k-Nearest Neighbors

+

Model Selection
Reminders

• Homework 2: Decision Trees
 – Out: Wed, Jan 23
 – Due: Wed, Feb 6 at 11:59pm

• Today’s Poll:
 – http://p5.mlcourse.org
K-NEAREST NEIGHBORS
k-Nearest Neighbors

Chalkboard:

– Nearest Neighbor classifier
– KNN for binary classification
KNN: Remarks

Distance Functions:
• KNN requires a distance function

\[g : \mathbb{R}^M \times \mathbb{R}^M \rightarrow \mathbb{R} \]

• The most common choice is Euclidean distance

\[g(u, v) = \sqrt{\sum_{m=1}^{M} (u_m - v_m)^2} \]

• But other choices are just fine (e.g. Manhattan distance)

\[g(u, v) = \sum_{m=1}^{M} |u_m - v_m| \]
KNN: Remarks

In-Class Exercises

1. How can we handle ties for even values of k?

2. What is the inductive bias of KNN?
KNN: Remarks

Computational Efficiency:

- Suppose we have N training examples, and each one has M features
- Computational complexity for the special case where $k=1$:

<table>
<thead>
<tr>
<th>Task</th>
<th>Naive</th>
<th>k-d Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>$O(1)$</td>
<td>$\sim O(MN \log N)$</td>
</tr>
<tr>
<td>Predict</td>
<td>$O(MN)$</td>
<td>$\sim O(2^M \log N)$ on average</td>
</tr>
<tr>
<td>(one test example)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem: Very fast for small M, but very slow for large M

In practice: use stochastic approximations (very fast, and empirically often as good)
KNN: Remarks

Theoretical Guarantees:

Cover & Hart (1967)

Let \(h(x) \) be a Nearest Neighbor (k=1) binary classifier. As the number of training examples \(N \) goes to infinity...

\[
\text{error}_{\text{true}}(h) < 2 \times \text{Bayes Error Rate}
\]

“In this sense, it may be said that half the classification information in an infinite sample set is contained in the nearest neighbor.”

very informally, Bayes Error Rate can be thought of as: ‘the best you could possibly do’
Decision Boundary Example

Dataset: Outputs \{+, -\}; Features \(x_1\) and \(x_2\)

In-Class Exercise

Question 1:

a) Can a **k-Nearest Neighbor classifier** with \(k=1\) achieve zero training error on this dataset?

b) If ‘Yes’, draw the learned decision boundary. If ‘No’, why not?

Question 2:

a) Can a **Decision Tree classifier** achieve zero training error on this dataset?

b) If ‘Yes’, draw the learned decision boundary for k-Nearest Neighbors with \(k=1\). If ‘No’, why not?

![Decision Boundary Example](image)
KNN ON FISHER IRIS DATA
Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

<table>
<thead>
<tr>
<th>Species</th>
<th>Sepal Length</th>
<th>Sepal Width</th>
<th>Petal Length</th>
<th>Petal Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.3</td>
<td>3.0</td>
<td>1.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>4.9</td>
<td>3.6</td>
<td>1.4</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>5.3</td>
<td>3.7</td>
<td>1.5</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>2.4</td>
<td>3.3</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>5.7</td>
<td>2.8</td>
<td>4.1</td>
<td>1.3</td>
</tr>
<tr>
<td>1</td>
<td>6.3</td>
<td>3.3</td>
<td>4.7</td>
<td>1.6</td>
</tr>
<tr>
<td>1</td>
<td>6.7</td>
<td>3.0</td>
<td>5.0</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set
Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

<table>
<thead>
<tr>
<th>Species</th>
<th>Sepal Length</th>
<th>Sepal Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.3</td>
<td>3.0</td>
</tr>
<tr>
<td>0</td>
<td>4.9</td>
<td>3.6</td>
</tr>
<tr>
<td>0</td>
<td>5.3</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>5.7</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>6.3</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>6.7</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Deleted two of the four features, so that input space is 2D

Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set
KNN on Fisher Iris Data
KNN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification (k = 1, weights = 'uniform')
KNN on Fisher Iris Data

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform')
KNN on Fisher Iris Data
KNN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification ($k = 1$, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification ($k = 2$, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification ($k = 3$, weights = 'uniform')
KNN on Fisher Iris Data
KNN on Fisher Iris Data

3-Class classification (k = 5, weights = 'uniform')
KNN on Fisher Iris Data
KNN on Fisher Iris Data

3-Class classification (k = 20, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification (k = 30, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification ($k = 40$, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification (k = 50, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification ($k = 60$, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification (k = 70, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification (k = 80, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification (k = 90, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification (k = 100, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification (k = 110, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification (k = 120, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification (k = 130, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification (k = 140, weights = 'uniform')
KNN on Fisher Iris Data

3-Class classification (k = 140, weights = 'uniform')
KNN on Fisher Iris Data

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform')
KNN ON GAUSSIAN DATA
KNN on Gaussian Data
KNN on Gaussian Data

Classification with KNN (k = 1, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 2, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 3, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 4, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 5, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 9, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 16, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 25, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 36, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN ($k = 49$, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN ($k = 64$, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN ($k = 81$, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 100, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 121, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 144, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 169, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN ($k = 196$, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 225, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 256, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 289, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 400, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 529, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 576, weights = 'uniform')
KNN on Gaussian Data

Classification with KNN (k = 600, weights = 'uniform')
K-NEAREST NEIGHBORS
Questions

• How could k-Nearest Neighbors (KNN) be applied to **regression**?
• Can we do better than majority vote? (e.g. **distance-weighted** KNN)
• Where does the Cover & Hart (1967) **Bayes error rate bound** come from?
KNN Learning Objectives

You should be able to...

• Describe a dataset as points in a high dimensional space [CIML]
• Implement k-Nearest Neighbors with $O(N)$ prediction
• Describe the inductive bias of a k-NN classifier and relate it to feature scale [a la. CIML]
• Sketch the decision boundary for a learning algorithm (compare k-NN and DT)
• State Cover & Hart (1967)'s large sample analysis of a nearest neighbor classifier
• Invent "new" k-NN learning algorithms capable of dealing with even k
• Explain computational and geometric examples of the curse of dimensionality
MODEL SELECTION
WARNING:

• In some sense, our discussion of model selection is premature.
• The models we have considered thus far are fairly simple.
• The models and the many decisions available to the data scientist wielding them will grow to be much more complex than what we’ve seen so far.
Model Selection

Statistics
- **Def**: a **model** defines the data generation process (i.e. a set or family of parametric probability distributions)
- **Def**: **model parameters** are the values that give rise to a particular probability distribution in the model family
- **Def**: **learning** (aka. estimation) is the process of finding the parameters that best fit the data
- **Def**: **hyperparameters** are the parameters of a prior distribution over parameters

Machine Learning
- **Def**: (loosely) a **model** defines the hypothesis space over which learning performs its search
- **Def**: **model parameters** are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- **Def**: the **learning algorithm** defines the data-driven search over the hypothesis space (i.e. search for good parameters)
- **Def**: **hyperparameters** are the tunable aspects of the model, that the learning algorithm does not select
Model Selection

Example: Decision Tree

- **model** = set of all possible trees, possibly restricted by some hyperparameters (e.g. max depth)

- **parameters** = structure of a specific decision tree

- **learning algorithm** = ID3, CART, etc.

- **hyperparameters** = max-depth, threshold for splitting criterion, etc.

Machine Learning

- **Def**: (loosely) a **model** defines the hypothesis space over which learning performs its search

- **Def**: **model parameters** are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis

- **Def**: the **learning algorithm** defines the data-driven search over the hypothesis space (i.e. search for good parameters)

- **Def**: **hyperparameters** are the tunable aspects of the model, that the learning algorithm does not select
Model Selection

Example: k-Nearest Neighbors

- model = set of all possible nearest neighbors classifiers
- parameters = none (KNN is an instance-based or non-parametric method)
- learning algorithm = for naïve setting, just storing the data
- hyperparameters = k, the number of neighbors to consider

Machine Learning

- Def: (loosely) a **model** defines the hypothesis space over which learning performs its search
- Def: **model parameters** are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- Def: the **learning algorithm** defines the data-driven search over the hypothesis space (i.e. search for good parameters)
- Def: **hyperparameters** are the tunable aspects of the model, that the learning algorithm does not select
Model Selection

Example: Perceptron

- **model** = set of all linear separators

- **parameters** = vector of weights (one for each feature)

- **learning algorithm** = mistake based updates to the parameters

- **hyperparameters** = none (unless using some variant such as averaged perceptron)

Machine Learning

- **Def**: (loosely) a **model** defines the hypothesis space over which learning performs its search

- **Def**: **model parameters** are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis

- **Def**: the **learning algorithm** defines the data-driven search over the hypothesis space (i.e. search for good parameters)

- **Def**: **hyperparameters** are the tunable aspects of the model, that the learning algorithm does not select
Model Selection

Statistics

• **Def**: a model defines the data generation process (i.e. a set or family of parametric probability distributions)

• **Def**: model parameters are the values that give rise to a particular probability distribution in the model family

• **Def**: learning (aka. estimation) is the process of finding the parameters that best fit the data

• **Def**: hyperparameters are the parameters of a prior distribution over parameters

Machine Learning

• **Def**: (loosely) a model defines the hypothesis space over which the learning algorithm performs its search

• **Def**: model parameters are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis

• **Def**: the learning algorithm defines the data-driven search over the hypothesis space (i.e. search for good parameters)

• **Def**: hyperparameters are the tunable aspects of the model, that the learning algorithm does not select

If “learning” is all about picking the best **parameters** how do we pick the best **hyperparameters**?
Model Selection

- Two very similar definitions:
 - Def: **model selection** is the process by which we choose the “best” model from among a set of candidates
 - Def: **hyperparameter optimization** is the process by which we choose the “best” hyperparameters from among a set of candidates (**could be called a special case of model selection**)

- **Both** assume access to a function capable of measuring the quality of a model

- **Both** are typically done “outside” the main training algorithm --- typically training is treated as a black box
Example of Hyperparameter Opt.

Chalkboard:
– Special cases of k-Nearest Neighbors
– Choosing k with validation data
– Choosing k with cross-validation
Cross-validation is a method of estimating loss on held out data

Input: training data, learning algorithm, loss function (e.g. 0/1 error)

Output: an estimate of loss function on held-out data

Key idea: rather than just a single “validation” set, use many!
(Error is more stable. Slower computation.)

Algorithm:
Divide data into folds (e.g. 4)
1. Train on folds \{1,2,3\} and predict on \{4\}
2. Train on folds \{1,2,4\} and predict on \{3\}
3. Train on folds \{1,3,4\} and predict on \{2\}
4. Train on folds \{2,3,4\} and predict on \{1\}
Concatenate all the predictions and evaluate loss (almost equivalent to averaging loss over the folds)

\[
D = \begin{bmatrix}
 y^{(1)} & x^{(1)} \\
 y^{(2)} & x^{(2)} \\
 \vdots & \vdots \\
 y^{(N)} & x^{(N)} \\
\end{bmatrix}
\]
Model Selection

WARNING (again):

- This section is only scratching the surface!
- Lots of methods for hyperparameter optimization: (to talk about later)
 - Grid search
 - Random search
 - Bayesian optimization
 - Graduate-student descent
 - ...

Main Takeaway:

- Model selection / hyperparameter optimization is just another form of learning
Model Selection Learning Objectives

You should be able to...

• Plan an experiment that uses training, validation, and test datasets to predict the performance of a classifier on unseen data (without cheating)
• Explain the difference between (1) training error, (2) validation error, (3) cross-validation error, (4) test error, and (5) true error
• For a given learning technique, identify the model, learning algorithm, parameters, and hyperparameters
• Define "instance-based learning" or "nonparametric methods"
• Select an appropriate algorithm for optimizing (aka. learning) hyperparameters
THE PERCEPTRON ALGORITHM
Perceptron: History

Imagine you are trying to build a new machine learning technique... your name is Frank Rosenblatt... and the year is 1957
Perceptron: History

Imagine you are trying to build a new machine learning technique... your name is Frank Rosenblatt... and the year is 1957

The New Yorker, December 6, 1958 P. 44

Talk story about the perceptron, a new electronic brain which hasn't been built, but which has been successfully simulated on the I.B.M. 704. Talk with Dr. Frank Rosenblatt, of the Cornell Aeronautical Laboratory, who is one of the two men who developed the prodigy; the other man is Dr. Marshall C. Yovits, of the Office of Naval Research, in Washington. Dr. Rosenblatt defined the perceptron as the first non-biological object which will achieve an organization of its external environment in a meaningful way. It interacts with its environment, forming concepts that have not been made ready for it by a human agent. If a triangle is held up, the perceptron's eye picks up the image & conveys it along a random succession of lines to the response units, where the image is registered. It can tell the difference betw. a cat and a dog, although it wouldn't be able to tell whether the dog was to the left or right of the cat. Right now it is of no practical use, Dr. Rosenblatt conceded, but he said that one day it might be useful to send one into outer space to take in impressions for us.
Key idea: Try to learn this hyperplane directly

Directly modeling the hyperplane would use a decision function:

\[h(x) = \text{sign}(\theta^T x) \]

for:

\[y \in \{-1, +1\} \]

Looking ahead:

• We’ll see a number of commonly used Linear Classifiers
• These include:
 – Perceptron
 – Logistic Regression
 – Naïve Bayes (under certain conditions)
 – Support Vector Machines
In-Class Exercise

Draw a picture of the region corresponding to:

\[w_1 x_1 + w_2 x_2 + b > 0 \]
where \(w_1 = 2, w_2 = 3, b = 6 \)

Draw the vector \(\mathbf{w} = [w_1, w_2] \)
Visualizing Dot-Products

Chalkboard:

– vector in 2D
– line in 2D
– adding a bias term
– definition of orthogonality
– vector projection
– hyperplane definition
– half-space definitions