10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

RNNs
+

PAC Learning

Matt Gormley
Lecture 15
Mar. 4, 2020

Reminders

* Homework 5: Neural Networks
— Out: Fri, Feb. 28
— Due: Wed, Mar. 18 at 11:59pm

* Today’s In-Class Poll

— http://ecll.mlcourse.org
(Iatest version works on mobile!)

* Exam Viewing

RECURRENT NEURAL NETWORKS

Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {.’B(”), y") N
Sample 1: ‘ ‘ @ ‘ ‘
Sample 2: ‘ ‘ ‘ ‘ ‘
0 6 6 0 ©
Sample 3 ‘ ‘ @ ‘ ‘
© O 6 ©
Sample 4: ‘ ‘ ‘ ‘ ‘

Dataset for Supervised
Handwriting Recognition

pata: D = {x™, yMN_

0@0@@00@0@}W

ANEEHCEEEY |-

L JOIOX JOXOIOK I

21411 |CR
" 90000000 v
IIIIEIEI -

Sample 1

Sample 2:

Figures from (Chatzis & Demiris, 201

Dataset for Supervised
Phoneme (Speech) Recognition

Data: D = {x™ y™N_

e ‘QCCC‘CCC‘ b

Figures from (Jansen & Niyogi, 2013)

Time Series Data

Question 1: How could we apply the neural networks we’ve
seen so far (which expect fixed size input/output) to a
prediction task with variable length input/output?

®© 0 ® @ 0 i
) e

Time Series Data

Question 1: How could we apply the neural networks we’ve
seen so far (which expect fixed size input/output) to a
prediction task with variable length input/output?

®© 0 ® @ 0 -
S

Time Series Data

Question 2: How could we incorporate context (e.g.
words to the left/right, or tags to the left/right) into our
solution? :

®©@ @ © @ 0 -
O O O ® F-

Multiple - Xi-1 Xj Xi+1 Yi-1 Vi Yi+l
Choice: ol
Working left-
to-right, use

features of...

&

&

<«

7T
I\Qﬁ)ﬂomwf>
o
NPSRY PYURNRS
PSRN P

E,
NN NS NS A

am
v

Recurrent Neural Networks (RNNs)

ﬁnl_guts x = (21,22, ...

\hldden units: }q— (hi,ho, ...,

Dtputs }/_ yl Yo, ...

nonlinearity: H
AN

L XT), T e R!
hr),hi € R’
yT), yi € RE

Definition of the RNN:
hy = H (Wmhiﬁﬁ_‘i‘ Whynhi—1 + bp)
Yt — Whyh/t + by

11

Recurrent Neural Networks (RNNs)

inputs:

hidden units

outputs

nonlinearity

X
- h
Y
. H

= (x1,%2,...,T7),T; € R!
= (hl,hg,...,hT),hi c RJ
— (ylay27"'7yT)7yi S RK

Definition of the RNN:
hi = H Wenxe + Whphi_1 + bp)

Yt = Whyht + by %

This form of RNN is
called an
Elman Network

Recurrent Neural Networks (RNNs)

inputs:

hidden units

outputs

nonlinearity

X
- h
Y
. H

(xlaxQ) <. ,I'T),xi S RI

(h1,ha, ..., h7), h; € R?
(Y1, 92, - - -

yr), i € RE

Definition of the RNN:
hy = H (Wenxe + Whphe—1 + bp)
Yt = Whyht =+ by

13

A Recipe for

Background : :
Machine Learning

1. Given training data: 3. Define goal:

{@i Y}t 3

v Jifi=1 6" = arg mein;f(fe(wi), Y;)
2. Choose each of these:
— Decision function 4. Train with SGD:
y = fe(fl?z) (take small steps

opposite the gradient)
— Loss function

((9,y,) €ER 01 =01 — 0, VU(fo(xi), y;)

ntve(fO(mi)ayi)

Recurrent Neural Networks (RNNs)

inputs:

hidden units

outputs

nonlinearity

X
- h
Y
. H

(331,332, SR ,CUT),ZIZ'@' S RI

(h17h27 . °7hT)7h'L' S RJ

(ylay27 s 7yT)7yi S RK

Definition of the RNN:
hy = H(Wunxe + Whnhi—1 + bp)
Yt = Whyht =+ by

Recurrent Neural Networks (RNNs)

(21,2, ..., 27),2; € R Definition of the RNN:

inputs:

hidden units

(hi,ha, .. hy) by e R | e = H (Wenxy + Whphe—1 + by)
(y17y27' . 7yT)7yi S RK yt — Wh’yh/t —|_ by

X
- h
outputs: y
: H

nonlinearity

17

Background: Backprop through time

Recurrent neural
network:

BPTT:

1. Unroll the
computation
over time

40,1087

R e

&V‘Obmso o005 2 5)
&\IZ]N\Oze("\gq

2. Run
backprop
through the
resulting feed-
forward
network

inputs:

hidden units:

outputs

nonlinearity:

Bidirectional RNN

x = (21,%2,...,27),8; € R
%
b and h

Yy = (y17y27'°'7yT)>yi ERK
H

Recursive Definition:

%

Bo=H(W,pm+ Wophua+bp)
- -

he=H (Wx‘ﬁxt T W g1 + bg)

— -
yt:Wﬁ)yht—i_W(Eyht‘i_by

inputs:

hidden units:

outputs

nonlinearity:

Bidirectional RNN

X = (xl,xg,..
%

h andi
Ly = (Y1, 92,
H

.,a:T),aci cR!

7yT>7yi S RK

Recursive Definition:

%
ﬁt =H (Wwﬁxt + Wﬁﬁ h

t—1 T bﬁ)

- -
hiy="H (Wx‘ﬁxt + Weg hepr + b%)

— -
yt:Wﬁyht+W<ﬁyht+by

\

\

20

inputs:

hidden units:

outputs

nonlinearity:

Bidirectional RNN

X = (xl,xg,..
%

h andi
Ly = (Y1, 92,
H

.,a:T),aci cR!

7yT>7yi S RK

Recursive Definition:

%
ﬁt =H (Wwﬁxt + Wﬁﬁ h

t—1 T bﬁ)

- -
hiy="H (Wx‘ﬁxt + Weg hepr + b%)

— -
yt:Wﬁyht+W<ﬁyht+by

\

\

21

Deep RNNSs

: Recursive Definition:
inputs: x = (21, 22,...,27),2; € R!

outputs: y = (y1,92,.--,yr), ¥ € R® P =H (Whn-ipnhy ™+ Winpn by + b))

nonlinearity: H N
Yy = Winy hy' + by

e Yi—1 Yt Ytt1 - - -

cr X1 Tt B B

: 23
Figure from (Graves et al., 2013)

Deep Bidirectional RNNs

inputs: x = (21, 22,...,27),2; € R

outputs: y = (y1,92,...,y7), ¥ € R®
nonlinearity: H

Figure from (Graves et al., 2013)

24

Long Short-Term Memory (LSTM)

Motivation:

e Standard RNNs have trouble learning long
distance dependencies

e |LSTMs combat this issue

Long Short-Term Memory (LSTM)

Motivation:
* Vanishing gradient problem for Standard RNNs

 Figure shows sensitivity (darker = more sensitive) to the input at
time t=1

Outputs ’ Q ()) =) N
- - - : _
’4) -4 | - - - '

. % J ’ \

26
Figure from (Graves, 2012)

Long Short-Term Memory (LSTM)

Motivation:
e LSTM units have arich internal structure

* The various “gates” determine the propagation of information
and can choose to “remember’ or “forget” information

TTTTITTY

— _ — O — O —

Hidden

5 @@ @@ @@
O — — — - — O

- 8000000

Figure from (Graves, 2012)

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

\ \J,

it = 0 (Waire + Whihe—1 + Weici—1 + by)

ft =0 (Wysze + Whhe—1 + Weper—1 + by)
ct = frei—1 + i tanh (Wyexy + Whehi—1 + bc)
0r = 0 (Wayoxs + Whohi—1 + Weocr + bo)

ht — O¢ tanh(ct)
Figure from (Graves et al., 2013)

29

Lon
g Sh
ort-
Term Mem
ory (
LST
M)

‘
1
‘
A
3

30

Deep Bidirectional LSTM (DBLSTM)

Figure from (Graves et al., 2013)

Deep Bidirectional LSTM (DBLSTM)

How important is this
particular architecture?

Jozefowicz et al. (2015)
evaluated 10,000
different LSTM-like
architectures and
found several variants
that worked just as
well on several tasks.

RNN Training Tricks

* Deep Learning models tend to consist largely of
matrix multiplications

* Training tricks:
— mini-batching with masking

Metric DyC++4+ DyPy Chainer | DyC++ Seq Theano TF
RNNLM (MB=1) words/sec 190 190 114 494 189 298
RNNLM (MB=4) words/sec 830 825 295 1510 567 473
RNNLM (MB=16) words/sec 1820 1880 794 2400 1100 606
RNNLM (MB=64) words/sec 2440 2470 1340 2820 1260 636

— sorting into buckets of similar-length sequences, so
that mini-batches have same length sentences

— truncated BPTT, when sequences are too long, divide
sequences into chunks and use the final vector of the
previous chunk as the initial vector for the next chunk
(but don’t backprop from next chunk to previous chunk)

Table from Neubig et al. (2017)

RNN Summary

* RNNs

— Applicable to tasks such as sequence labeling,
speech recognition, machine translation, etc.

— Able to learn context features for time series
data

— Vanishing gradients are still a problem - but
LSTM units can help

* Other Resources
— Christopher Olah’s blog post on LSTMs

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LEARNING THEORY

PAC-MAN Learning
For some hypothesis h € H:

1. True Error
R(h)

2. Training Error
R(h)

Question 2:

What is the expected number
of PAC-MAN levels Matt will
complete before a Game-

Over?
A. 110
B. 11-20

C. 2130

1.

Questions For Today

Given a classifier with zero training error,
what can we say about true error (aka.
eneralization error)?
Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about true error (aka.
eneralization error)?
Sample Complexity, Agnostic Case)

Is there a theoretical justification for
regularization to avoid overfitting?
(Structural Risk Minimization)

39

PAC/SLT models for Supervised Learning

&
SDGTC‘ ‘;‘ Distribution D on X
ource t’

Learning (c Expert / Oracle
Algorithm Lk 2N
b|i v
Labeled Examples el)

<
(X1.€*(X1)) s (X, €* (X))
m

h: X =Y

§
@ @
Slide from Nina Balcan

Two Types of Error

1. True Error (aka. expected risk)

R(h) = Pxmpr(x) (¢ (%) # h(x)) This qu

2. Train Error (aka. empirical risk) unk"°5'/)f/7s
R(h) = Pyus(c*(x) # h(x))

W
LS 106 (x® oy oSSy
=N L(c"(x™) # h(x™)) "the trar s
i=1 dal'a ’”lng
1))
= 21 # h(x™))
1=1
where S = {x(I), ..., x™)} X is the training data set, and x ~

S denotes that x is sampled from the empirical distribution.

l[{/tf;ve 6/50
PAC/SLT Model /mgiin,

ion' p¢
. Generate instances from unknown distribution p*
x®) ~ p*(x), Vi (1)
. Oracle labels each instance with unknown function c*
y =" (x), vi (2)

. Learning algorithm chooses hypothesis h € H with low(est)
training error, R(h)

h = argmin R(h) (3)
h

. Goal: Choose an h with low generalization error R(h)

Three Hypotheses of Interest

The true function c* is the one we are trying to learn and that labeled
the training data:

y =" (x"), Vi (1)
The expected risk minimizer has lowest true error:
Question:
* _ : True or False:
= arhggl{m E(h) h* and c* are
always equal.
The empirical risk minimizer has lowest training error:
h = argmin R(h) (3)

heH

PAC LEARNING

Probably Approximately Correct

(PAC) Learning
Whiteboard:
— PAC Criterion
— Meaning of “Probably Approximately Correct”
— Def: PAC Learner
— Sample Complexity
— Consistent Learner

PAC Learning

The PAC criterion is that our learner produces a high accuracy
learner with high probability:

P(|R(h) — R(h)| <€) > 1—14 (1)

Suppose we have a learner that produces a hypothesis h € H
given a sample of IV training examples. The algorithm is called con-
sistent if for every e and 9, there exists a positive number of training
examples N such that for any distribution p*, we have that:

P(|R(h) — R(h)| > €) < 6 (2)

The sample complexity is the minimum value of NV for which this
statement holds. If N is finite for some learning algorithm, then H
is said to be learnable. If N is a polynomial function of 1 and 3 for
some learning algorithm, then H is said to be PAC learnable.

SAMPLE COMPLEXITY RESULTS

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to 1).

We'll start with the
Four Cases we care about... f|n|te case...

Realizable ? Agnoéi?

Finite |H|

Infinite ||

Generalization and Overfitting

Whiteboard:
— Realizable vs. Agnostic Cases
— Finite vs. Infinite Hypothesis Spaces
— Theorem 1: Realizable Case, Finite |H|
— Proof of Theorem 1

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to 1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 1[log(|H|) + log(3)] la-
Fini beled examples are sufficient so that with

te ‘H‘ probability (1 —4) allh € H with R(h) =0
have R(h) < e.

Infinite |H,|

51

