KNN Decision Rule

Depends on:
1. Our dataset D
2. Our distance d
3. Our choice of k

Choosing k

Special Case: $k=1$

"Nearest Neighbor"

Special Case: $k=\infty$

"Majority Vote"

Train vs Test Error

D is 40% $y^{(i)} = 0$

60% $y^{(i)} = 1$

$D_{\text{train}} = [y^{(1)}]$

$x^{(1)}$

\cdots

$x^{(N)}$

$D_{\text{test}} = [y^{(N+1)}]$

$x^{(N+1)}$

\cdots

$x^{(N+T)}$

Compact for test error

Choose k based on validation error
Lecture 3

Function Approx. View

1. There exists some unknown distribution \(p^* \) that generates
 or unlabeled data instances, \(x^{(i)} \)
 \[
 x^{(i)} \sim p^*(x) \quad \forall i
 \]
 "denotes is sampled from"

2. Human expert annotated each training instance in \(D \)
 using a fixed unknown function \(h^* \)
 \[
 y^{(i)} = h^*(x^{(i)}) \quad \forall i
 \]

3. Learning algo. takes data \(D \) and outputs a (good) hypothesis \(h \in H \)
 \[
 y^{(i)} = h(x^{(i)})
 \]

4. Our goal: choose \(h \) with low error on data from \(p^* \)
 \[
 \text{error}(h, p^*) = \mathbb{P}_{x \sim p^*}(h(x) \neq h^*(x))
 \]
 "we can't compute this"
 "but validation error gives a good approximation"

Question: What if we knew that our data was not created as described above?