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Reminders

* Homework 4: Logistic Regression
— Out: Wed, Feb. 19
— Due: Fri, Feb. 28 at 11:59pm

* Today’s In-Class Poll

— http://p11.mlcourse.org




MULTINOMIAL LOGISTIC
REGRESSION






Multinomial Logistic Regression
Chalkboard

— Background: Multinomial distribution
— Definition: Multi-class classification

— Geometric intuitions

— Multinomial logistic regression model
— Generative story

— Reduction to binary logistic regression
— Partial derivatives and gradients

— Applying Gradient Descent and SGD

— Implementation w/ sparse features



T 1% Debug that Program!

In-Class Exerase Think-Pair-Share

Debug the following program which is (incorrectly)
attempting to run SGD for multinomial logistic regression

Buggy Program:
while not converged: @ 0( | ( >
for i in shuffle([1,..., N]): k 3
forkln [1,.... K] 3i 1 (]m
theta[k] = theta[k] - gamma *-grad(x[il yliltheta, k)

pLY
Assume: grad(x[i], y[i], theta, k) returns the gradient of the negative log-likelihood of

the training example (x[i],y[i]) with respect to vector theta[k]. gamma is the learning

rate. N = # of examples. K = # of output classes. M = # of features. theta is a K by M
matrix.



FEATURE ENGINEERING



Handcrafted Features

p(y|x) o
exp(0,°f




Feature Engineering

Where do features come from?

A

hand-crafted
features

Sun et al., 2011

O

3

O

Zhou et al.,
2005

O

First word before M1
Second word before M1
Bag-of-words in M1

Head word of M1

Other word in between
First word after M2
Second word after M2
Bag-of-words in M2

Head word of M2

Bigrams in between

Words on dependency path
Country name list
Personal relative triggers
Personal title list

WordNet Tags

Heads of chunks in between
Path of phrase labels
Combination of entity types

Feature Learning
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Feature Engineering

Where do features come from?

A

hand-crafted
features

O

Sun et al., 2011

O

3

O

Zhou et al.,
2005

Look-up table Classifier
input embeddin o
(context words) g —> missing word
unsupervised
learning

similar words, cat: | .11 | .23 .45
similar embeddings

dog:| 0.13 | .26 -.52

CBOW model in Mikolov et al. (2013)

word /

embeddings
O O Mikolov et al.,

2013

Feature Learning
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Feature Engineering

Where do features come from?

l ] 1 ] | ] | ] l || || ]
-~ - - -
- N - 0~
I - B > > ~
- -
__________

| ] ] [ ] | I_LIIJLIIJLIIA_I

The [movie] showed [wars] The [movie] showed [wars]
Convolutional Neural Networks Recursive Auto Encoder
(Collobert and Weston 2008) (Socher 2011)
CNN RAE
A4
Zhou et al., .
2005 word string
embeddings
O embeddings ____ > Socher, 2011
O wikolov etal, O Collobert & Weston,
2013 2008

Feature Learning



Feature Engineering

Where do features come from?

A
" ol
Wipvp ,’
e :p
Wpr NN, / Wy, NN, / tree
embeddings
| O Socher et aI
ﬂ ﬂ‘ ﬁ‘ ﬂ‘ O,emanc
A Hermann & Blunsom,
The [movie] showed [wars] | / 2013
III
7005 word ,’I string
/¢~ embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008

Feature Learning
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Feature Engineering

Where do features come from?

A eﬁb@
S fe )
word embedding 9'77.9,,{ ,afl/,-e,bbedd,
hand-crafted features / %J'h s Wiy - n
features o~ ----- >O l‘eq.
e Turian et al. O ,C,})f
O O 2010 © Hermann et al. o
Sun et al., 2011 Koo etal. 2014
O 22008 tree
embeddings
O Socher et aI.,g

3

O

Aermann & Blunsom,
2013

O/ 01
N
/

Zhou et al., h .
2005 word ,’I strmg
) /¢~ embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008 >

Feature Learning
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Feature Engineering

Where do features come from?

A
word embedding best of both
hand-crafted features 1ds?
features o ----- > O e s WOrias:
_2 Turian et al. O
O- O 2010
Hermann et al. A
Sun etal., 2011 Koo etal. 501 )
4 1
O 2008 ‘ tr
. | ee
! O embeddings
! Socher et aI
; O 2013
I A Hermann & Blunsom,
i / 2013
o /
H /
Zhou et al,, : / .
2005 I ] string
word /
/¢~ embeddings
O embeddmgs _____ > Socher, 2011
O Mikolov etal, O Collobert & Weston,
2013 2008 s

Feature Learning
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Feature Engineering for NLP

Suppose you build a logistic regression model
to predict a part-of-speech (POS) tag for each
word in a sentence.

What features should you use?

Blees

The movie | watched depicted hope




Feature Engineering for NLP

Per-word Features:

x( x(2) x(3) x(4) x(5) x(6)
is-capital (w,) 1 1
endswith (w,, “e”) 1 1 1
endswith (w,, “d”) 1 1
endswith (w,, “ed”) 1 1
w; == “aardvark”
w, == “hope” 1

Blees

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x(" x(2) x(3) x(4) x(5) x(6)
w, == “watched” 1
w,,; == “watched” 1
w,_; == “watched” 1
w,,, == “watched” 1
w._, == “watched” 1

Blees

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x(1) x(2) x(3) x(4) x(5) x(6)
w, == “I” 1
Wiy == VT 1
Wiy == N7 1
Wiy == V17 1
Wy, == 17 1

Blees

The movie | watched depicted hope




Table from Manning (2011)

 Feature Engineering for NLP

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set.

—— ]
M odel Feature Templates Token Unk.
: A | _Acc.
3gramMemm See text 2.07% (96.92% >88.99%
naacl 2003  Seetext and [1] 55.31% 97.15% )88.61%

Replication See text and [1] 460,951 55.62% 97.18% 88.92%

Replication’  +rareFeatureThresh=5 482,364 55.67% 97.19% 88.96%

5w + (o, w- 20 [to, W2l 730,178 56.23% 97.20% 89.03%

5w Shapes + [tg,S- 10, [to,S0) [tg,S+ 1] 731,661 56.52% 97.25% 89.81%

5SwShapesDS + distributional similarity (?37,957:9 56.79% (9f28°o\90.46%
—_— ~——

Blees

The movie | watched depicted hope




Feature Engineering for CV

Edge detection (Canny)

Corner Detection (Harris)

Figures from http://opencv.org

26



Feature Engineering for CV

Scale Invariant Feature Transform (SIFT)

Sde
(firgt
octave)

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
Figure 3: Model images of planar objects are shown in the produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
toprow. Recognitionresults below show model outlines and to produce the difference-of-Gaussian images on the right. Afier each octave, the Gaussian image is
image keys used for matching. down-sampled by a factor of 2, and the process repeated.

Figure from Lowe (1999) and Lowe (2004)
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NON-LINEAR FEATURES



Nonlinear Features

Key Idea: let inp

o M
— original inputhX € R

— new input:

— define X' = b(x) =

aka. “nonlinear basis functions’”’

o some function of x

[b1(x), ba(%x), ..., bn (X)]

where b; : RM — Ris any function

Examples: (M = 1)

polynomial
D

- radial basis function

sigmoid

log

here M’ > M (usually)

bi(z) =2 Vie{l,...,J}
bj (33) = exp <—(x2(—72,u3)2

So far, input was always X = [Z1,...,TMm] —

)

For a linear model:
still a linear function
of b(x) even though a
nonlinear function of
X

Examples:
Perceptron

Linear regression
Logistic regression



Example: Linear Regression

Goal: Learny =w' f(x) +b

where f(.) is a polynomial

basis function

i

2.0 1.2
1.3 1.7
0.1 2.7

11 1.9

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

20 -

2.0 -

15-

1.0 -

0.5 -

0.0 -

-0.5 +

1.0

- MO)xe

1.5

2.5

3.0

31



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial

basis function - Linear Regression (poly=1)
2.0 -
EAE

20 1.2
1.5 -

13 17

0.1 2.7

Y 10

1.1 1.9

0.5 -

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

0.0 -




Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function - Linear Regression (poly=2)

2.0 -
EIE3ED

20 1.2 (1.2)?

1.5-
1.3 1.7 (1.7)
01 2.7 (2.7
Y 10
1.1 1.9 (1.9)
* 0.5 -
true “unknown”
target function is
0.0 -

linear with
negative slope
and gaussian
noise




Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=3)

1.2 (1.2)> (1.2)3
1.3 17 (1.7 (1.7)3
01 2.7 (2.7)*(2.7) y

1.1 1.9 (1.9)2(1.9)3

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

1.5 2.0 2.5



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=5)

1.2 (1.2 ... (1.2
1.3 1.7 (1.7 ... (1.7)
01 27 (2.7 ... (27 y

1.1 1.9 (1.9 .. (1.9

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

35



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial

basis function | Linear Regression (poly=8)
lnn-n N
1.2 (1.2 ... (1.2)8 15

1.3 1.7 (1.7 ... (1.7)8
01 2.7 (2.7)* .. (2.7)8y 10-

11 1.9 (1.9 .. (1.9)8 e

0.5 -

true “unknown”

target function is 0.0 -
linear with
negative slope
and gaussian
noise

-0.5 -

15 2.0 2.5




Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial

basis function ~ Linear Regression (poly=9)
lnﬂ-n N
1.2 (122 ... (1.2)° 15

1.3 1.7 (1.7 ... (1.7)°
01 2.7 (2.7)% ... (2.7)9y 10-

11 1.9 (1.9 ... (1.9)°

0.5 -
true “unknown”
target function is 0.0 -
linear with
negative slope
-0.5 -

and gaussian

nOise 15 2.0 2.5




Over-fitting

—©— Training
—O0— Test

0 3@6

Root-Mean-Square (RMS) Error:  Erus = \/2E(w*)/N

Slide courtesy of William Cohen



Polynomial Coefficients

M=0 M=1 M=3 M =9
6o 0.19  0.82 0.3l 0.35
6, 127 7.99 232.37
6, -25.43 -5321.83
0, 17.37 48568.31
6, -231639.30
5 640042.26
s -1061800.52
6, 1042400.18
s -557682.99
s 125201.43

Slide courtesy of William Cohen



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function

2.0 - |
NS
1 2.0 1.2 .. (1.2)° s
2 1.3 1.7 ... (1.7
y 1.0 -
10 11 1.9 .. (1.9)°
0.5 -
0.0 -
~0.5 -

15

Linear Regression (poly=9)

2.0

2.5

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting

3.0
40



Example: Linear Regression

* WithjustN=10

Goal: Learny =w' f(x) + b points we overfit!
where f(.) is a polynomial * Butwith N =100
basis function | Linear Regression (poly=9) points, the
2.5 - overfitting
SRS (mostly)
y :
[l = lel=l , L
1 20 12 .. (1.2)° o Takeaway: more
2 13 17 ... (1.7)9 15 data helps
. prevent
S I S y overfitting
1.0 -
4 11 19 .. (1.9)
0.5 -
0.0 -
98 —-05 -
99 | ‘ ‘ ‘ ‘
1.0 1.5 2.0 2.5 3.0
100 0.9 15 .. (1.5)° X 41



REGULARIZATION



Overfitting

Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:
— Decision Trees (e.g. when tree is too deep)
— KNN (e.g. when k is small)
— Perceptron (e.g. when sample isn’t representative)
— Linear Regression (e.g. with nonlinear features)
— Logistic Regression (e.g. with many rare features)



Motivation: Regularization

Example: Stock Prices

* Suppose we wish to predict
Google’s stock price at time t+1

* What features should we use? I—
(putting all computational concerns = . !
aside) W Ee I/

— Stock prices of all other stocks at - p‘\ A ',{."
timest, t-1,t-2,...,t-k i v
— Mentions of Google with positive/ -

negative sentiment words in all jj
newspapers and social media outlets

* Do we believe that all of these
features are going to be useful?



Motivation: Regularization

* Occam’s Razor: prefer the simplest
hypothesis

* What does it mean for a hypothesis (or
model) to be simple?
1. small number of features (model selection)

2. small number of “important” features
(shrinkage)
=/

2= ~ _ \lo Y-: @l: 0O
4 [ l] 6 ) Ia ] ):;(é Y‘ Zoo’&
-200

45



10!

Regularization

Given objective function: J(6)
Goal is to find: @ = argmin {(_42) + )‘T_(_H_)_
T 0 Lk cobd swiy

Key idea: Define regularizer r(0) s.t. we tradeoff
between fitting the data and keeping the model
simple 0|

Choose form of r(0): |

©

M (3)
S\L — Example: g-norm (usually p-norm) r(6) =i6ll, = [Z ||9m||q]

ez q 7(0) yields parame- name  optimization notes

ters that are...
90 0]lo =3 1(6,, #0) zero values Loreg. ( no good comp@
ignal solutions

~Pp 1 |[0|l1=>|0n] zero values Lireg. subdifferentiable S G\D
—5 2 (|]|0]|2)* =>_02, small values Lareg. differentiable

 — 46



’P/(.WRCpursa .org

Regularization
Question:
Suppose we are minimizing J’(0) where
J'(0) = J(0) +ér(0) S

As A increases, the minimum of J’(0)

D

between J’(8) and r(6)
B. ...move towards the minimum of J(0)

will... 7
A. ...move towards the midpoint < @

¢ » C. ...move towards the minimum of r(6) r(0) = ||9||§

S

C,)‘i % D. ...move towards a theta vector of
positive infinities

E. ...move towards a theta vector of
negative infinities

~F=——Stay e same (g Je w :5[7

<!



Regularization Exercise




Regularization

Question:

Suppose we are minimizing J’(0)
where \%
J'(0) = J(0) + \r(0) \/

As we increase A from o, the the %x

. : . < D >
validation error will... &y

A. ...increase k/

B. ...decrease 5

o r(0) = |0]]3
C. ...firstincrease, then decrease
D. ...first decrease, then increase v

TE—..staythesame (... '/
/



Regularization

Don’t Regularize the Bias (Intercept) Parameter!

In our models so far, the bias [ intercept parameter is
usually denoted by 6, -- that is, the parameter for which
we fixed xy = 1

Regularizers always avoid penalizing this bias [ intercept
parameter

Why? Because otherwise the Iearnin%flgorithms wouldn’t
be invariant to a shift in the y-values LSn

L L x-vdurs X ch’euJ\

WhiteningData |- 4_| e

It’s common to whiten €ach feature by subtracting its
mean and dividing by its variance

For regularization, this helps all the features be penalized
in the same units
(e.g. convert both centimeters and kilometers to z-scores)




Training
Data

Test
Data

Example: Logistic Regression

For this example, we
construct nonlinear features
(i.e. feature engineering)

Specifically, we add
polynomials up to order 9 of
the two original features x,
and x,

Thus our classifier is linear in
the high-dimensional
feature space, but the
decision boundary is
nonlinear when visualized in
low-dimensions (i.e. the
original two dimensions)



error

Example: Logistic Regression

0.45 -
0.40 -
0.35 -
0.30 -
0.25 -
0.20 -

0.15 -

1077

1074

107!

l[ambda

102

10°

108
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e-05)

59



Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.0001)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.001)

61



Example: Logistic Regression

Classification with Logistic Regression (lambda=0.01)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.1)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1)

64



Example: Logistic Regression

Classification with Logistic Regression (lambda=10)

65



Example: Logistic Regression

Classification with Logistic Regression (lambda=100)

66



Example: Logistic Regression

Classification with Logistic Regression (lambda=1000)

67



Example: Logistic Regression

~ Classification with Logistic Regression (lambda=10000)

68



Example: Logistic Regression

- Classification with Logistic Regression (lambda=100000) |

69



Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+06) |
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+07) |

71



error

Example: Logistic Regression

0.45 -
0.40 -
0.35 -
0.30 -
0.25 -
0.20 -

0.15 -

1077

1074

107!

l[ambda

102

10°

108

72



Regularization as MAP

* L1and L2 regularization can be interpreted
as maximum a-posteriori (MAP) estimation

of the parameters
 To be discussed later in the course...



1.

Takeaways

Nonlinear basis functions allow linear
models (e.g. Linear Regression, Logistic
Regression) to capture nonlinear aspects of
the original input

. Nonlinear features are require no changes

to the model (i.e. just preprocessing)

. Regularization helps to avoid overfitting
. Regularization and MAP estimation are

equivalent for appropriately chosen priors



Feature Engineering [ Regularization

Objectives
You should be able to...
* Engineer appropriate features for a new task

* Use feature selection techniques to identify and
remove irrelevant features

* ldentify when a model is overfitting

* Add aregularizer to an existing objective in order to
combat overfitting

* Explain why we should not regularize the bias term

* Convert linearly inseparable dataset to a linearly
separable dataset in higher dimensions

* Describe feature engineering in common application
areas



Neural Networks Outline

Logistic Regression (Recap)

— Data, Model, Learning, Prediction

Neural Networks

— A Recipe for Machine Learning

— Visual Notation for Neural Networks

— Example: Logistic Regression Output Surface
— 2-Layer Neural Network

— 3-Layer Neural Network
Neural Net Architectures

— Objective Functions

— Activation Functions
Backpropagation

— Basic Chain Rule (of calculus)

— Chain Rule for Arbitrary Computation Graph
— Backpropagation Algorithm

— Module-based Automatic Differentiation (Autodiff)



NEURAL NETWORKS



A Recipe for

Background : :
Machine Learning
1. Given training data: Face Face Not d face
N

2. Choose each of these:
— Decision function

N Examples: Linear regression,
y — f@ ('CBZ) Logistic regression, Neural Network
— Loss function

A Examples: Mean-squared error,
Z(y, yz) E R Cross Entropy



A Recipe for

Background : :
Machine Learning
5 e o . e {r\'c...l (‘1\51{
1. Given training data: 3. Define goal: *™f .
(@, y MV i
is Yifi=1 0" = arg mein;afg(wi),yi)
2. Choose each of these:
— De\cision function 4. Train with SGD:
R
U ="fo (337,) (take small steps

opposite the gradient)
— Loss function

((y,y;) € R 0D = 00— V(folw1).v.)



-V fo(xi), y;)



- VL fo(xi), y;)



Decision
Functions

Output

Linear Regression




Decision

Functions Logistic Regression

y = he(x) = 0(6" x)

1
where o(a) = rp—"—

Output




Decision

Functions Logistic Regression

y = he(x) = 0(6" x)

Output




Decision
Functions

Logistic Regression

y = he(x) =0c(0'x

Output 6

In-Class Example



Decision
Functions

Output

Perceptron

y = he(x) =
where o(a )




Decision
Functions

Output

Neural Network




Neural Network Model

» Output
0.6
Gender
“Probability of
beingAlive”
Stage
| Dependent
Independent Weights Weights vazf;able
variables
Prediction

© Eric Xing @ CMU, 2006-2011 110



““Combined logistic models”

Inputs
» Output
0.6
Gender
“Probability of
beingAlive”
Stage
| Dependent
Independent Weights Weights vazf;able
variables
Prediction

© Eric Xing @ CMU, 2006-2011 111



Output

Age
0.6
Gender
“Probability of
beingAlive”
Stage
| Dependent
Independent Weights Weights va;{;able
variables
Prediction

© Eric Xing @ CMU, 2006-2011 112



» Output
0.6
Gender
“Probability of
beingAlive”
Stage
| Dependent
Independent Weights Weights vazf;able
variables
Prediction

© Eric Xing @ CMU, 2006-2011 113



Not really,
no target for hidden units...

Age
0.6
Gender
“Probability of
beingAlive”
Stage
| Dependent
Independent Weights Weights vazf;able
variables
Prediction

© Eric Xing @ CMU, 2006-2011 114



Nodes

Synapses
(weights)

From Biological to Artificial -

The motivation for Artificial Neural Networks comes from biology...

Impulse

Biological “Model” Artificial Model
* Neuron: an excitable cell * Neuron: node in a directed acyclic
 Synapse: connection between graph (DAG)

neurons *  Weight: multiplier on each edge

e Activation Function: nonlinear
thresholding function, which allows a
neuron to “fire” when the input value

* A neuronsends an
electrochemical pulse along its

synapses when a sufficient voltage is sufficiently high

djange. occurs * Artificial Neural Network: collection
* Biological Neural Network: of neurons into a DAG, which define

collection of neurons along some some differentiable function

pathway through the brain

Biological “Computation” Artificial Computation

* Neuron switching time: ~0.001sec * Many neuron-like threshold switching
* Number of neurons: ~10" units

« Connections per neuron: ~ 1045 * Many weighted interconnections

among units

* Scene recognition time: ~0.1sec ) o
* Highly parallel, distributed processes

116

Slide adapted from Eric Xing



Neural Networks

Chalkboard

— Exam
— Exam
— Exam

P
P

P

e: Neural Network w/1 Hidden Layer
e: Neural Network w/2 Hidden Layers
e: Feed Forward Neural Network



Decision

Functions Logistic Regression

y = he(x) = 0(6" x)

Output




Decision
Functions

Logistic Regression

y = he(x) =0c(0'x

Output 6

In-Class Example



Decision

Functions Neural Network

Neural Network for Classification

[ (E) Output (sigmoid)
_ 1
Y= T¥exp(=d)
[ (D) Output (linear)
D
b=2_7—05%

[ (C) Hidden (sigmoid)
1

Zj:

Output

Hidden Layer

vj

I+exp(—aj)’

?

[ (B) Hidden (linear)
aj = Zi]\io i Ti, V7

?

(A) Input
Givenz;, Vi 20




Neural Network Parameters
Question: y)

Suppose you are training a
one-hidden layer neural 2z
network with sigmoid

activations for binary )
classification.
200 00¢ Answer:

True or False: There is a
unique set of parameters
that maximize the
likelihood of the dataset
above.



