Optimization Background: Coordinate Descent

Goal: Minimize a function $J(\theta)$
- $\hat{\theta} = \arg\min_{\theta} J(\theta)$

Idea: Pick one dimension, and minimize along that dimension.

Algorithm:
1. Choose initial point $\hat{\theta}$
2. Repeat until stopping criterion is reached.
 - $\theta_1 = \arg\min J(\theta_1, \theta_2, \ldots, \theta_M)$
 - $\theta_2 = \arg\min J(\theta_1, \theta_2, \ldots, \theta_M)$
 - ...$
 - \theta_M = \arg\min J(\theta_1, \theta_2, \ldots, \theta_M)$
3. Return $\hat{\theta}$

Block Coordinate Descent

Here: An example with two blocks $\hat{x}, \hat{\beta}$, where $\hat{\theta} = [\hat{x} \hat{\beta}]$

Goal: $\hat{x}, \hat{\beta} = \arg\min J(\hat{x}, \hat{\beta})$, $\hat{x} \in \mathbb{R}^A$, $\hat{\beta} \in \mathbb{R}^B$

Idea: Minimize over an entire group of variables at a time.

Algorithm:
1. Choose initial point $\hat{x}, \hat{\beta}$
2. Repeat until stopping criterion
 - $\hat{x} = \arg\min J(\hat{x}, \hat{\beta})$
 - $\hat{\beta} = \arg\min J(\hat{x}, \hat{\beta})$
Our first example of unsupervised learning

Goal: partition unlabeled instances into groups of “similar” points

Input: Unlabeled data: \(D = \{ x^{(1)}, x^{(2)}, \ldots, x^{(n)} \} \), \(x \in \mathbb{R}^m \)

We do not know the labels of the training examples.

Output:

View #1:
- Labeled instances: \(\{(x^{(1)}, z^{(1)}), (x^{(2)}, z^{(2)}), \ldots, (x^{(n)}, z^{(n)})\} \)
- \(z^{(i)} \in \{1, \ldots, K\} \)
- These cluster assignments are predictions

View #2:
- Cluster centers: \(\{c_1, c_2, \ldots, c_K\} \)
- \(C_j = \{x^{(i)}: z^{(i)} = j\} \)
- \(C_j \) is the point in the \(j \)-th partition

Important Questions:
- How many clusters are there?
- How do we define “similarity” between points?

Objective-Based Clustering

Example: K-Means Objective

Input: \(D = \{x^{(1)}, x^{(2)}, \ldots, x^{(n)}\} \)

Cluster Centers: \(C = \{c_1, c_2, \ldots, c_K\} \)

Decision Rule: Assign \(x^{(i)} \) to its nearest cluster center \(c_j \)

Objective:

\[
\bar{z} = \arg\min_{z \in \mathbb{R}^n} \sum_{i=1}^{n} \min_{j \in \{1, \ldots, K\}} \| x^{(i)} - c_j \|^2
\]

Equivalent Objective:

\[
\bar{z} = \arg\min_{\bar{z}} \sum_{i=1}^{n} \min_{j \in \{1, \ldots, K\}} \| x^{(i)} - c_j \|^2
\]

\[
\bar{z} = \arg\min_{\bar{z}} \sum_{i=1}^{n} \left(\sum_{j \in \{1, \ldots, K\}} \| x^{(i)} - c_j \|^2 \right)
\]

Question: How should we optimize \(J_{k\text{-means}}(\bar{z}, \bar{z}) \)?
Computational Complexity of K-Means Objective Minimization Problem

1. Objective is non-convex
2. NP-Hard, even for \(k = 2 \) \# clusters
 even for \(M = 2 \) \# features

Easy Case #1: \(k = 1 \)
\[
\hat{c}_1 = \arg\min_{c_1} \frac{1}{N} \sum_{i=1}^{N} \| x^{(i)} - c_1 \|^2
= \frac{1}{N} \sum_{i=1}^{N} x^{(i)} \text{ mean}
\]

Easy Case #2: \(M = 1 \)

Dynamic program in time \(O(N^2K) \)

K-Means in Practice
- Solve minimization problem heuristically w/ Block Coord. Descent.

K-Means Algorithm:

1. Given \(x^{(1)}, \ldots, x^{(n)} \)
2. Initialize cluster centers \(\hat{c} = \{ \hat{c}_1, \ldots, \hat{c}_k \} \)
 Initialize cluster assignments \(\hat{z} = \{ \hat{z}^{(1)}, \ldots, \hat{z}^{(n)} \} \)
3. Repeat until objective stops changing,
 a) \(\hat{c} = \arg\min_{c} \sum_{i=1}^{N} \| x^{(i)} - \hat{z}_i \|^2 \) \(\text{ Min over centers, w/assignments fixed} \)
 b) \(\hat{z} = \arg\min_{z} \sum_{i=1}^{N} \| x^{(i)} - c^{(i)} \|^2 \) \(\text{ Min over assignments, w/centers fixed} \)

3) decomposes:
\[
\sum_{i=1}^{N} \| x^{(i)} - \hat{z}_i \|^2 = \sum_{j=1}^{K} \sum_{i: x^{(i)} \in \hat{c}_j} \| x^{(i)} - c_j \|^2
\]
\[
\hat{c}_1 = \arg\min_{c_1} \sum_{i: x^{(i)} \in \hat{c}_1} \| x^{(i)} - \hat{z}_1 \|^2
\]
\[
\hat{c}_2 = \arg\min_{c_2} \sum_{i: x^{(i)} \in \hat{c}_2} \| x^{(i)} - \hat{z}_2 \|^2
\]
\[
\vdots
\]
\[
\hat{c}_k = \arg\min_{c_k} \sum_{i: x^{(i)} \in \hat{c}_k} \| x^{(i)} - \hat{z}_k \|^2
\]

Each is just Easy Case #1:
\[
\hat{c}_j = \arg\min_{c_j} \sum_{i: x^{(i)} \in \hat{c}_j} \| x^{(i)} - \hat{z}_j \|^2
= \text{ mean of points in cluster } j
= \frac{1}{N_j} \sum_{i: x^{(i)} \in \hat{z}(i)} x^{(i)}
\]

\[
\hat{z}(i) = \arg\min_{c_j} \sum_{j} \| x^{(i)} - c_j \|^2
\]

\[
\hat{z}(i) = \arg\min_{c_j} \sum_{j} \| x^{(i)} - c_j \|^2
= \text{ closest cluster center for point } x^{(i)}
\]
This is a local opt. alg. for a nonconvex objective.

K-Means just finds a local min.

⇒ How we initialize \hat{C}, \hat{Z} is crucial.

Three Options:

1. **Random:** select points uniformly at random (w/o replacement) from dataset D

2. **Furthest Traversal:**
 - Select points in D s.t. c_j is as far as possible from c_1, \ldots, c_{j-1}

3. **K-Means++:**
 - Interpolate between (1) and (2)
 - Good theoretical guarantees.