

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Neural Networks and Backpropagation

Neural Net Readings:

Murphy --

Bishop 5

HTF 11

Mitchell 4

Matt Gormley Lecture 19 March 29, 2017

Reminders

- Homework 6: Unsupervised Learning
 - Release: Wed, Mar. 22
 - Due: Mon, Apr. 03 at 11:59pm
- Homework 5 (Part II): Peer Review
 - Release: Wed, Mar. 29
 - Due: Wed, Apr. 05 at 11:59pm

Expectation: You should spend at most 1 hour on your reviews

Peer Tutoring

Neural Networks Outline

Logistic Regression (Recap)

Data, Model, Learning, Prediction

Neural Networks

- A Recipe for Machine Learning
- Visual Notation for Neural Networks
- Example: Logistic Regression Output Surface
- 2-Layer Neural Network
- 3-Layer Neural Network

Neural Net Architectures

- Objective Functions
- Activation Functions

Backpropagation

- Basic Chain Rule (of calculus)
- Chain Rule for Arbitrary Computation Graph
- Backpropagation Algorithm
- Module-based Automatic Differentiation (Autodiff)

RECALL: LOGISTIC REGRESSION

Using gradient ascent for line Recall... classifiers

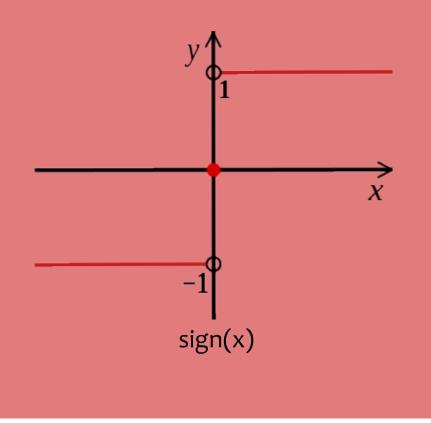
Key idea behind today's lecture:

- 1. Define a linear classifier (logistic regression)
- Define an objective function (likelihood)
- Optimize it with gradient descent to learn parameters
- 4. Predict the class with highest probability under the model

Using gradient ascent for lines Recall... classifiers

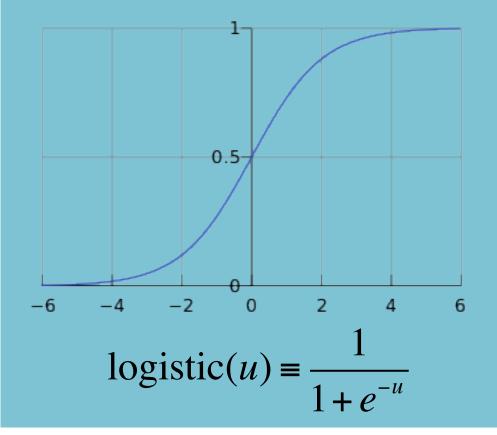
This decision function isn't differentiable:

$$h(\mathbf{x}) = \mathsf{sign}(\boldsymbol{\theta}^T \mathbf{x})$$



Use a differentiable function instead:

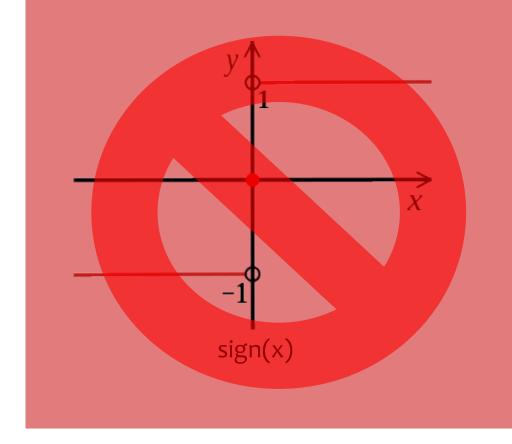
$$p_{\theta}(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$



Using gradient ascent for line Recall... classifiers

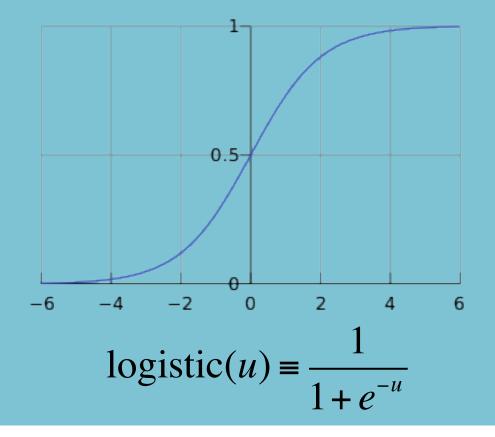
This decision function isn't differentiable:

$$h(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$$



Use a differentiable function instead:

$$p_{\theta}(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$



Logistic Regression

Data: Inputs are continuous vectors of length K. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x} \in \mathbb{R}^K$ and $y \in \{0, 1\}$

Model: Logistic function applied to dot product of parameters with input vector.

$$p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$

Learning: finds the parameters that minimize some objective function. $m{ heta}^* = \operatorname*{argmin} J(m{ heta})$

Prediction: Output is the most probable class.

$$\hat{y} = \underset{y \in \{0,1\}}{\operatorname{argmax}} p_{\theta}(y|\mathbf{x})$$

NEURAL NETWORKS

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}},m{y}_i)\in\mathbb{R}$$

Face Face Not a face

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

3. Define goal:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Background

A Recipe for Gradients

1. Given training dat

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$
 gradient! And it's a

- 2. Choose each of the
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{y}, y_i) \in \mathbb{R}$$

Backpropagation can compute this gradient!

And it's a special case of a more general algorithm called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)
$$oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

A Recipe for

Goals for Today's Lecture

- 1. Explore a **new class of decision functions** (Neural Networks)
 - 2. Consider variants of this recipe for training
- 2. CHOOSE EACH OF THESE.
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

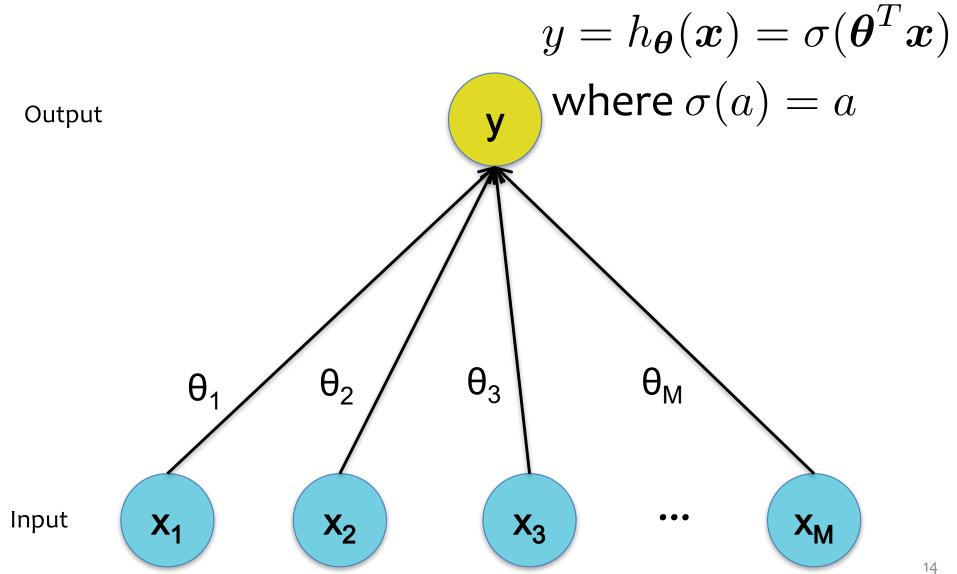
$$\ell(\hat{y}, y_i) \in \mathbb{R}$$

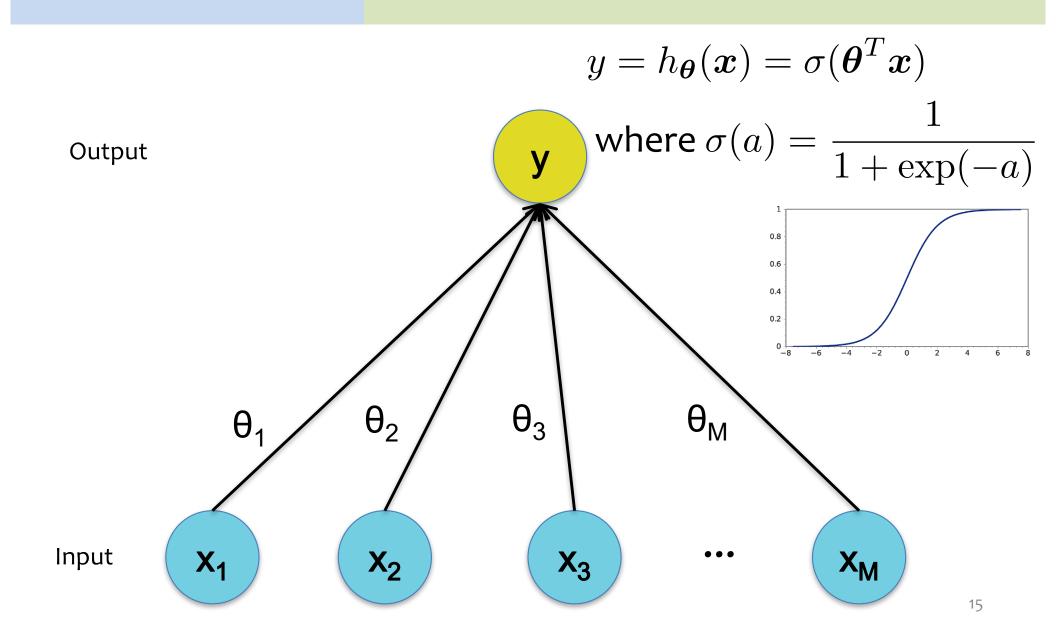
Train with SGD:

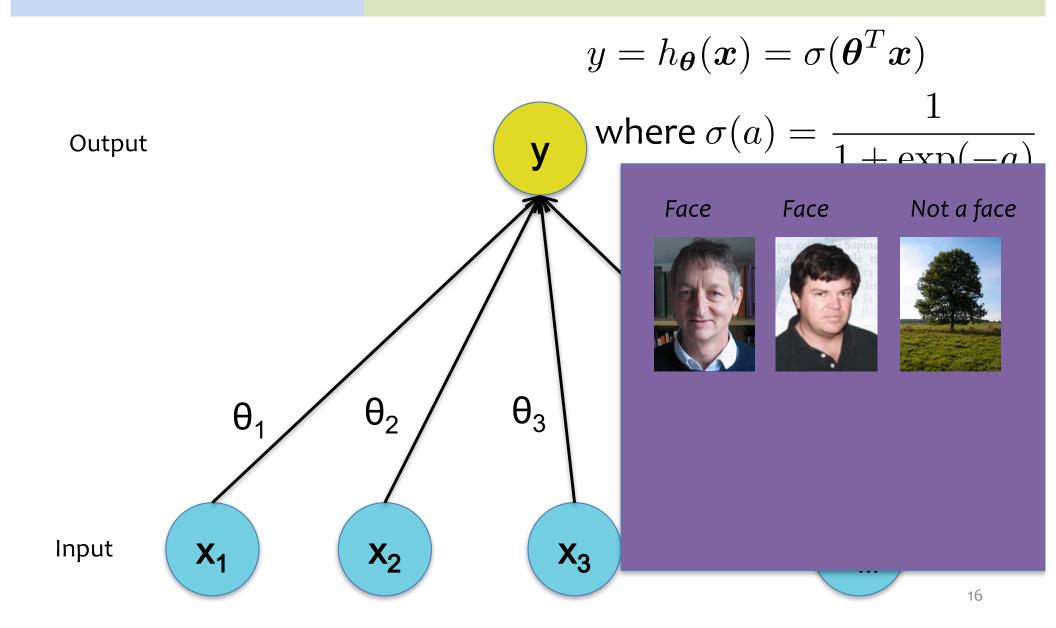
ke small steps
opposite the gradient)

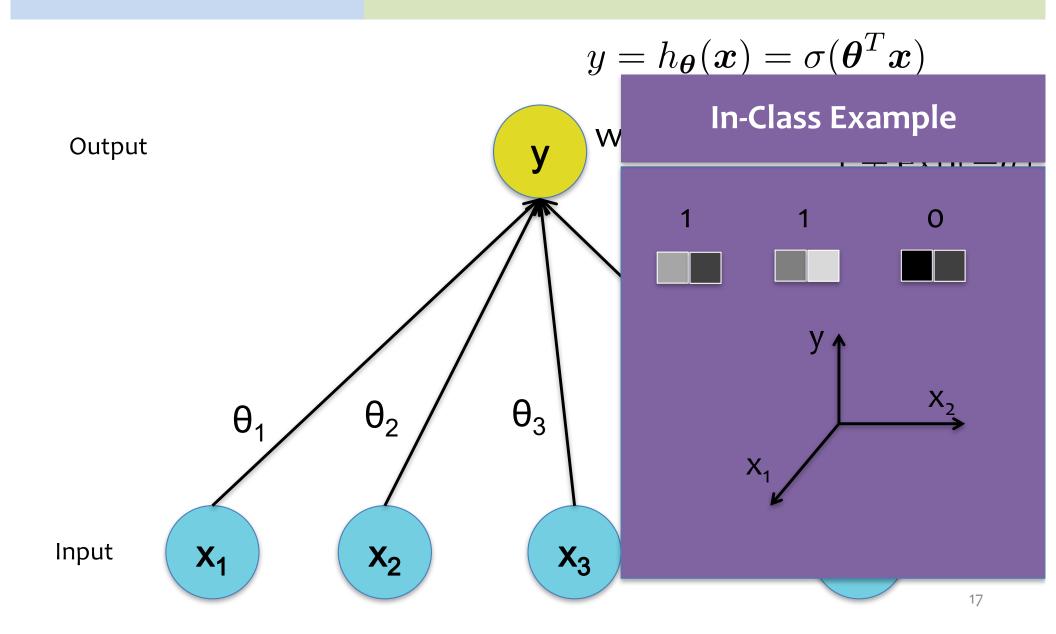
$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Linear Regression

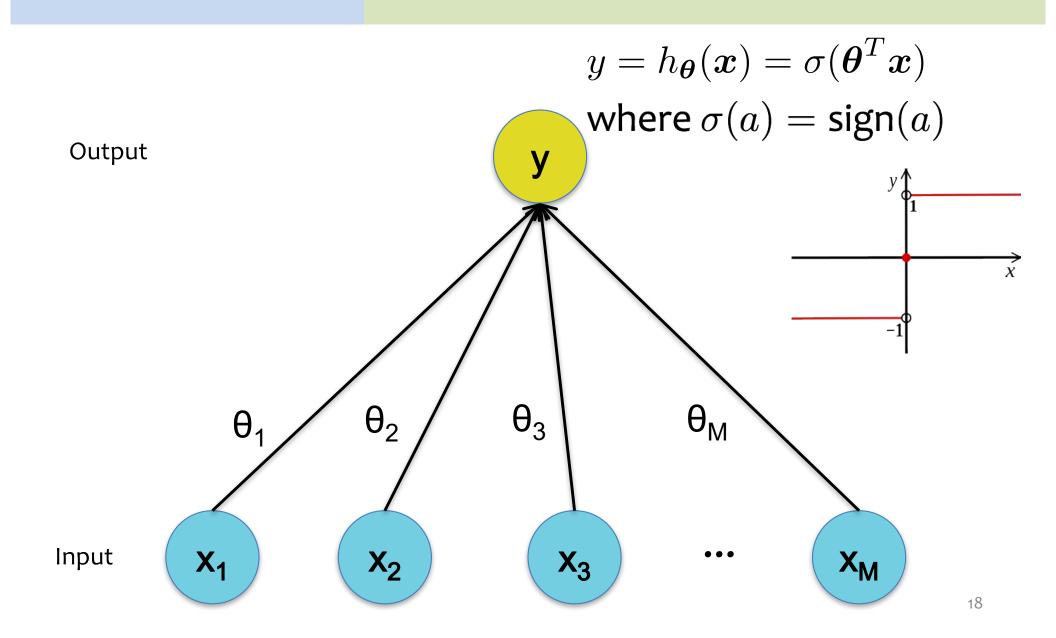






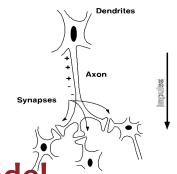


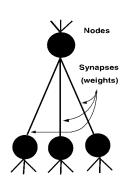
Perceptron



From Biological to Artificial

The motivation for Artificial Neural Networks comes from biology...





Biological "Model"

- Neuron: an excitable cell
- **Synapse:** connection between neurons
- A neuron sends an electrochemical pulse along its synapses when a sufficient voltage change occurs
- Biological Neural Network: collection of neurons along some pathway through the brain

Artificial Model

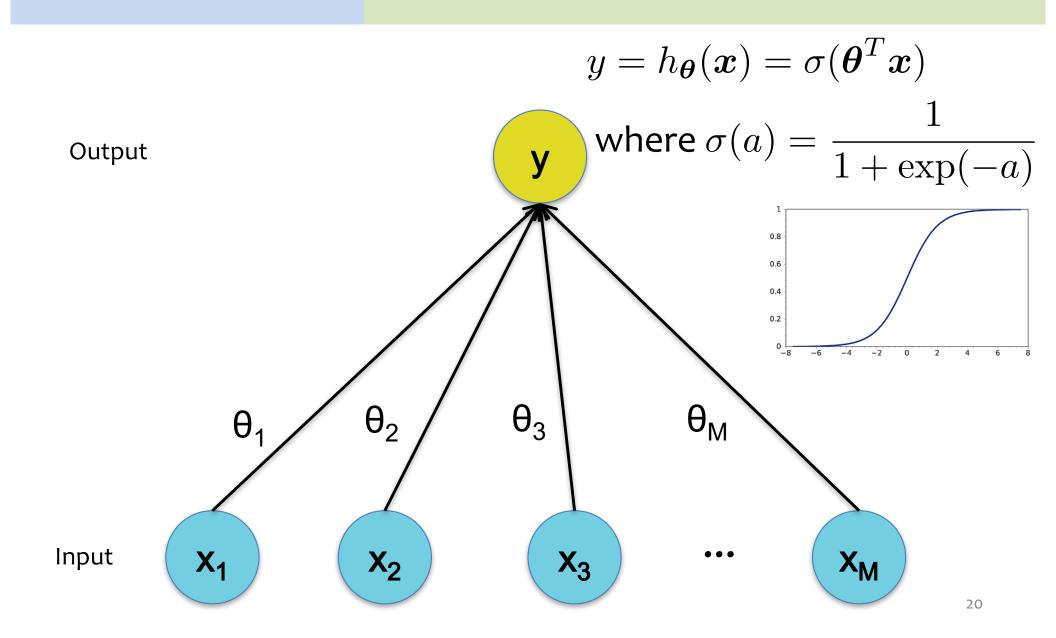
- Neuron: node in a directed acyclic graph (DAG)
- Weight: multiplier on each edge
- Activation Function: nonlinear thresholding function, which allows a neuron to "fire" when the input value is sufficiently high
- Artificial Neural Network: collection of neurons into a DAG, which define some differentiable function

Biological "Computation"

- Neuron switching time: ~ 0.001 sec
- Number of neurons: ~ 10¹⁰
- Connections per neuron: ~ 10⁴⁻⁵
- Scene recognition time: ~ 0.1 sec

Artificial Computation

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed processes

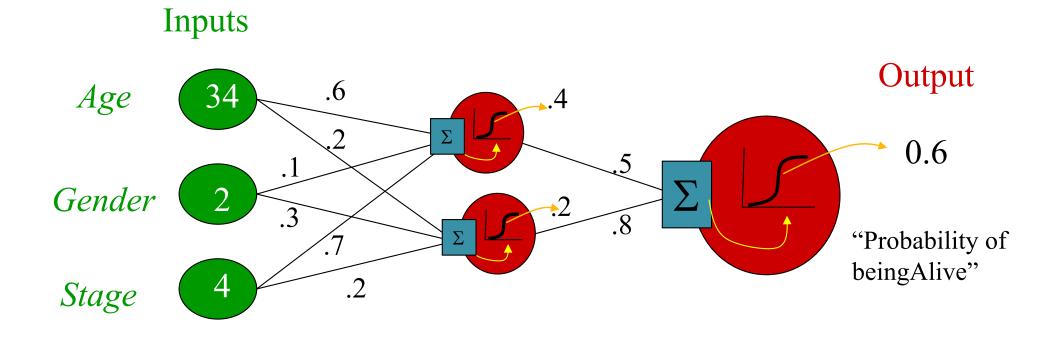


Neural Networks

Whiteboard

- Example: Neural Network w/1 Hidden Layer
- Example: Neural Network w/2 Hidden Layers
- Example: Feed Forward Neural Network

Neural Network Model



Independent variables

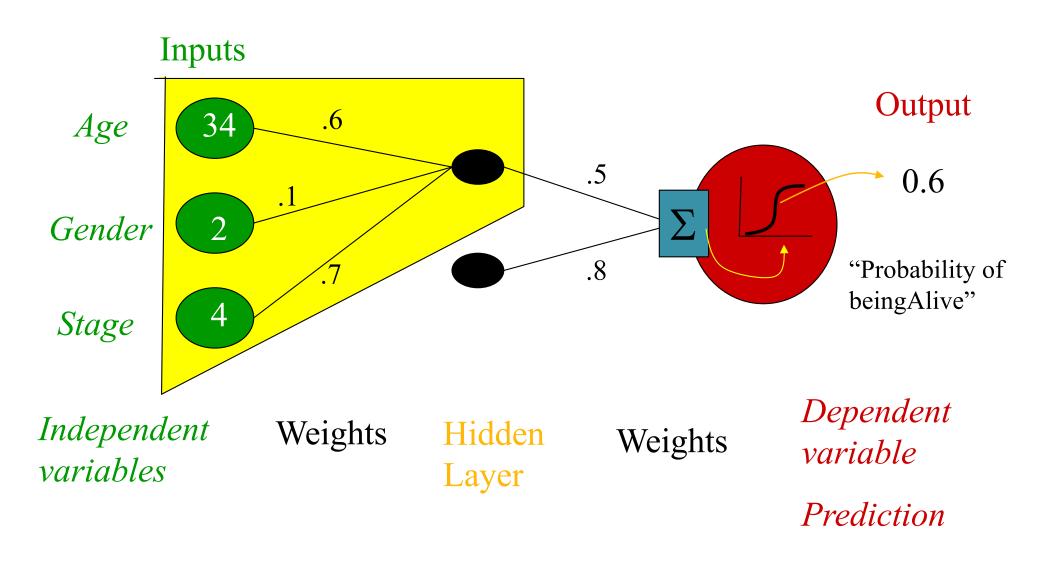
Weights

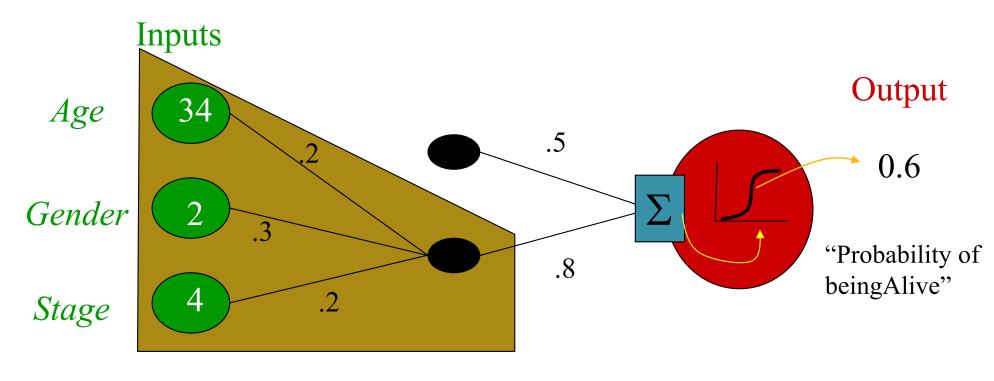
Hidden Layer

Weights

Dependent variable

"Combined logistic models"





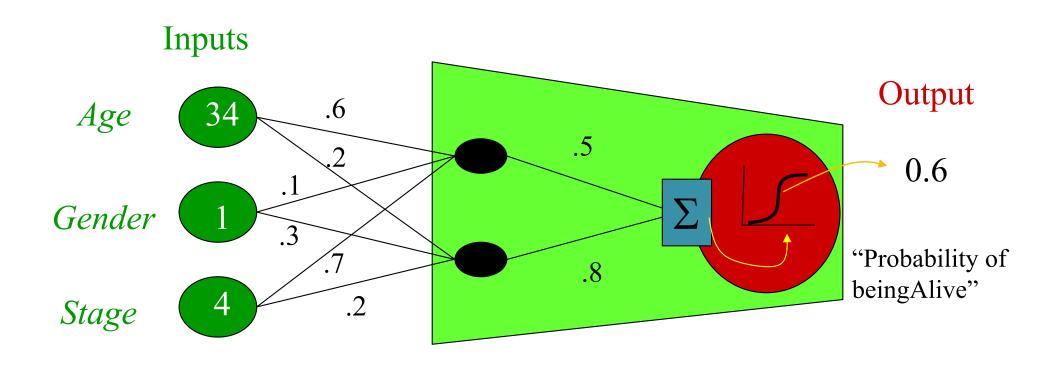
Independent variables

Weights

Hidden Layer

Weights

Dependent variable



Independent variables

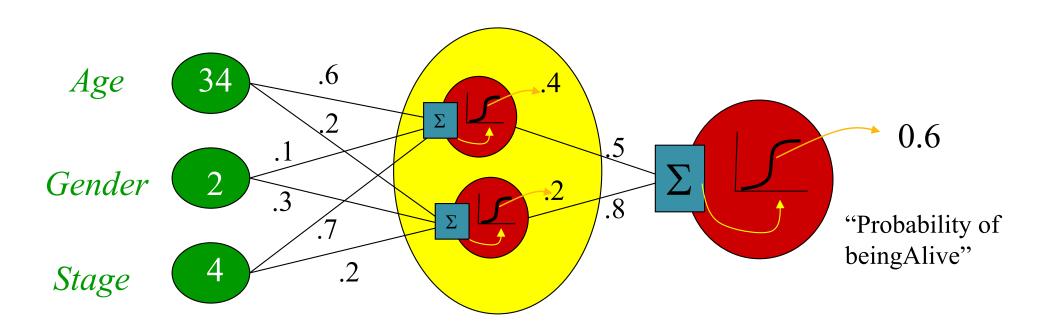
Weights

Hidden Layer

Weights

Dependent variable

Not really, no target for hidden units...



Independent variables

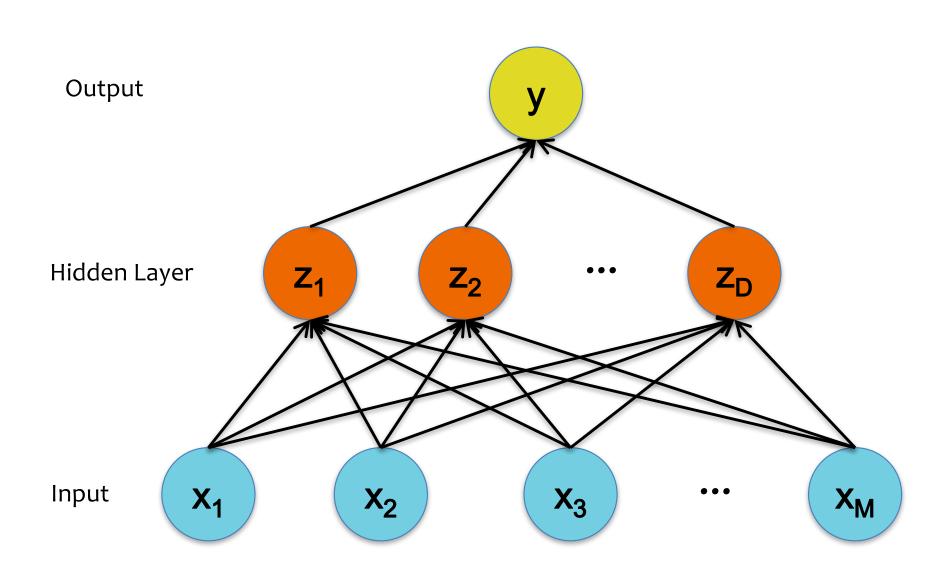
Weights

Hidden Layer

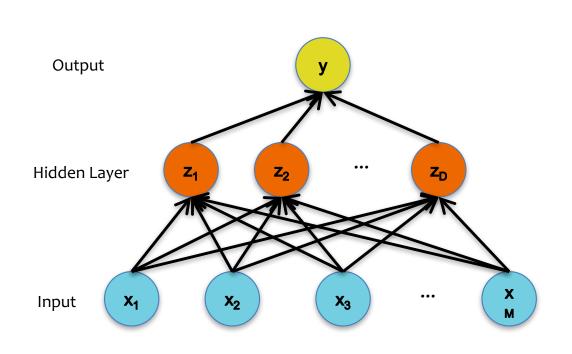
Weights

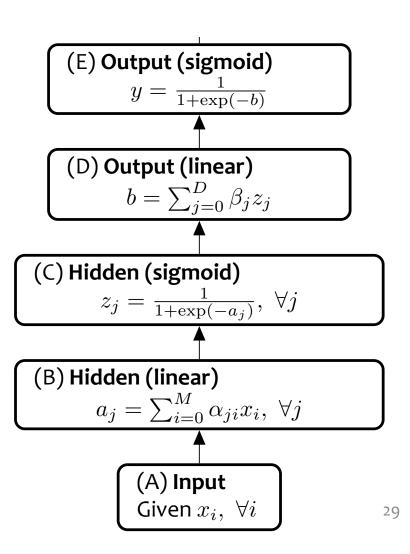
Dependent variable

Neural Network

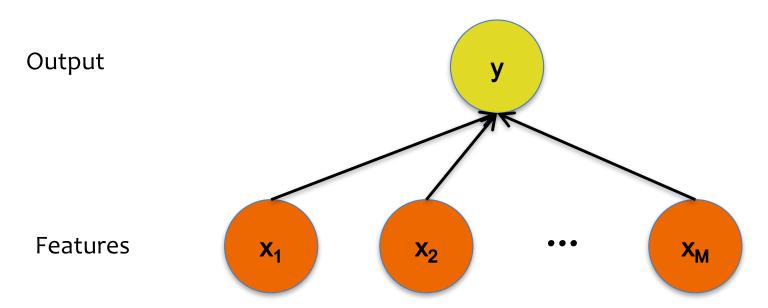


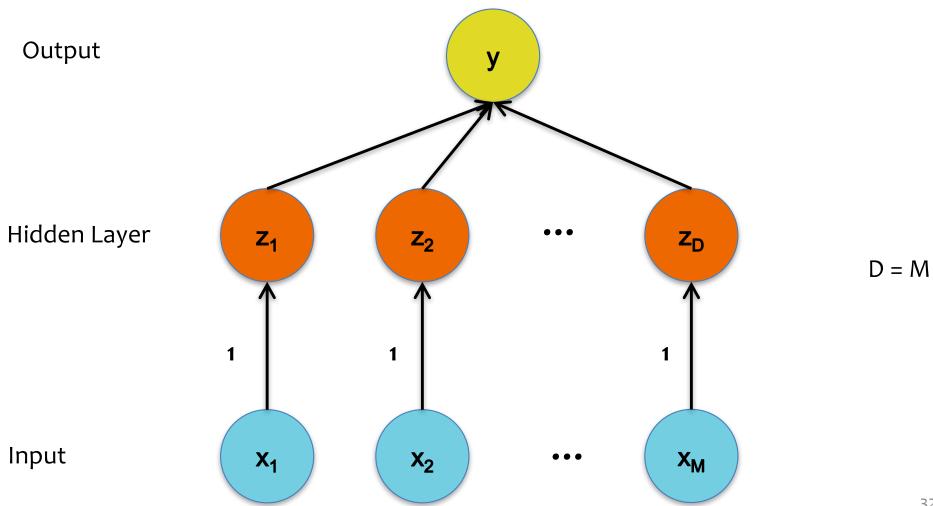
Neural Network

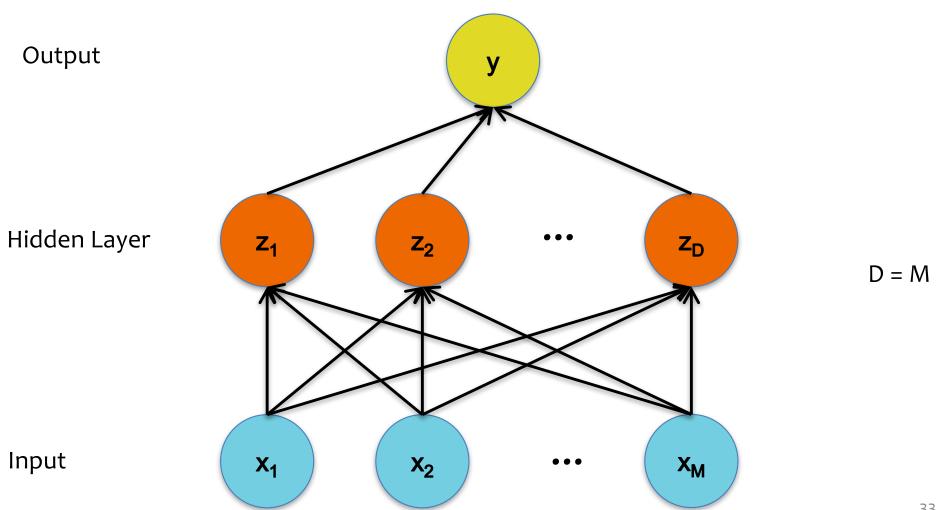


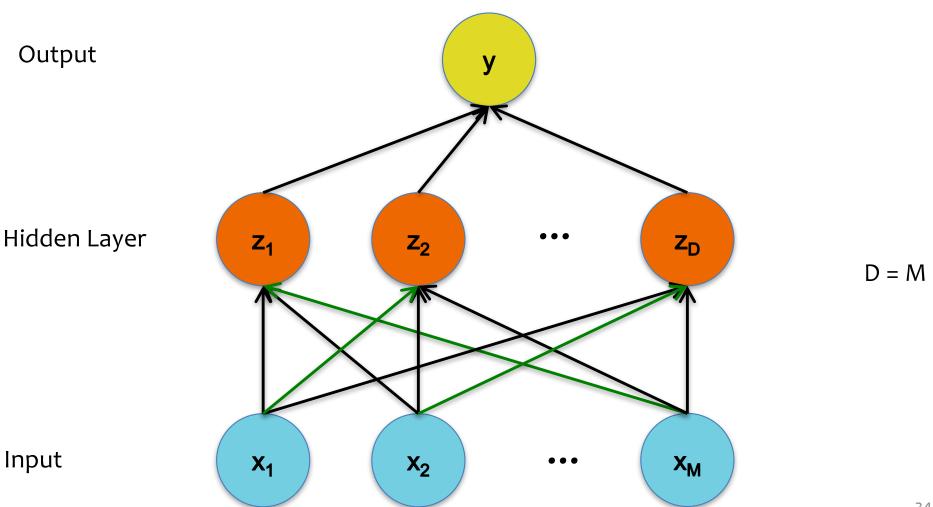


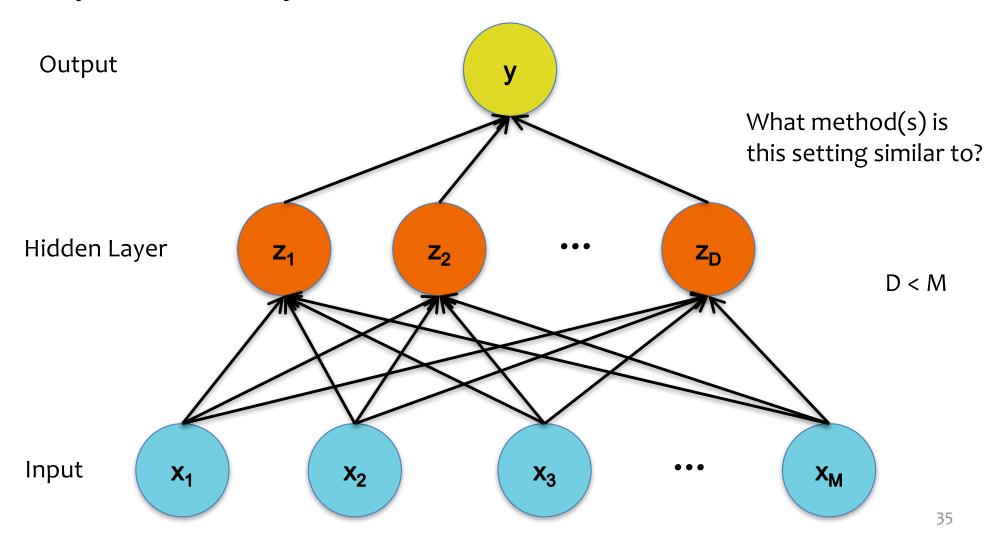
NEURAL NETWORKS: REPRESENTATIONAL POWER

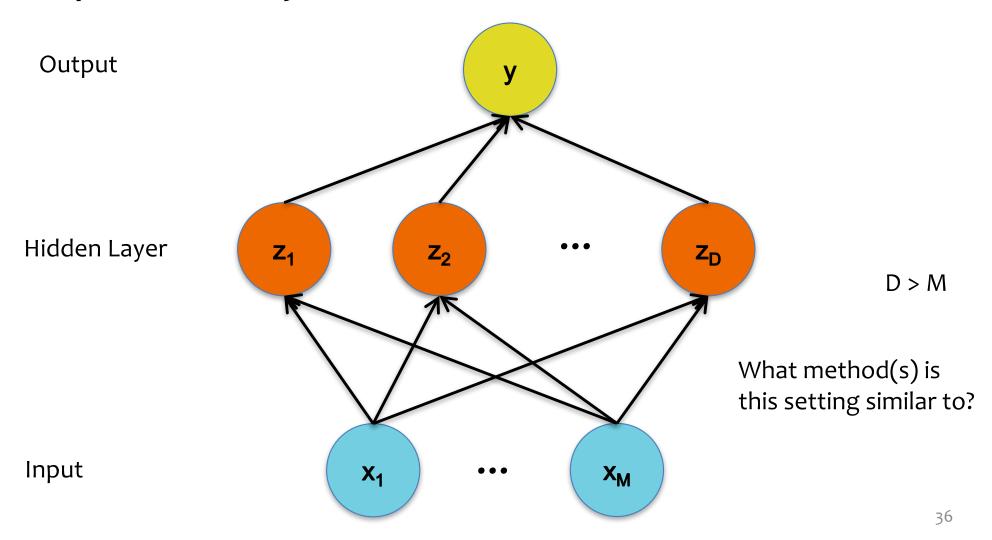






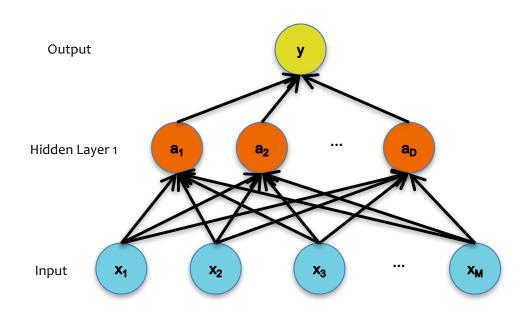






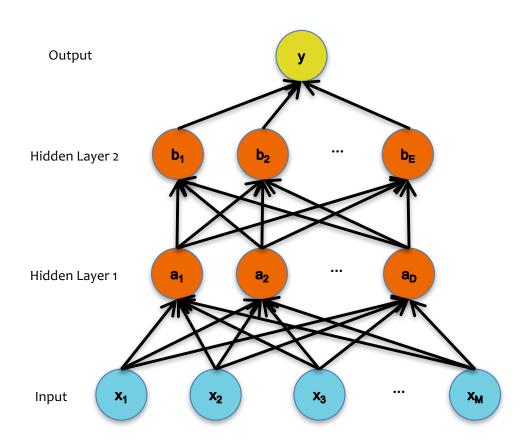
Deeper Networks

Q: How many layers should we use?



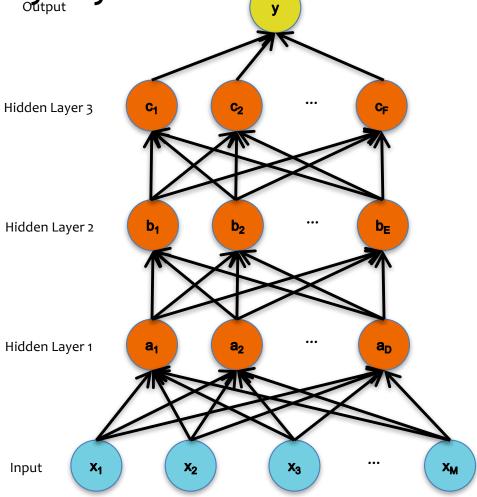
Deeper Networks

Q: How many layers should we use?



Deeper Networks

Q: How many layers should we use?



Deeper Networks

Q: How many layers should we use?

Theoretical answer:

- A neural network with 1 hidden layer is a universal function approximator
- Cybenko (1989): For any continuous function g(x), there exists a 1-hidden-layer neural net $h_{\theta}(x)$ s.t. $|h_{\theta}(x) g(x)| < \epsilon$ for all x, assuming sigmoid activation functions

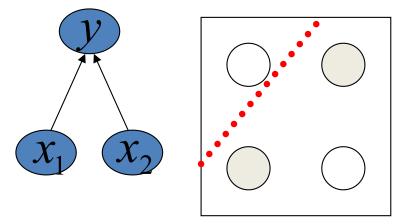
Empirical answer:

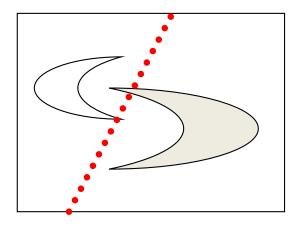
- Before 2006: "Deep networks (e.g. 3 or more hidden layers) are too hard to train"
- After 2006: "Deep networks are easier to train than shallow networks (e.g. 2 or fewer layers) for many problems"

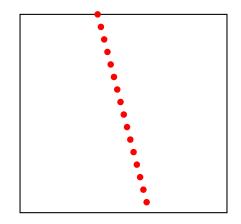
Big caveat: You need to know and use the right tricks.

Decision Boundary

- o hidden layers: linear classifier
 - Hyperplanes

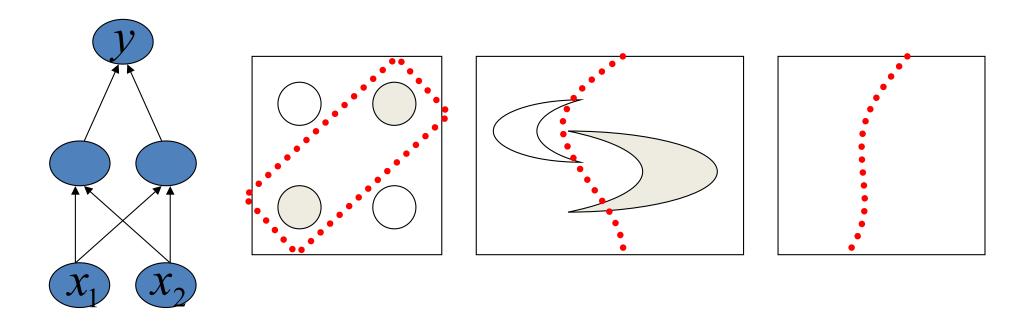




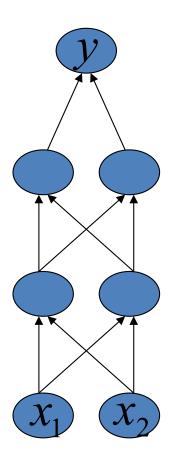


Decision Boundary

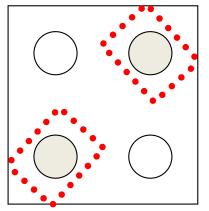
- 1 hidden layer
 - Boundary of convex region (open or closed)

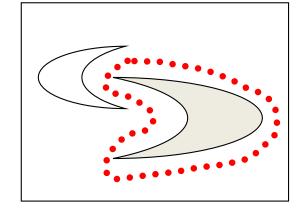


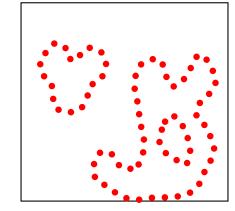
Decision Boundary



- 2 hidden layers
 - Combinations of convex regions



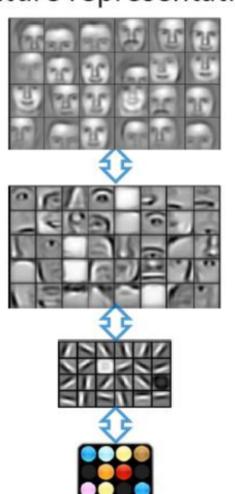




Different Levels of Abstraction

- We don't know the "right" levels of abstraction
- So let the model figure it out!

Feature representation



3rd layer "Objects"

2nd layer "Object parts"

1st layer "Edges"

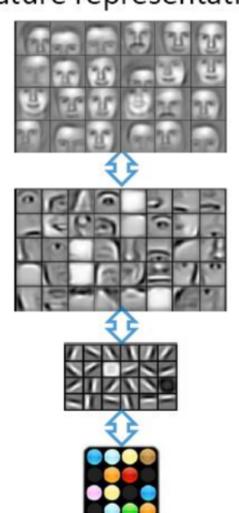
Pixels

Different Levels of Abstraction

Face Recognition:

- Deep Network
 can build up
 increasingly
 higher levels of
 abstraction
- Lines, parts, regions

Feature representation



3rd layer "Objects"

2nd layer "Object parts"

1st layer "Edges"

Pixels

Different Levels of Abstraction

