Backpropagation
Reminders

• Homework 4: Logistic Regression
 – Out: Fri, Feb 15
 – Due: Fri, Mar 1 at 11:59pm

• Homework 5: Neural Networks
 – Out: Fri, Mar 1
 – Due: Fri, Mar 22 at 11:59pm

• Today’s In-Class Poll
 – http://p13.mlcourse.org
 – Also linked from Schedule page on mlcourse.org
<table>
<thead>
<tr>
<th>Q:</th>
<th>What is mini-batch SGD?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>A variant of SGD...</td>
</tr>
</tbody>
</table>
Mini-Batch SGD

• **Gradient Descent:**
 Compute true gradient exactly from all N examples

• **Mini-Batch SGD:**
 Approximate true gradient by the average gradient of K randomly chosen examples

• **Stochastic Gradient Descent (SGD):**
 Approximate true gradient by the gradient of one randomly chosen example
Mini-Batch SGD

while not converged: \(\theta \leftarrow \theta - \lambda g \)

Three variants of first-order optimization:

Gradient Descent: \(g = \nabla J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \nabla J^{(i)}(\theta) \)

SGD: \(g = \nabla J^{(i)}(\theta) \) \text{ where } i \text{ sampled uniformly}

Mini-batch SGD: \(g = \frac{1}{S} \sum_{s=1}^{S} \nabla J^{(i_s)}(\theta) \) \text{ where } i_s \text{ sampled uniformly } \forall s \)
Computing Gradients

DIFFERENTIATION
1. Given training data:
 \[\{x_i, y_i\}_{i=1}^N \]

2. Choose each of these:
 - Decision function
 \[\hat{y} = f_\theta(x_i) \]
 - Loss function
 \[\ell(\hat{y}, y_i) \in \mathbb{R} \]

3. Define goal:
 \[\theta^* = \arg\min_{\theta} \sum_{i=1}^N \ell(f_\theta(x_i), y_i) \]

4. Train with SGD:
 (take small steps opposite the gradient)
 \[\theta^{(t+1)} = \theta^{(t)} - \eta_t \nabla \ell(f_\theta(x_i), y_i) \]
Approaches to Differentiation

• **Question 1:**
 When can we compute the gradients for an arbitrary neural network?

• **Question 2:**
 When can we make the gradient computation efficient?
Approaches to Differentiation

1. Finite Difference Method
 - Pro: Great for testing implementations of backpropagation
 - Con: Slow for high dimensional inputs / outputs
 - Required: Ability to call the function $f(x)$ on any input x

2. Symbolic Differentiation
 - Note: The method you learned in high-school
 - Note: Used by Mathematica / Wolfram Alpha / Maple
 - Pro: Yields easily interpretable derivatives
 - Con: Leads to exponential computation time if not carefully implemented
 - Required: Mathematical expression that defines $f(x)$

3. Automatic Differentiation - Reverse Mode
 - Note: Called Backpropagation when applied to Neural Nets
 - Pro: Computes partial derivatives of one output $f(x)_i$ with respect to all inputs x_j in time proportional to computation of $f(x)$
 - Con: Slow for high dimensional outputs (e.g. vector-valued functions)
 - Required: Algorithm for computing $f(x)$

4. Automatic Differentiation - Forward Mode
 - Note: Easy to implement. Uses dual numbers.
 - Pro: Computes partial derivatives of all outputs $f(x)_i$ with respect to one input x_j in time proportional to computation of $f(x)$
 - Con: Slow for high dimensional inputs (e.g. vector-valued x)
 - Required: Algorithm for computing $f(x)$

Given $f : \mathbb{R}^A \rightarrow \mathbb{R}^B, f(x)$

Compute $\frac{\partial f(x)_i}{\partial x_j} \forall i, j$
The centered finite difference approximation is:

$$\frac{\partial}{\partial \theta_i} J(\theta) \approx \frac{(J(\theta + \epsilon \cdot d_i) - J(\theta - \epsilon \cdot d_i))}{2\epsilon}$$

(1)

where d_i is a 1-hot vector consisting of all zeros except for the ith entry of d_i, which has value 1.

Notes:

• Suffers from issues of floating point precision, in practice

• Typically only appropriate to use on small examples with an appropriately chosen epsilon
Differentiation Quiz #1:
Suppose \(x = 2\) and \(z = 3\), what are \(dy/dx\) and \(dy/dz\) for the function below? **Round your answer to the nearest integer.**

\[
y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}
\]

Answer: Answers below are in the form \([dy/dx, dy/dz]\)

A. [42, -72]
B. [72, -42]
C. [100, 127]
D. [127, 100]
E. [1208, 810]
F. [810, 1208]
G. [1505, 94]
H. [94, 1505]
Differentiation Quiz #2:

A neural network with 2 hidden layers can be written as:

$$y = \sigma(\beta^T \sigma((\alpha^{(2)})^T \sigma((\alpha^{(1)})^T x)))$$

where $y \in \mathbb{R}$, $x \in \mathbb{R}^{D^{(0)}}$, $\beta \in \mathbb{R}^{D^{(2)}}$ and $\alpha^{(i)}$ is a $D^{(i)} \times D^{(i-1)}$ matrix. Nonlinear functions are applied elementwise:

$$\sigma(a) = [\sigma(a_1), \ldots, \sigma(a_K)]^T$$

Let σ be sigmoid: $\sigma(a) = \frac{1}{1+exp(-a)}$

What is $\frac{\partial y}{\partial \beta_j}$ and $\frac{\partial y}{\partial \alpha^{(i)}_j}$ for all i, j.

[Diagram of a neural network with inputs $x_1, x_2, x_3, \ldots, x_M$, hidden layers, and output y.]
CHAIN RULE
Chain Rule

Chalkboard

– Chain Rule of Calculus
Given: $y = g(u)$ and $u = h(x)$.

Chain Rule:

$$
\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k
$$
Given: $y = g(u)$ and $u = h(x)$.

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Backpropagation is just repeated application of the chain rule from Calculus 101.
Intuitions

BACKPROPAGATION
Error Back-Propagation

Slide from (Stoyanov & Eisner, 2012)
Error Back-Propagation

$p(y|x^{(i)})$

Slide from (Stoyanov & Eisner, 2012)
Algorithm

BACKPROPAGATION
Differentiation Quiz #1:
Suppose \(x = 2 \) and \(z = 3 \), what are \(\frac{dy}{dx} \) and \(\frac{dy}{dz} \) for the function below? **Round your answer to the nearest integer.**

\[
y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}
\]
Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation
1. Write an algorithm for evaluating the function $y = f(x)$. The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the “computation graph”)
2. Visit each node in topological order.
 For variable u_i with inputs $v_1,..., v_N$
 a. Compute $u_i = g_i(v_1,..., v_N)$
 b. Store the result at the node

Backward Computation
1. Initialize all partial derivatives dy/du_j to 0 and $dy/dy = 1$.
2. Visit each node in reverse topological order.
 For variable $u_i = g_i(v_1,..., v_N)$
 a. We already know dy/du_i
 b. Increment dy/dv_j by $(dy/du_i)(du_i/dv_j)$
 (Choice of algorithm ensures computing (du_i/dv_j) is easy)

Return partial derivatives dy/du_i for all variables