector (word IDs)

t = [x1, x2, . . . , xM ] ����� xm � {1, . . . , K} � ���� ��Ǥ

Support:

Generative Story:
��� i � {1, . . . , N}ǣ

y(i) � ���������(�)

��� j � {1, . . . , Mi}ǣ

x(i)
j � �����������(�y(i) , 1)

Model:
p�,�(x, y) = p�(y)

K�

k=1

p�k(xk|y)

= (�)y(1 � �)(1�y)
Mi�

j=1

�y,xj



Model 3: Gaussian Naïve Bayes
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Model: Product of prior and the event model

Support: 

p(x, y) = p(x1, . . . , xK , y)

= p(y)
K�

k=1

p(xk|y)

t � RK


������� ����� ����� ������� ���� p(xk|y) �� ����� ��
� ������ ������������Ǥ



Model 4: Multiclass Naïve Bayes
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Model:

p(x, y) = p(x1, . . . , xK , y)

= p(y)
K�

k=1

p(xk|y)

���ǡ y � �����������(�, 1) ��� �� ���� � ����Ǧ
���� ����������� ������������ p(xk|y) ��� ���� �� ��� C
�������Ǥ

��� ���� ������ �� ���� �� ������ y �� ����� ���� C
�������Ǥ



Model: Product of prior and the event model

Naïve Bayes Model
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Generic

P (s, Y ) = P (Y )
K�

k=1

P (Xk|Y )

Support: Depends on the choice of event model, P(Xk|Y)

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each 
P(Xk|Y)we condition on the data with the corresponding 
class.Classification: Find the class that maximizes the posterior

ŷ = �`;K�t
y

p(y|t)



Naïve Bayes Model
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Generic

Classification:

ŷ = �`;K�t
y

p(y|t) ȋ���������Ȍ

= �`;K�t
y

p(t|y)p(y)

p(x)
ȋ�� �����ǯ ����Ȍ

= �`;K�t
y

p(t|y)p(y)



VISUALIZING GAUSSIAN NAÏVE 
BAYES
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Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris 
virginica (1), Iris versicolor (2) collected by 
Anderson (1936)

39
Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7



Slide from William Cohen



Slide from William Cohen



Naïve Bayes has a linear decision boundary if 
variance (sigma) is constant across classes

Slide from William Cohen (10-601B, Spring 2016)



Iris Data (2 classes)
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Iris Data (2 classes)

46variance = 1



Iris Data (2 classes)

47variance learned for each class



Iris Data (3 classes)
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Iris Data (3 classes)

49variance = 1



Iris Data (3 classes)

50variance learned for each class



One Pocket
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One Pocket

52variance learned for each class



One Pocket

53variance learned for each class



Summary

1. Naïve Bayes provides a framework for 
generative modeling

2. Choose p(xm | y) appropriate to the data
(e.g. Bernoulli for binary features, 
Gaussian for continuous features)

3. Train by MLE or MAP
4. Classify by maximizing the posterior
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Learning Objectives
Naïve Bayes

You should be able to…
1. Write the generative story for Naive Bayes
2. Create a new Naive Bayes classifier using your favorite probability distribution 

as the event model
3. Apply the principle of maximum likelihood estimation (MLE) to learn the 

parameters of Bernoulli Naive Bayes
4. Motivate the need for MAP estimation through the deficiencies of MLE
5. Apply the principle of maximum a posteriori (MAP) estimation to learn the 

parameters of Bernoulli Naive Bayes
6. Select a suitable prior for a model parameter
7. Describe the tradeoffs of generative vs. discriminative models
8. Implement Bernoulli Naives Bayes
9. Employ the method of Lagrange multipliers to find the MLE parameters of 

Multinomial Naive Bayes
10. Describe how the variance affects whether a Gaussian Naive Bayes model will 

have a linear or nonlinear decision boundary
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DISCRIMINATIVE AND 
GENERATIVE CLASSIFIERS

56



Generative vs. Discriminative

• Generative Classifiers:
– Example: Naïve Bayes
– Define a joint model of the observations x and the 

labels y:
– Learning maximizes (joint) likelihood
– Use Bayes’ Rule to classify based on the posterior:

• Discriminative Classifiers:
– Example: Logistic Regression
– Directly model the conditional:  
– Learning maximizes conditional likelihood

57

p(x, y)

p(y|x)

p(y|x) = p(x|y)p(y)/p(x)



Generative vs. Discriminative
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Generative vs. Discriminative

Finite Sample Analysis (Ng & Jordan, 2002)
[Assume that we are learning from a finite 
training dataset]

60

If model assumptions are correct: Naive Bayes is a more 
efficient learner (requires fewer samples) than Logistic 
Regression

If model assumptions are incorrect: Logistic Regression has 
lower asymtotic error, and does better than Naïve Bayes



solid: NB dashed: LR

61
Slide courtesy of William Cohen



Naïve Bayes makes stronger assumptions about the data

but needs fewer examples to estimate the parameters

“On Discriminative vs Generative Classifiers: ….” Andrew Ng 

and Michael Jordan, NIPS 2001.

62

solid: NB dashed: LR

Slide courtesy of William Cohen



Generative vs. Discriminative

Learning (Parameter Estimation)
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Naïve Bayes: 
Parameters are decoupled à Closed form solution for MLE

Logistic Regression: 
Parameters are coupled à No closed form solution – must 
use iterative optimization techniques instead



Naïve Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

64

Bernoulli Naïve Bayes: 
Parameters are probabilities à Beta prior (usually) pushes 
probabilities away from zero / one extremes

Logistic Regression: 
Parameters are not probabilities à Gaussian prior 
encourages parameters to be close to zero 

(effectively pushes the probabilities away from zero / one 
extremes)



Naïve Bayes vs. Logistic Reg.

Features

65

Naïve Bayes: 
Features x are assumed to be conditionally independent 
given y. (i.e. Naïve Bayes Assumption)

Logistic Regression: 
No assumptions are made about the form of the features x.  
They can be dependent and correlated in any fashion. 



MOTIVATION: STRUCTURED 
PREDICTION

66



Structured Prediction
• Most of the models we’ve seen so far were 

for classification
– Given observations: x = (x1, x2, …, xK) 
– Predict a (binary) label: y

• Many real-world problems require 
structured prediction
– Given observations: x = (x1, x2, …, xK) 
– Predict a structure: y = (y1, y2, …, yJ) 

• Some classification problems benefit from 
latent structure

67



Structured Prediction Examples

• Examples of structured prediction
– Part-of-speech (POS) tagging
– Handwriting recognition
– Speech recognition
– Word alignment
– Congressional voting

• Examples of latent structure
– Object recognition

68



n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging

69

n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)



Dataset for Supervised 
Handwriting Recognition
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D = {x(n),y(n)}Nn=1Data:

values. The obtained results are depicted in Table 4; we
provide means, standard deviations, and the p-metric value
of the Student’s-t test run on the pairs of performances of
the models (CRF, CRF1), (moderate order CRF, CRF1),
and (HMM, CRF1).

As we observe, the proposed approach offers a sig-
nificant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore, we
once again notice the practical significance of coming up

with computationally efficient ways of relaxing the Marko-
vian assumption in linear-chain CRF models applied to
sequential data modeling. Note also that, in this experi-
ment, the moderate order CRF models of [41] seem to yield
a rather competitive result. This was expectable since the
average modeled sequence in this experiment is less than
10 time points long. Finally, regarding the HMM method,
with the number of mixture components M selected so as to
optimize model performance, we observe that the CRF1

model yields a clear improvement, irrespective of the
employed likelihood optimization approach.

4.3 Part-of-Speech Tagging

Finally, here we consider an experiment with the Penn
Treebank corpus [25], containing 74,029 sentences with a
total of 1,637,267 words. It is comprised of 49,115 unique
words, and each word in the corpus is labeled according to
its part of speech; there are a total of 43 different part-of-
speech labels. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 12, XXXXXXX 2013

TABLE 3
Activity-Based Segmentation of Skateboard: Push and Turn

Videos: Error Rates Obtained by the Evaluated Methods

Fig. 4. Skateboard: push and turn: A few example frames from a sequence considered in our experiments.

Fig. 5. Handwriting recognition: Example words from the dataset used.

TABLE 4
Handwriting Recognition: Error Rates Obtained

by the Evaluated Methods

values. The obtained results are depicted in Table 4; we
provide means, standard deviations, and the p-metric value
of the Student’s-t test run on the pairs of performances of
the models (CRF, CRF1), (moderate order CRF, CRF1),
and (HMM, CRF1).

As we observe, the proposed approach offers a sig-
nificant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore, we
once again notice the practical significance of coming up

with computationally efficient ways of relaxing the Marko-
vian assumption in linear-chain CRF models applied to
sequential data modeling. Note also that, in this experi-
ment, the moderate order CRF models of [41] seem to yield
a rather competitive result. This was expectable since the
average modeled sequence in this experiment is less than
10 time points long. Finally, regarding the HMM method,
with the number of mixture components M selected so as to
optimize model performance, we observe that the CRF1

model yields a clear improvement, irrespective of the
employed likelihood optimization approach.

4.3 Part-of-Speech Tagging

Finally, here we consider an experiment with the Penn
Treebank corpus [25], containing 74,029 sentences with a
total of 1,637,267 words. It is comprised of 49,115 unique
words, and each word in the corpus is labeled according to
its part of speech; there are a total of 43 different part-of-
speech labels. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.
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Fig. 5. Handwriting recognition: Example words from the dataset used.
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by the Evaluated Methods
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provide means, standard deviations, and the p-metric value
of the Student’s-t test run on the pairs of performances of
the models (CRF, CRF1), (moderate order CRF, CRF1),
and (HMM, CRF1).

As we observe, the proposed approach offers a sig-
nificant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore, we
once again notice the practical significance of coming up

with computationally efficient ways of relaxing the Marko-
vian assumption in linear-chain CRF models applied to
sequential data modeling. Note also that, in this experi-
ment, the moderate order CRF models of [41] seem to yield
a rather competitive result. This was expectable since the
average modeled sequence in this experiment is less than
10 time points long. Finally, regarding the HMM method,
with the number of mixture components M selected so as to
optimize model performance, we observe that the CRF1

model yields a clear improvement, irrespective of the
employed likelihood optimization approach.
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Finally, here we consider an experiment with the Penn
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Figures from (Chatzis & Demiris, 2013)

u e p c t
Sample 1:

y(1)

x(1)

n x e de

v l a i c
Sample 2:

o c n

e b a e s
Sample 2:

m r c

y(2)

x(2)

y(3)

x(3)



Dataset for Supervised 
Phoneme (Speech) Recognition

71

D = {x(n),y(n)}Nn=1Data:

Figures from (Jansen & Niyogi, 2013)

h# ih w z iy
Sample 1:

y(1)

x(1)

dh s uh iyz1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).

1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).

f r s h#
Sample 2:

ao ah s y(2)

x(2)



Word Alignment / Phrase Extraction

• Variables (boolean):
– For each (Chinese phrase, 

English phrase) pair, 
are they linked?

• Interactions:
– Word fertilities
– Few “jumps” (discontinuities)
– Syntactic reorderings
– “ITG contraint” on alignment
– Phrases are disjoint (?)

72(Burkett & Klein, 2012)

Application:



Figure 1: An example of a debate structure from the Con-
Vote corpus. Each black square node represents a factor
and is connected to the variables in that factor, shown
as round nodes. Unshaded variables correspond to the
representatives’ votes and depict the output variables that
we learn to jointly predict. Shaded variables correspond
to the observed input data— the text of all speeches of a
representative (in dark gray) or all local contexts of refer-
ences between two representatives (in light gray).

and that ERMA further significantly improves per-
formance, particularly when it properly trains with
the same inference algorithm (max-product vs. sum-
product) to be used at test time.

Baseline. As an exact baseline, we compare
against the results of Thomas et al. (2006). Their
test-time Min-Cut algorithm is exact in this case: bi-
nary variables and a two-way classification.

4.2 Information Extraction from

Semi-Structured Text

We utilize the CMU seminar announcement corpus
of Freitag (2000) consisting of emails with seminar
announcements. The task is to extract four fields that
describe each seminar: speaker, location, start time
and end time. The corpus annotates the document
with all mentions of these four fields.

Sequential CRFs have been used successfully for
semi-structured information extraction (Sutton and
McCallum, 2005; Finkel et al., 2005). However,
they cannot model non-local dependencies in the
data. For example, in the seminar announcements
corpus, if “Sutner” is mentioned once in an email
in a context that identifies him as a speaker, it is

Figure 2: Skip-chain CRF for semi-structured informa-
tion extraction.

likely that other occurrences of “Sutner” in the same
email should be marked as speaker. Hence Finkel et
al. (2005) and Sutton and McCallum (2005) propose
adding non-local edges to a sequential CRF to repre-
sent soft consistency constraints. The model, called
a “skip-chain CRF” and shown in Figure 2, contains
a factor linking each pair of capitalized words with
the same lexical form. The skip-chain CRF model
exhibits better empirical performance than its se-
quential counterpart (Sutton and McCallum, 2005;
Finkel et al., 2005).

The non-local skip links make exact inference
intractable. To train the full model, Finkel et al.
(2005) estimate the parameters of a sequential CRF
and then manually select values for the weights of
the non-local edges. At test time, they use Gibbs
sampling to perform inference. Sutton and McCal-
lum (2005) use max-product loopy belief propaga-
tion for test-time inference, and compare a train-
ing procedure that uses a piecewise approximation
of the partition function against using sum-product
loopy belief propagation to compute output variable
marginals. They find that the two training regimens
perform similarly on the overall task. All of these
training procedures try to approximately maximize
conditional likelihood, whereas we will aim to mini-
mize the empirical loss of the approximate inference
and decoding procedures.

Baseline. As an exact (non-loopy) baseline, we
train a model without the skip chains. We give two
baseline numbers in Table 1—for training the exact
CRF with MLE and with ERM. The ERM setting re-
sulted in a statistically significant improvement even
in the exact case, thanks to the use of the loss func-
tion at training time.

4.3 Multi-Label Classification

Multi-label classification is the problem of assign-
ing multiple labels to a document. For example, a
news article can be about both “Libya” and “civil
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Congressional Voting

73(Stoyanov & Eisner, 2012)

Application:

• Variables:

– Text of all speeches of a 
representative 

– Local contexts of 
references between two 
representatives

• Interactions:
– Words used by 

representative and their 
vote

– Pairs of representatives 
and their local context



Structured Prediction Examples

• Examples of structured prediction
– Part-of-speech (POS) tagging
– Handwriting recognition
– Speech recognition
– Word alignment
– Congressional voting

• Examples of latent structure
– Object recognition

74



Case Study: Object Recognition

Data consists of images x and labels y.

75

pigeon

leopard llama

rhinocerosy(1)

x(1)

y(2)

x(2)

y(4)

x(4)

y(3)

x(3)



Case Study: Object Recognition

Data consists of images x and labels y.

76

• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time



Case Study: Object Recognition

Data consists of images x and labels y.

77

• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time

X1

Z1
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Case Study: Object Recognition

Data consists of images x and labels y.
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• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time

ψ2 ψ4

X1

Z1
ψ1

X2

Z2

ψ3

X3

Z3

ψ5
X4

Z4

ψ7
X5

Z5

ψ9
X7

Z7

ψ1
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ψ 1
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Structured Prediction
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Preview of challenges to come…
• Consider the task of finding the most probable 

assignment to the output 

Classification Structured Prediction
ŷ = �`;K�t

y
p(y|t)

����� y � {+1, �1}

v̂ = �`;K�t
v

p(v|t)

����� v � Y
��� |Y| �� ���� �����



Machine Learning

80

The data inspires 
the structures 

we want to 
predict It also tells us 

what to optimize

Our model
defines a score 

for each structure

Learning tunes the 
parameters of the 

model

Inference finds 
{best structure, marginals, 

partition function} for a 
new observation

Domain 
Knowledge

Mathematical 
Modeling

OptimizationCombinatorial 
Optimization

ML

(Inference is usually 
called as a subroutine 

in learning)



Machine Learning
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Data
Model

Learning

Inference

(Inference is usually 
called as a subroutine 

in learning)

3 Alice saw Bob on a hill with a telesco
pe

Alice
saw Bob

on a hill with
a telescop

e

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

Objective

X1

X3X2

X4 X5



BACKGROUND
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Background: Chain Rule
of Probability
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	�� ������ ��������� A ��� Bǣ

P (A, B) = P (A|B)P (B)

P (X1, X2, X3, X4) =P (X1|X2, X3, X4)

P (X2|X3, X4)

P (X3|X4)

P (X4)

	�� ������ ��������� X1, X2, X3, X4ǣ



Background:
Conditional Independence
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������ ��������� A ��� B ��� �������������
����������� ����� C ��ǣ

P (A, B|C) = P (A|C)P (B|C) ȋ͕Ȍ

�� ������������ǣ

P (A|B, C) = P (A|C) ȋ͖Ȍ

�� ����� ���� ��ǣ

A |4 B|C ȋ͗ȌLater we will also 
write: I<A, {C}, B>



HIDDEN MARKOV MODEL (HMM)
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HMM:

“Naïve Bayes”:

From Mixture Model to HMM
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X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5


