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Logistic Regression,
Nonlinear Features,
Regularization

Logistic Regression Readings:

Murphy 8.1-8.3, 8.6 Matt Gormley
Bishop 4.3.2, 4.3.4 Lecture 9
HTF 4.1, 4.4

Mitchell - February 15, 2016

(Mitchell, 2016)

(Elkan, 2014)



Reminders

* Homework 3: Linear [ Logistic Regression
— Release: Mon, Feb. 13
— Due: Wed, Feb. 22 at 11:59pm

Note the
change in
time.




Outline

Motivation:

— Choosing the right classifier

— Example: Image Classification

Logistic Regression

— Background: Hyperplanes

— Data, Model, Learning, Prediction

— Log-odds

— Bernoulli interpretation

— Maximum Conditional Likelihood Estimation
Gradient descent for Logistic Regression
— Stochastic Gradient Descent (SGD)

— Computing the gradient

— Details (learning rate, finite differences)
Nonlinear Features



MOTIVATION:
LOGISTIC REGRESSION



Classifiers

Which classification method should we use?

1. The one that gives the best predictions...
— on the training data
— onthe (unseen) test data
— onthe (held-out) validation data
2. The one that is computationally efficient...
—  during training
—  during classification
3. The mostinterpretable one...
— interms of its parameters
— as amodel
4. The one thatis easiest to implement...
—  forlearning
—  for classification



Classifiers

Which classification method should we use?

Naive Bayes defined a generative model p(x, y)
of the features x and the class y.

Why should we define a model of p(x, y) at all?

Why not directly model p(y | x)?



Example: Image Classification
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Bird I“‘—‘l
2126 92.85% -
Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings pictures gg'p:;ﬁrtlﬁg ?ggrdnet

| marine animal, marine creature, sea animal, sea creature (1)
v scavenger (1) Treemap Visualization Images of the Synset Downloads
- biped (0)
;- predator, predatory animal (1)
i larva (49)
- acrodont (0)
- feeder (0)
- stunt (0)
“ chordate (3087)
| tunicate, urochordate, urochord (6)
| cephalochordate (1)
. vertebrate, craniate (3077)
- mammal, mammalian (1169)
- bird (871)
dickeybird, dickey-bird, dickybird, dicky-bird (0)
i cock (1)
- hen (0)
- nester (0)
i night bird (1)
- bird of passage (0)
- protoavis (0)
- archaeopteryx, archeopteryx, Archaeopteryx lithographi
- Sinornis (0)
- |bero-mesornis (0)
- archaeornis (0)
I ratite, ratite bird, flightless bird (10)
- carinate, carinate bird, flying bird (0)
I passerine, passeriform bird (279)
- nonpasserine bird (0)
.- bird of prey, raptor, raptorial bird (80)
| gallinaceous bird, gallinacean (114)




IMAGENET I e o
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German iris, Iris kochii 469 49.6% L
Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica pictures gggcu;ﬁ;'ﬁg l\ggrdnet

halophyte (0)
¢ succulent (39) Treemap Visualization Images of the Synset Downloads
- cultivar (0)

- cultivated plant (0)

i weed (54)

- evergreen, evergreen plant (0)

- deciduous plant (O)

i vine (272)

- creeper (0)

i~ woody plant, ligneous plant (1868)

- geophyte (0)

i desert plant, xerophyte, xerophytic plant, xerophile, xerophilc
- mesophyte, mesophytic plant (0)

i aquatic plant, water plant, hydrophyte, hydrophytic plant (11
- tuberous plant (0)

- bulbous plant (179)

“. iridaceous plant (27)

+. iris, flag, fleur-de-lis, sword lily (19)

“. bearded iris (4)

Florentine iris, orris, Iris germanica florentina, Iris
German iris, Iris germanica (0)

- German iris, Iris kochii (0)

... Dalmatian iris, Iris pallida (0)

I beardless iris (4)

- bulbous iris (0)

- dwarf iris, Iris cristata (0)

- stinking iris, gladdon, gladdon iris, stinking gladwyn,
- Persian iris, Iris persica (0)

- yellow iris, yellow flag, yellow water flag, Iris pseuda
- dwarf iris, vernal iris, Iris verna (0)

- blue flag, Iris versicolor (0)
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=
Court, courtyard 165  92.61% '__J
An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court" pictures ngcuéﬂ‘t'}g }gg’d”et
I
& Numbers in brackets: (the number of synsets in the subtree ). Treemap Visualization Images of the Synset Downloads

V- ImageNet 2011 Fall Release (32326)
| plant, flora, plant life (4486)
| geological formation, formation (175)
v natural object (1112)
- sport, athletics (176)
+. artifact, artefact (10504)
- instrumentality, instrumentation (5494)
¥ structure construction (1405)
- airdock, hangar, repair shed (0)
| altar (1)
| arcade, colonnade (1)
| arch (31)
¥- area (344)
i aisle (0)
~ auditorium (1)
- baggage claim (0)
- box (1)
- breakfast area, breakfast nook (0)
- bullpen (0)
- chancel, sanctuary, bema (0)
- choir (0)

B
“. court, courtyard (6)

corner, nook (2)

- atrium (0)

- bailey (0)

- cloister (0)

- food court (0)
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Example: Image Classification




Example: Image Classification

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input * Five convolutional layers 1000-way
image (w/max-pooling)
(pixels) * Three fully connected layers softmax

7.

The rest is just This “softmax’’ i
some fancy - : o e BN /L \dense
feature extraction |\ | iayeris Lo.glsflc A
L (discussed later in f—=—) Regression! | ‘
@ the course) | dens?
22 S/t}’i/d;. Max 128 " Max pooling 2048 2048
Uof 4 pooling pooling

3 48



LOGISTIC REGRESSION



Logistic Regression

Data: Inputs are continuous vectors of length K. Outputs
are discrete.

D = {xW,yN wherex e RM andy € {0,1}

We are back to
classification.

Despite the name
logistic regression.



dimenzion 3

.............

Background:

Q




>

Background: Hyperplanes
Hyperplane (Definition 1):
H={x:w'x="hb)
Hyperplane (Definition 2):
. H={x:wx=0

w and x, = 1}

Half-spaces:
HT ={x:w'x>0and x, =1}

H ={x:w'x<0and x, =1}






Using gradient ascent for linear

classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)

3. Optimize it with gradient descent to learn
parameters

4. Predict the class with highest probability under
the model



Using gradient ascent for linear
classifiers




Using gradient ascent for linear
classifiers




Logistic Regression

Data: Inputs are continuous vectors of length K. Outputs
are discrete.

D = {xW,yN wherex e RM andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1|x) =

1 + exp(—6"x)
Learning: finds the parameters that minimize some

objective function. g* — argmin J(g)
6

Prediction: Output is the most probable class.

y = argmax pg (y|x)
y€{0,1}



Whiteboard

* Decision boundary
* Bernoulliinterpretation



Logistic Regression
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Logistic Regression

Logistic Regression Distribution

24



Logistic Regression

Classification with Logistic Regression

25



LEARNING LOGISTIC REGRESSION



Maximum Conditional
Likelihood Estimation

Learning: finds the parameters that minimize some
objective function.

0" = argmin J(0)
0
We minimize the negative log conditional likelihood:

N
J(6) = —log | [ pe(y"x"")
Why? =1
We can’t maximize likelihood (as in Naive Bayes)

because we don’t have a joint model p(x,y)

It worked well for Linear Regression (least squares is
MCLE)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin J(0)
6

Approach 1: Gradient Descent
(take larger — more certain - steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin J(0)
0

Approach 1: Gradient Descent
(take larger — more certain - steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

m???
(set derivatives equal to zero and's




Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, 9(0))

1:

2 6 — 09

3: while not converged do
4 00— \VoJ(0)

5 return 0

In order to apply GD to Logistic
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).




Stochastic Gradient Descent (SW

Algorithm 1 Stochastic Gradient Descent (SG D)

i procedure SGD(D, 8'?)

2 0« W

3: while not converged do

4: fori € shuffle({1,2,...,N})do
5:

6

0+ 0  \VeJ(0)
return 0

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

We need a per-example objective:
Let J(0) = 30,0, JD(6)
where J(9(0) = — log pe (y*|x?).



GRADIENT FOR LOGISTIC
REGRESSION



Whiteboard

* Partial derivative for Logistic Regression
* Gradient for Logistic Regression



Details: Picking learning rate

* Use grid-search in log-space over small
values on a tuning set:

— e.g., 0.01, 0.001, ...

* Sometimes, decrease after each pass:
— e.g factor of 1/(1 + dt), t=epoch
— sometimes 1/t2

* Fancier techniques | won’t talk about:

— Adaptive gradient: scale gradient differently for
each dimension (Adagrad, ADAM, ....)

Slide courtesy of William Cohen



SGD for Logistic Regression

Algorithm 1 SGD for Logistic Regression
i: procedure SGD(D, 69)
2 0« 0 AN NN
3:  while not converged do S f\b' |
4: fori € shuffle({1,2,...,N}) do S
5: 0 — 0 — \y® — p)x®
6 where p() :=1/(1 + exp(—0"x))
7 return

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

We need a per-example objective:
Let J(0) = 30,0, JD(6)
where J(9(0) = — log pe (y*|x?).



Takeaways

1. Discriminative classifiers directly model the
conditional, p(y|x)

2. Logistic regression is a simple linear
classifier, that retains a probabilistic
semantics

3. Parameters in LR are learned by iterative
optimization (e.g. SGD)




NON-LINEAR FEATURES



Nonlinear Features

Whiteboard
— Example functions

on
on
on
on

inear Features for Linear Regression
inear Features for Logistic Regression

inear Features for KNN
inear Features for Naive Bayes



Example: Linear Regression
Nonlinear Features

Polynomial basis vectors on a small dataset

— From Bishop Ch 1

Slide courtesy of William Cohen



Ot Order Polynomial

n=10

Slide courtesy of William Cohen



1t Order Polynomial

Slide courtesy of William Cohen



3" Order Polynomial

Slide courtesy of William Cohen



oth Order Polynomial

Slide courtesy of William Cohen



Over-fitting

—©— Training
—O— Test

M 6 9

Root-Mean-Square (RMS) Error:  Erus = 2E(w*)/N

Slide courtesy of William Cohen



Polynomial Coefficients

M=0 M=1 M=3 M =9
B0 0.19 082 0.3l 0.35
0, 127 7.99 232.37
0, -25.43 _5321.83
05 17.37 48568.31
04 -231639.30
05 640042.26
6 -1061800.52
0, 1042400.18
g _557682.99
0 125201.43

Slide courtesy of William Cohen



Overfitting

Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:

— KNN (e.g. when k is small)

— Naive Bayes (e.g. without a prior)

— Linear Regression (e.g. with basis function)

— Logistic Regression (e.g. with many rare features)



oth Order Polynomial

(Small # of examples)

N =10

Slide courtesy of William Cohen



oth Order Polynomial
(Large # of examples)

N =100

Slide courtesy of William Cohen



