
RNNs
+

PAC Learning

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 15

Mar. 4, 2020

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 5: Neural Networks
– Out: Fri, Feb. 28
– Due: Wed, Mar. 18 at 11:59pm

• Today’s In-Class Poll
– http://poll.mlcourse.org

(latest version works on mobile!)

• Exam Viewing

2

Q&A

3

RECURRENT NEURAL NETWORKS

4

n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised
Part-of-Speech (POS) Tagging

5

n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)

Dataset for Supervised
Handwriting Recognition

6

D = {x(n),y(n)}Nn=1Data:

values. The obtained results are depicted in Table 4; we
provide means, standard deviations, and the p-metric value
of the Student’s-t test run on the pairs of performances of
the models (CRF, CRF1), (moderate order CRF, CRF1),
and (HMM, CRF1).

As we observe, the proposed approach offers a sig-
nificant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore, we
once again notice the practical significance of coming up

with computationally efficient ways of relaxing the Marko-
vian assumption in linear-chain CRF models applied to
sequential data modeling. Note also that, in this experi-
ment, the moderate order CRF models of [41] seem to yield
a rather competitive result. This was expectable since the
average modeled sequence in this experiment is less than
10 time points long. Finally, regarding the HMM method,
with the number of mixture components M selected so as to
optimize model performance, we observe that the CRF1

model yields a clear improvement, irrespective of the
employed likelihood optimization approach.

4.3 Part-of-Speech Tagging

Finally, here we consider an experiment with the Penn
Treebank corpus [25], containing 74,029 sentences with a
total of 1,637,267 words. It is comprised of 49,115 unique
words, and each word in the corpus is labeled according to
its part of speech; there are a total of 43 different part-of-
speech labels. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 12, XXXXXXX 2013

TABLE 3
Activity-Based Segmentation of Skateboard: Push and Turn

Videos: Error Rates Obtained by the Evaluated Methods

Fig. 4. Skateboard: push and turn: A few example frames from a sequence considered in our experiments.

Fig. 5. Handwriting recognition: Example words from the dataset used.

TABLE 4
Handwriting Recognition: Error Rates Obtained

by the Evaluated Methods

values. The obtained results are depicted in Table 4; we
provide means, standard deviations, and the p-metric value
of the Student’s-t test run on the pairs of performances of
the models (CRF, CRF1), (moderate order CRF, CRF1),
and (HMM, CRF1).

As we observe, the proposed approach offers a sig-
nificant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore, we
once again notice the practical significance of coming up

with computationally efficient ways of relaxing the Marko-
vian assumption in linear-chain CRF models applied to
sequential data modeling. Note also that, in this experi-
ment, the moderate order CRF models of [41] seem to yield
a rather competitive result. This was expectable since the
average modeled sequence in this experiment is less than
10 time points long. Finally, regarding the HMM method,
with the number of mixture components M selected so as to
optimize model performance, we observe that the CRF1

model yields a clear improvement, irrespective of the
employed likelihood optimization approach.

4.3 Part-of-Speech Tagging

Finally, here we consider an experiment with the Penn
Treebank corpus [25], containing 74,029 sentences with a
total of 1,637,267 words. It is comprised of 49,115 unique
words, and each word in the corpus is labeled according to
its part of speech; there are a total of 43 different part-of-
speech labels. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 12, XXXXXXX 2013

TABLE 3
Activity-Based Segmentation of Skateboard: Push and Turn

Videos: Error Rates Obtained by the Evaluated Methods

Fig. 4. Skateboard: push and turn: A few example frames from a sequence considered in our experiments.

Fig. 5. Handwriting recognition: Example words from the dataset used.

TABLE 4
Handwriting Recognition: Error Rates Obtained

by the Evaluated Methods

values. The obtained results are depicted in Table 4; we
provide means, standard deviations, and the p-metric value
of the Student’s-t test run on the pairs of performances of
the models (CRF, CRF1), (moderate order CRF, CRF1),
and (HMM, CRF1).

As we observe, the proposed approach offers a sig-
nificant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore, we
once again notice the practical significance of coming up

with computationally efficient ways of relaxing the Marko-
vian assumption in linear-chain CRF models applied to
sequential data modeling. Note also that, in this experi-
ment, the moderate order CRF models of [41] seem to yield
a rather competitive result. This was expectable since the
average modeled sequence in this experiment is less than
10 time points long. Finally, regarding the HMM method,
with the number of mixture components M selected so as to
optimize model performance, we observe that the CRF1

model yields a clear improvement, irrespective of the
employed likelihood optimization approach.

4.3 Part-of-Speech Tagging

Finally, here we consider an experiment with the Penn
Treebank corpus [25], containing 74,029 sentences with a
total of 1,637,267 words. It is comprised of 49,115 unique
words, and each word in the corpus is labeled according to
its part of speech; there are a total of 43 different part-of-
speech labels. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 12, XXXXXXX 2013

TABLE 3
Activity-Based Segmentation of Skateboard: Push and Turn

Videos: Error Rates Obtained by the Evaluated Methods

Fig. 4. Skateboard: push and turn: A few example frames from a sequence considered in our experiments.

Fig. 5. Handwriting recognition: Example words from the dataset used.

TABLE 4
Handwriting Recognition: Error Rates Obtained

by the Evaluated Methods

Figures from (Chatzis & Demiris, 2013)

u e p c t
Sample 1:

y(1)

x(1)

n x e de

v l a i c
Sample 2:

o c n

e b a e s
Sample 2:

m r c

y(2)

x(2)

y(3)

x(3)

Dataset for Supervised
Phoneme (Speech) Recognition

7

D = {x(n),y(n)}Nn=1Data:

Figures from (Jansen & Niyogi, 2013)

h# ih w z iy
Sample 1:

y(1)

x(1)

dh s uh iyz1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping
was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not
required to obtain good performance in the experiments in Section VII in which
we randomly selected examples from the entire corpus (ignoring class).

1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping
was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not
required to obtain good performance in the experiments in Section VII in which
we randomly selected examples from the entire corpus (ignoring class).

f r s h#
Sample 2:

ao ah s y(2)

x(2)

Time Series Data
Question 1: How could we apply the neural networks we’ve
seen so far (which expect fixed size input/output) to a
prediction task with variable length input/output?

8

n v p d n

time likeflies an arrow

y

x

Time Series Data
Question 1: How could we apply the neural networks we’ve
seen so far (which expect fixed size input/output) to a
prediction task with variable length input/output?

9

n v p d n

time likeflies an arrow

y

x

x1

h1

y1

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

Time Series Data
Question 2: How could we incorporate context (e.g.
words to the left/right, or tags to the left/right) into our
solution?

10

x1 x3x2 x4 x5

y

x

Multiple
Choice:
Working left-
to-right, use
features of…

y1 y3y2 y4 y5

xi-1 xi xi+1 yi-1 yi yi+1
A ✓
B ✓
C ✓ ✓
D ✓ ✓ ✓ ✓
E ✓ ✓ ✓ ✓ ✓
F ✓ ✓ ✓ ✓
G ✓ ✓ ✓ ✓ ✓
H ✓ ✓ ✓ ✓ ✓ ✓

Recurrent Neural Networks (RNNs)

11

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

Recurrent Neural Networks (RNNs)

12

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5
This form of RNN is

called an
Elman Network

Recurrent Neural Networks (RNNs)

• If T=1, then we have a standard
feed-forward neural net with
one hidden layer

• All of the deep nets from last
lecture required fixed size
inputs/outputs

13

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

14

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

15

Background

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps
opposite the gradient)

• We’ll just need a method of
computing the gradient efficiently

• Let’s use Backpropagation Through
Time...

• Recurrent Neural Networks (RNNs) provide
another form of decision function

• An RNN is just another differential function

Recurrent Neural Networks (RNNs)

16

xt

h

yt

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

Recurrent Neural Networks (RNNs)

• By unrolling the RNN through
time, we can share parameters
and accommodate arbitrary
length input/output pairs

• Applications: time-series data
such as sentences, speech,
stock-market, signal data, etc.

17

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

xt

h

yt

Background: Backprop through time
Recurrent neural
network:

BPTT:
1. Unroll the
computation
over time

18

(Robinson & Fallside, 1987)

(Werbos, 1988)

(Mozer, 1995)

a xt

bt

xt+1

yt+1

a x1

b1

x2

b2

x3

b3

x4

y4

2. Run
backprop
through the
resulting feed-
forward
network

Bidirectional RNN

19

xt

h

yt

Recursive Definition:

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units:
��
h and

��
h

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

h

Bidirectional RNN

20

x1

h1

y1

Recursive Definition:

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units:
��
h and

��
h

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4

Bidirectional RNN

21

x1

h1

y1

Recursive Definition:

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units:
��
h and

��
h

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4

Deep RNNs

23

Recursive Definition:

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log y

zt
t

(13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)
@ŷ

k

t

= y

k

t

� �

k,zt (14)

where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Figure from (Graves et al., 2013)

Deep Bidirectional RNNs

24

inputs: x = (x1, x2, . . . , xT), xi � RI

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

Figure from (Graves et al., 2013)

xt

h

yt

h

h’

h’

• Notice that the upper
level hidden units have
input from two previous
layers (i.e. wider input)

• Likewise for the output
layer

• What analogy can we
draw to DNNs, DBNs,
DBMs?

Long Short-Term Memory (LSTM)
Motivation:
• Standard RNNs have trouble learning long

distance dependencies
• LSTMs combat this issue

25

x1

h1

y1

x2

h2

y2

xT-1

hT-1

yT-1

xT

hT

yT…

…

…

Long Short-Term Memory (LSTM)

Motivation:
• Vanishing gradient problem for Standard RNNs
• Figure shows sensitivity (darker = more sensitive) to the input at

time t=1

26
Figure from (Graves, 2012)

Long Short-Term Memory (LSTM)
Motivation:
• LSTM units have a rich internal structure
• The various “gates” determine the propagation of information

and can choose to “remember” or “forget” information

27
Figure from (Graves, 2012)

CHAPTER 4. LONG SHORT-TERM MEMORY 35

Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
plicity, all gates are either entirely open (‘O’) or closed (‘—’). The memory cell
‘remembers’ the first input as long as the forget gate is open and the input gate
is closed. The sensitivity of the output layer can be switched on and o↵ by the
output gate without a↵ecting the cell.

4.2 Influence of Preprocessing

The above discussion raises an important point about the influence of prepro-
cessing. If we can find a way to transform a task containing long range con-
textual dependencies into one containing only short-range dependencies before
presenting it to a sequence learning algorithm, then architectures such as LSTM
become somewhat redundant. For example, a raw speech signal typically has a
sampling rate of over 40 kHz. Clearly, a great many timesteps would have to
be spanned by a sequence learning algorithm attempting to label or model an
utterance presented in this form. However when the signal is first transformed
into a 100 Hz series of mel-frequency cepstral coe�cients, it becomes feasible to
model the data using an algorithm whose contextual range is relatively short,
such as a hidden Markov model.

Nonetheless, if such a transform is di�cult or unknown, or if we simply
wish to get a good result without having to design task-specific preprocessing
methods, algorithms capable of handling long time dependencies are essential.

4.3 Gradient Calculation

Like the networks discussed in the last chapter, LSTM is a di↵erentiable function
approximator that is typically trained with gradient descent. Recently, non
gradient-based training methods of LSTM have also been considered (Wierstra
et al., 2005; Schmidhuber et al., 2007), but they are outside the scope of this
book.

Long Short-Term Memory (LSTM)

28

x1

y1

x2

y2

x3

y3

x4

y4
are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Long Short-Term Memory (LSTM)

29

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

• Input gate: masks out the
standard RNN inputs

• Forget gate: masks out
the previous cell

• Cell: stores the
input/forget mixture

• Output gate: masks out
the values of the next
hidden

Figure from (Graves et al., 2013)

Long Short-Term Memory (LSTM)

30

x1

y1

x2

y2

x3

y3

x4

y4
are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Deep Bidirectional LSTM (DBLSTM)

31

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log y

zt
t

(13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)
@ŷ

k

t

= y

k

t

� �

k,zt (14)

where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

Figure from (Graves et al., 2013)

• Figure: input/output
layers not shown

• Same general
topology as a Deep
Bidirectional RNN,
but with LSTM units
in the hidden layers

• No additional
representational
power over DBRNN,
but easier to learn in
practice

Deep Bidirectional LSTM (DBLSTM)

32

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log y

zt
t

(13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)
@ŷ

k

t

= y

k

t

� �

k,zt (14)

where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

Figure from (Graves et al., 2013)

How important is this
particular architecture?

Jozefowicz et al. (2015)
evaluated 10,000
different LSTM-like
architectures and
found several variants
that worked just as
well on several tasks.

RNN Training Tricks

• Deep Learning models tend to consist largely of
matrix multiplications

• Training tricks:
– mini-batching with masking

– sorting into buckets of similar-length sequences, so
that mini-batches have same length sentences

– truncated BPTT, when sequences are too long, divide
sequences into chunks and use the final vector of the
previous chunk as the initial vector for the next chunk
(but don’t backprop from next chunk to previous chunk)

34

Metric DyC++ DyPy Chainer DyC++ Seq Theano TF
RNNLM (MB=1) words/sec 190 190 114 494 189 298
RNNLM (MB=4) words/sec 830 825 295 1510 567 473
RNNLM (MB=16) words/sec 1820 1880 794 2400 1100 606
RNNLM (MB=64) words/sec 2440 2470 1340 2820 1260 636
BiLSTM Tag words/sec 427 428 22.7 - 102 143
BiLSTM Tag +sparse words/sec 8410 7990 - - - -
BiLSTM Tag+Char words/sec 419 413 22.0 - 94.3 -
BiLSTM Tag+Char +sparse words/sec 6530 6320 - - - -
TreeLSTM sents/sec 91.6 88.1 7.21 - - -
TreeLSTM +sparse sents/sec 186 173 - - - -

Table 2: Processing speed for each toolkit on CPU. Speeds are measured in words/sec for
RNNLM and Tagger and sentences/sec for TreeLSTM. Lines with +sparse indicate sparse up-
dates for the LookupParameters, which is the default behavior in DyNet, but not comparable
to the implementations in other toolkits, which are performing dense updates.

Accuracy: In order to confirm that the code in each library is doing the same thing, we
compared accuracies and ensure that they are in the same general range with only small
di↵erences, and thus do not include these statistics in our main comparison. However,
in some cases we will show accuracies for each task: per-word negative log likelihood
for the RNNLM, tagging accuracy for the BiLSTM tagger, and fine-grained sentiment
classification accuracy at the root for the Tree LSTM.

7.3 Evaluation Results

7.3.1 Cross-toolkit Comparison

First, we perform a comparison of computation speed over the four tasks across the DyNet
Python interface, the DyNet C++ interface, Chainer, Theano, and TensorFlow. Additionally,
as discussed in §5.1, DyNet also has experimental support for e�cient sequence-level process-
ing such as that implemented in Theano and TensorFlow, so we present numbers for this on
the RNNLM task as well (labeled DyC++ Seq) to examine the e↵ect of sharing computations
at the sequence level. We also vary the mini-batch size of the RNNLM to demonstrate the
e↵ect of mini-batching. The results are shown in Table 2 and Table 3.

Comparison on CPU: First focusing on the CPU results, we can see that DyNet handily
outperforms the other toolkits in e�ciency. This is true for the more standard and straight-
forward RNNLMs (where speeds are 1.66x to 3.20x faster than the fastest counterpart), par-
ticularly for the more complicated tasks such as the BiLSTM tagger (gains of 2.99x to 4.44x)
and TreeLSTM (a gain of 12.7x). This is a result of the DyNet design described in §4, which
focuses on minimizing overhead in graph construction and focuses on optimizing for speed on
both CPU and GPU.

In addition, comparing the various DyNet interfaces, we see that there is a negligible
di↵erence between the C++ and Python interfaces, due to the fact that Python simply places
a thin wrapper of the core C++ code. On the other hand, utilizing the sequence-based
computation interface provides significant improvements, particularly at smaller RNNLM

24

Table from Neubig et al. (2017)

RNN Summary

• RNNs
– Applicable to tasks such as sequence labeling,

speech recognition, machine translation, etc.
– Able to learn context features for time series

data
– Vanishing gradients are still a problem – but

LSTM units can help

• Other Resources
– Christopher Olah’s blog post on LSTMs

http://colah.github.io/posts/2015-08-
Understanding-LSTMs/

35

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LEARNING THEORY

36

PAC-MAN Learning

37

1. True Error

2. Training Error

Question 1:
What is the probability that
Matt get a Game Over in PAC-
MAN?

A. 90%
B. 50%
C. 10%

Question 2:
What is the expected number
of PAC-MAN levels Matt will
complete before a Game-
Over?

A. 1-10
B. 11-20
C. 21-30

Questions For Today
1. Given a classifier with zero training error,

what can we say about true error (aka.
generalization error)?
(Sample Complexity, Realizable Case)

2. Given a classifier with low training error, what
can we say about true error (aka.
generalization error)?
(Sample Complexity, Agnostic Case)

3. Is there a theoretical justification for
regularization to avoid overfitting?
(Structural Risk Minimization)

39

PAC / SLT Model

41

We’ve been calling

this the “Function
Approximation View”

 Labeled Examples

PAC/SLT models for Supervised Learning

Learning
Algorithm

Expert / Oracle

Data
Source

Alg.outputs

Distribution D on X

c* : X ! Y

(x1,c*(x1)),…, (xm,c*(xm))

h : X ! Y
x1 > 5

x6 > 2

+1 -1

+1

+

-

+
+
+

-
-

-
-

-

Slide from Nina Balcan

Two Types of Error

42

2. Train Error (aka. empirical risk)

1. True Error (aka. expected risk)
This quantity is always unknown

We can measure this
on the training data

PAC / SLT Model

43

We’ve also referred to

this as the “Function

Approximation View”

Three Hypotheses of Interest

44

Question:
True or False:
h* and c* are
always equal.

PAC LEARNING

45

Probably Approximately Correct
(PAC) Learning

Whiteboard:
– PAC Criterion
– Meaning of “Probably Approximately Correct”
– Def: PAC Learner
– Sample Complexity
– Consistent Learner

46

PAC Learning

47

SAMPLE COMPLEXITY RESULTS

48

Sample Complexity Results

49

Realizable Agnostic

Four Cases we care about…
We’ll start with the

finite case…

Generalization and Overfitting

Whiteboard:
– Realizable vs. Agnostic Cases
– Finite vs. Infinite Hypothesis Spaces
– Theorem 1: Realizable Case, Finite |H|
– Proof of Theorem 1

50

Sample Complexity Results

51

Realizable Agnostic

Four Cases we care about…

