PAC Learning
+
The Big Picture
Reminders

• Midterm Exam
 – Thursday Evening 6:30 – 9:00 (2.5 hours)
 – Room and seat assignments will be announced on Piazza
 – You may bring one 8.5 x 11 cheatsheet
Midterm Exam

• **Time / Location**
 – **Time:** Evening Exam
 Thu, March 22 at 6:30pm – 9:00pm
 – **Room:** We will contact each student individually with your room assignment. The rooms are not based on section.
 – **Seats:** There will be assigned seats. Please arrive early.
 – Please watch Piazza carefully for announcements regarding room / seat assignments.

• **Logistics**
 – Format of questions:
 • Multiple choice
 • True / False (with justification)
 • Derivations
 • Short answers
 • Interpreting figures
 • Implementing algorithms on paper
 – No electronic devices
 – You are allowed to **bring** one 8½ x 11 sheet of notes (front and back)
LEARNING THEORY
Questions For Today

1. Given a classifier with zero training error, what can we say about generalization error?
 (Sample Complexity, Realizable Case)

2. Given a classifier with low training error, what can we say about generalization error?
 (Sample Complexity, Agnostic Case)

3. Is there a theoretical justification for regularization to avoid overfitting?
 (Structural Risk Minimization)
Sample Complexity Results

Definition 0.1. The **sample complexity** of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Four Cases we care about…

| Finite $|\mathcal{H}|$ | Realizable | Agnostic |
|------------------------|------------|----------|
| $N \geq \frac{1}{\varepsilon} \left[\log(|\mathcal{H}|) + \log\left(\frac{1}{\delta}\right) \right]$ labeled examples are sufficient so that with probability $(1 - \delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) > 0$. |
| $N \geq \frac{1}{2\varepsilon^2} \left[\log(|\mathcal{H}|) + \log\left(\frac{2}{\delta}\right) \right]$ labeled examples are sufficient so that $|R(h) - \hat{R}(h)| < \varepsilon$ with probability $(1 - \delta)$ for all $h \in \mathcal{H}$. |

We need a new definition of “complexity” for a Hypothesis space for these results (see VC Dimension).
Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Four Cases we care about...

Finite $	\mathcal{H}	$	Realizable	Agnostic			
$N \geq \frac{1}{\epsilon} \left[\log(\mathcal{H}) + \log(\frac{1}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1 - \delta)$ all $h \in \mathcal{H}$ with $R(h) \geq \epsilon$ have $\hat{R}(h) > 0$.	$N \geq \frac{1}{2\epsilon^2} \left[\log(\mathcal{H}) + \log(\frac{3}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1 - \delta)$ for all $h \in \mathcal{H}$ we have that $	R(h) - \hat{R}(h)	< \epsilon$.

| Infinite $|\mathcal{H}|$ | Realizable | Agnostic |
|----------------------|------------|----------|
| $N = O\left(\frac{1}{\epsilon} \left[VC(\mathcal{H}) \log(\frac{1}{\epsilon}) + \log(\frac{1}{\delta}) \right] \right)$ labeled examples are sufficient so that with probability $(1 - \delta)$ all $h \in \mathcal{H}$ with $R(h) \geq \epsilon$ have $\hat{R}(h) > 0$. | $N = O\left(\frac{1}{\epsilon^2} \left[VC(\mathcal{H}) + \log(\frac{1}{\delta}) \right] \right)$ labeled examples are sufficient so that with probability $(1 - \delta)$ for all $h \in \mathcal{H}$ we have that $|R(h) - \hat{R}(h)| \leq \epsilon$. |
VC DIMENSION
What if H is infinite?

E.g., linear separators in \mathbb{R}^d

E.g., thresholds on the real line

E.g., intervals on the real line
Shattering, VC-dimension

Definition:

A set of points S is shattered by H is there are hypotheses in H that split S in all of the $2^{|S|}$ possible ways; i.e., all possible ways of classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The **VC-dimension** of a hypothesis space H is the cardinality of the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then $VCdim(H) = \infty$
Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The **VC-dimension** of a hypothesis space H is the cardinality of the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then $\text{VCdim}(H) = \infty$

To show that VC-dimension is d:
- there exists a set of d points that can be shattered
- there is no set of $d+1$ points that can be shattered.

Fact: If H is finite, then $\text{VCdim}(H) \leq \log(|H|)$.

Slide from Nina Balcan
Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of d points that can be shattered, but there is no set of $d+1$ points that can be shattered.

E.g., $H=$ Thresholds on the real line

$\text{VCdim}(H) = 1$

E.g., $H=$ Intervals on the real line

$\text{VCdim}(H) = 2$
If the VC-dimension is d, that means there exists a set of d points that can be shattered, but there is no set of $d+1$ points that can be shattered.

E.g. , $H =$ Union of k intervals on the real line $\quad \text{VCdim}(H) = 2k$

$\quad \begin{array}{ccccccccccc}
- & + & - & + & - & + \\
\hline
\end{array}$

$\text{VCdim}(H) \geq 2k \quad \text{A sample of size } 2k \text{ shatters}
\text{(treat each pair of points as a separate case of intervals)}$

$\text{VCdim}(H) < 2k + 1$

$\quad \begin{array}{cccccccc}
+ & - & + & - & + \\
\hline
\ldots
\end{array}$
Shattering, VC-dimension

E.g., $H =$ linear separators in \mathbb{R}^2

$\text{VCdim}(H) \geq 3$
Shattering, VC-dimension

E.g., $H =$ linear separators in \mathbb{R}^2

$\text{VCdim}(H) < 4$

Case 1: one point inside the triangle formed by the others. Cannot label inside point as positive and outside points as negative.

Case 2: all points on the boundary (convex hull). Cannot label two diagonally as positive and other two as negative.

Fact: VCdim of linear separators in \mathbb{R}^d is $d+1$
Sample Complexity Results

Definition 0.1. The *sample complexity* of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Four Cases we care about...

<table>
<thead>
<tr>
<th></th>
<th>Realizable</th>
<th>Agnostic</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Finite $</td>
<td>\mathcal{H}</td>
<td>$**</td>
</tr>
<tr>
<td>**Infinite $</td>
<td>\mathcal{H}</td>
<td>$**</td>
</tr>
</tbody>
</table>
Corollary 3 (Realizable, Infinite $|\mathcal{H}|$). For some $\delta > 0$, with probability at least $(1 - \delta)$, for any hypothesis h in \mathcal{H} consistent with the data (i.e. with $\hat{R}(h) = 0$),

$$R(h) \leq O \left(\frac{1}{N} \left[\text{VC}(\mathcal{H}) \ln \left(\frac{N}{\text{VC}(\mathcal{H})} \right) + \ln \left(\frac{1}{\delta} \right) \right] \right) \quad (1)$$

Corollary 4 (Agnostic, Infinite $|\mathcal{H}|$). For some $\delta > 0$, with probability at least $(1 - \delta)$, for all hypotheses h in \mathcal{H},

$$R(h) \leq \hat{R}(h) + O \left(\sqrt{\frac{1}{N} \left[\text{VC}(\mathcal{H}) + \ln \left(\frac{1}{\delta} \right) \right]} \right) \quad (2)$$
Generalization and Overfitting

Whiteboard:

– Empirical Risk Minimization
– Structural Risk Minimization
– Motivation for Regularization
Questions For Today

1. Given a classifier with zero training error, what can we say about generalization error? *(Sample Complexity, Realizable Case)*

2. Given a classifier with low training error, what can we say about generalization error? *(Sample Complexity, Agnostic Case)*

3. Is there a theoretical justification for regularization to avoid overfitting? *(Structural Risk Minimization)*
Learning Theory Objectives

You should be able to...

• Identify the properties of a learning setting and assumptions required to ensure low generalization error
• Distinguish true error, train error, test error
• Define PAC and explain what it means to be approximately correct and what occurs with high probability
• Apply sample complexity bounds to real-world learning examples
• Distinguish between a large sample and a finite sample analysis
• Theoretically motivate regularization
CLASSIFICATION AND REGRESSION
Classification and Regression: The Big Picture

Whiteboard

- **Decision Rules / Models** (probabilistic generative, probabilistic discriminative, perceptron, SVM, regression)
- **Objective Functions** (likelihood, conditional likelihood, hinge loss, mean squared error)
- **Regularization** (L1, L2, priors for MAP)
- **Update Rules** (SGD, perceptron)
- **Nonlinear Features** (preprocessing, kernel trick)
Learning Paradigms:
What data is available and when? What form of prediction?
- supervised learning
- unsupervised learning
- semi-supervised learning
- reinforcement learning
- active learning
- imitation learning
- domain adaptation
- online learning
- density estimation
- recommender systems
- feature learning
- manifold learning
- dimensionality reduction
- ensemble learning
- distant supervision
- hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?
<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>Binary Classification</td>
</tr>
<tr>
<td>categorical</td>
<td>Multiclass Classification</td>
</tr>
<tr>
<td>ordinal</td>
<td>Ordinal Classification</td>
</tr>
<tr>
<td>real</td>
<td>Regression</td>
</tr>
<tr>
<td>ordering</td>
<td>Ranking</td>
</tr>
<tr>
<td>multiple discrete</td>
<td>Structured Prediction</td>
</tr>
<tr>
<td>multiple continuous</td>
<td>(e.g. dynamical systems)</td>
</tr>
<tr>
<td>both discrete & continuous</td>
<td>(e.g. mixed graphical models)</td>
</tr>
</tbody>
</table>

Facets of Building ML Systems:
How to build systems that are robust, efficient, adaptive, effective?
1. Data prep
2. Model selection
3. Training (optimization / search)
4. Hyperparameter tuning on validation data
5. (Blind) Assessment on test data

Application Areas:
Key challenges? NLP, Speech, Computer Vision, Robotics, Medicine, Search

Theoretical Foundations:
What principles guide learning?
- probabilistic
- information theoretic
- evolutionary search
- ML as optimization

Big Ideas in ML:
Which are the ideas driving development of the field?
- inductive bias
- generalization / overfitting
- bias-variance decomposition
- generative vs. discriminative
- deep nets, graphical models
- PAC learning
- distant rewards