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Reminders

Homework 5: Neural Networks

— Out: Fri, Feb 28

— Due: Sun, Mar 22 at 11:59pm

Homework 6: Learning Theory | Generative Models
— Out: Fri, Mar 20

— Due: Fri, Mar 27 at 11:59pm

TIP: Do the readings!

Today’s In-Class Poll
— http://poll.mlcourse.org

Matt’s new after-class office hours (on Zoom)




MLE AND MAP



Likelihood Function @ ©OneR.V.

« Suppose we have N samples D = {x(V, x), ..., x(N)} from a
random variable X

rob. wcss. funchin both cases
» The likelihood function: Y (dlscre§ ;(tk(e“D

— Case 1: X is discrete with pmf p(x|6 O
f L(8) = p(x(M|©) p(xpﬁe) 2 N)|Q & ‘ﬁ&glhood tells us

L. Jhaw likgly one
— Case 2: X is continuous with pd fg x|8) [ “sampleis relative
L(8) = f(x]|0) f(x?)]|B)... f(xV]6) to another

* The log-likelihood function:
— Case 1: Xis discrete with pmf p(x|0)
40) =log p(xM|0) +... +log p(x(N]©)
— Case 2: X is continuous with pdf f(x|0)
40) = log f(x|B) +... +log f(x(N)]©)



Likelihood Function @ TwWoR.V.s

Suppose we have N samples D = {(x(, y), ..., (xN), y()} from a
pair of random variables X, Y

The conditional likelihood function:
— Case 1: Y is discrete with pmf pSy X,0) 94— L@P%'
L(8) = p(y| x(, 6) ... p(y™ | xV), ©) Lon 2%
— Case 2: Y is continuous with pdf f(y Lx, 0)&— ™
L(6) = f(y[ x, 8) ... f(y™ ] x), 6)

The joint likelihood function:
— Case1: Xand Y are discrete with Fm X,y|0)
1(8) = p(x, yO[6) ... p(x™, y0[e
— Case 2: X and Y arecontinuous with f)df f(x,y|0)
L(B) = f(x(V, yI]6) ... f(x(), yV|B)




Likelihood Function | TwWoR.V.s

« Suppose we have N samples D = {(x(, y), ..., (xN), y())} from a
pair of random variables X, Y

* The joint likelihood function:

— Case 1: Xand Y are discrete w1th S X,y|0)
L(8)= p(x, yO[6) ... p(x™, y0[e

Mixed
— Case 2: Xand Y are continuous with {de f(x,y|0) discrete/
L(8) = Fx, yUI8) .. £, yI6 continuous!

— Case 3:Yis discrete with pmf p(y|(3) and &
X is continuous with { t(x|y,a)
@

L(a, B) = F(x] 0, a)p B) L F(X] y®, @) p(y™|B)

— (Case 4: Y is continuous with pdf f(y|B) and &
X is discrete with pmf (p)(x y,0)

(@, B) = POy, ) HyB) . PV Y0, @) 1)




MLE

Suppose we have data D = {z(V1V

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood

of the data. 2 .
""" = argmax Hp(x(’) 0)

0 1=1
Maximum Likelihood Estimate (MLE)
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MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

X(i) ~P Xle) | N
Write log-likelihood

40) = log p(x"|0) + ... +log p(xN|0) 4—
Compute partial derivatives

00(0)/08, = ...

00(0)/08, = ...

00(0)/08,, = ...
Set derivatives to zero and solve for ©
000)/06,, =0 forallm € {1, ..., M}

Compute the second derivative and check that 40) is concave down
at eNlLE



MLE

Example: MLE of Exponential Distribution
Goal:

e pdf of Expo ential()\®: )\e@
e Suppose|X;\~ Exponential(\) for1 < i < V.
e Find MLE fordataD = {z(V1V

Steps:
e First write down log-likelihood of sample.
e Compute first derivative, set to zero, solve for \.
e Compute second derivative and check that it is
concave down at \ME,



e pdf of Exponential(\): f(x)

e Suppose X; ~ Exponential(\) for1 <i < N.
e Find MLE for dataD = {2},




e pdf of Exponential(\): f(z) = Ae™**

M L E e Suppose X; ~ Exponential(\) for1 <i < N.
e Find MLE for dataD = {2},




MLE

In-Class Exercise Steps to answer:
Show that the MLE of 1. Write log-likelihood
parameter ¢ for N of sample
samples drawn from 5 Compute derivative
Bernoulli(@) is: w.r.t. @
3. Set derivative to

Number of z; = zero and solve for ¢

PMLE = '

N



W nfes =)

¢ MLE
Question: Answer:
Assume we have N samples x(, A, (@) =N, log(¢) + N, (1 - log(¢))
), 0 drawn from (#) = N, log($) + N, og(1-9)
o, SR
. o D. = log(¢)"™" + log(1-¢)™
e taa g B EOOTET e 1() = N, log(9) + N, (1- log ()
:
_ ) G. (@) =log(@)"° + (1-log(p))\"
e pof =) H.  1(9) = log(¢)" + log(1-)"
0 l.  Mp)=themeostlikelygnswer

C,C“oﬂwl l[ /



MLE

Question: Answer:

Assume we have N samples x(V, A ><GAEEEE=p ¢

X(Z) X(N) drawn from a 35(9)/89 ¢/N + (1 ¢)/N
Bernoulli(@). 04©)/08 =N,/ 5N,/ (1-¢)

D. 0¢0)/06 =log(¢)/N,+log(1-9)/N,

E. 04©)00=N./I N/l _
What is the derivative of the 48)/ i/ 10g(@) + No / log(1- §)

log-likelihood 0¢(0)/06?

Assume N, = # of (x() = 1)
N, = # of (xV = 0)

28



Learning from Data (Frequentist)

Whiteboard
— Example: MLE of Bernoulli



MLE vs. MAP

Suppose we have data D = {z(V 1V




MLE vs. MAP

Suppose we have data D = {z(V 1V




MLE vs. MAP

Suppose we have data D = {z(V 1V




Learning from Data (Bayesian)

Whiteboard

— maximum a posteriori (MAP) estimation
— Example: MAP of Bernoulli—Beta



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x) ~ p(x|06)
Write log-ikatisead- J? MQ(G\

40) = log p(x(|@) + ... + log p(x(N)|©)
Compute partial derivatives

0((0)/06, = ...

0((0)/06, = ...

00(0)/08,, = ...
Set derivatives to zero and solve for ©
00(0)/06_, =0 forallme {1, ..., M}

OMLE —

Compute the second derivative and check that 40) is concave down
at OMLE



Learning from Data (Bayesian)

Whiteboard

— maximum a posteriori (MAP) estimation
— Example: MAP of Bernoulli—Beta



Takeaways

One view of what ML is trying to accomplish is
function approximation

The principle of maximum likelihood
estimation provides an alternate view of
learning

Synthetic data can help debug ML algorithms

Probability distributions can be used to model
real data that occurs in the world



Learning Objectives

MLE /| MAP

You should be able to...

1.

Recall probability basics, including but not limited to: discrete
and continuous random variables, probability mass functions,
probability density functions, events vs. random variables,
expectation and variance, joint probability distributions,
marginal probabilities, conditional probabilities, independence,
conditional independence

Describe common probability distributions such as the Beta,
Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.

State the principle of maximum likelihood estimation and
explain what it tries to accomplish

State the principle of maximum a posteriori estimation and
explain why we use it

Derive the MLE or MAP parameters of a simple model in closed
form



NAIVE BAYES



Naive Bayes Outline

Real-world Dataset
— Economist vs. Onion articles

— Document - bag-of-words = binary
feature vector

Naive Bayes: Model
— Generating synthetic "labeled documents"
— Definition of model
— Naive Bayes assumption

— Counting # of parameters with [ without
NB assumption

Naive Bayes: Learning from Data
— Data likelihood
— MLE for Naive Bayes
— MAP for Naive Bayes
Visualizing Gaussian Naive Bayes



Naive Bayes

Why are we talking about Naive Bayes?

— It’s just another decision function that fits into
our “big picture” recipe from last time

— But it’s our first example of a Bayesian Network
and provides a clearer picture of probabilistic
learning

— Just like the other Bayes Nets we’ll see, it admits
a closed form solution for MLE and MAP

— So learning is extremely efficient (just counting)



Fake News Detector

Today’s Goal: To define a generative model of emails
of two different classes (e.g. real vs. fake news)

I CNN

The Onion N

People are petitioning the White House ‘Take This Grape For It Is The Witch’s Eye,
to move Halloween to Saturd ays Take This Spaghetti For It Is The Witch’s
By Ooup Oiee, G Brain,’ Says Pope Francis During Halloween-

2009 Themed Communion

VATICAN CITY—Standing before his costumed congregants in St.
Peter's Basllica, Pope Francis declared, “Take this grape for It is the
witch's eye, take this spaghetti for it is the witch's brain,” during a
Halloween-themed Communion Wednesday, Vatican sources
confirmed.




Fake News Detector

e (Aof 7 QOU'-»"-,

Tq\j%f a1 idicchor

N

We can pretend the natural process generating these vectors is stochastic...

43



Naive Bayes: Model

Whiteboard

— Document - bag-of-words = binary feature
vector

— Generating synthetic "labeled documents"
— Definition of model
— Naive Bayes assumption

— Counting # of parameters with [ without NB
assumption



Model 1: Bernoulli Naive Bayes

Flip weighted coin

@
Sl
O - Opm @\/ e O - Brm

[— Juiso |

T - N - - W
‘.X‘,_X‘-, ‘ 0 1101 ][..]1 .“ ‘
T A\ A7 1 O | 1|0 |..|1
w‘:{\}b"w“h‘ ' 1 1011 |1
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0 110 | 1 0

1 1 10| 1 0




What’s wrong with the
Naive Bayes Assumption?

The features might not be independent!!

Trump Spends Entire Classified National

* Example 1:
X .
Security Briefing Asking About Egyptian

— If a document contains the word e
“Donald”, it’s extremely likely to
contain the word “Trump”’

— These are not independent!

* Example 2:

— If the petal width is very high,
the petal length is also likely to
be very high

46



Naive Bayes: Learning from Data

Whiteboard
— Data likelihood
— MLE for Naive Bayes

— Example: MLE for Naive Bayes with Two
Features

— MAP for Naive Bayes



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x0 ~p(x|6)
Write log-likelihood

40) = log p(x(|@) + ... + log p(x(N)|©)
Compute partial derivatives

0((0)/06, = ...

0((0)/06, = ...

00(0)/08,, = ...
Set derivatives to zero and solve for ©
00(0)/06_, =0 forallme {1, ..., M}

OMLE —

Compute the second derivative and check that 40) is concave down
at OMLE



